12. Find the intervals on which f is increasing or decreasing, and find the local maximum and minimum values of f.

$$f(x) = x^{2/3}(x-3)$$

Sol.
$$f(x) = x^{2/3}(x-3) \Rightarrow f'(x) = \frac{2}{3}x^{-1/3}(x-3) + x^{2/3}(1) = \frac{1}{3}x^{-1/3}(2x-6+3x) = \frac{1}{3}x^{-1/3}(5x-6)$$
Hence we want to following table:

Hence we may make the following table:

Interval	$x^{-1/3}$	5x - 6	f'(x)	f
x < 0	_	_	+	increasing on $(-\infty,0)$
$0 < x < \frac{6}{5}$	+	_	_	decreasing on $(0, \frac{6}{5})$
$x > \frac{6}{5}$	+	+	+	increasing on $\left(\frac{6}{5},\infty\right)$

f changes from increasing to decreasing at x=0 and from decreasing to increasing at $x=\frac{6}{5}$. Thus, f(0) = 0 is a local maximum value and $f(\frac{6}{5}) = (\frac{6}{5})^{2/3}(-\frac{9}{5}) \approx -2.03$ is a local minimum value.

14. Find the intervals on which f is increasing or decreasing, and find the local maximum and minimum values of f.

values of i.
$$f(x) = x + \frac{4}{r^2}$$

Sol.
$$f(x) = x + \frac{4}{x^2} \Rightarrow f'(x) = 1 - 8x^{-3} = \frac{x^3 - 8}{x^3} = \frac{(x - 2)(x^2 + 2x + 4)}{x^3}$$

The factor (x^2+2x+4) is always positive and does not affect the sign of f'(x). Hence we may make the following table:

Interval	x^3	x-2	f'(x)	f
x < 0	_	_	+	increasing on $(-\infty, 0)$
0 < x < 2	+	_	_	decreasing on $(0,2)$
x > 2	+	+	+	increasing on $(2, \infty)$

x=0 is not in the domain of f. f changes from decreasing to increasing at x=2. Thus, f(2)=3is a local minimum value.

16. Find the intervals on which f is increasing or decreasing, and find the local maximum and minimum values of f.

$$f(x) = x^4 e^{-x}$$

$$f(x) = x^4 e^{-x} \Rightarrow f'(x) = 4x^3 e^{-x} + x^4 (-e^{-x}) = x^3 e^{-x} (4-x)$$

Thus, f'(x) > 0 if 0 < x < 4 and f'(x) < 0 if x < 0 or x > 4.

So f is increasing on (0,4) and decreasing on $(-\infty,0)$ and $(4,\infty)$.

Hence f(0) = 0 is local minimum value and $f(4) = 256e^{-4} \approx 4.69$ is a local maximum value.

24. (a) Find the intervals on which f is increasing or decreasing.

- (b) Find the local maximum and minimum values of f.
- (c) Find the intervals of concavity and the inflection points.

$$f(x) = \frac{x}{x^2 + 1}$$

Sol.

$$f(x) = \frac{x}{x^2 + 1} \Rightarrow f'(x) = \frac{(1)(x^2 + 1) - (x)(2x)}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2} = -\frac{(x + 1)(x - 1)}{(x^2 + 1)^2}$$

Thus, f'(x) > 0 if $(x+1)(x-1) < 0 \iff -1 < x < 1$ and f'(x) < 0 if x < -1 or x > 1. So f is increasing on (-1,1) and f is decreasing on $(-\infty,-1)$ and $(1,\infty)$

f changes from decreasing to increasing at x = -1 and from increasing to decreasing at x = 1. Thus, $f(-1) = -\frac{1}{2}$ is a local minimum and $f(1) = \frac{1}{2}$ is a local maximum value.

$$f''(x) = \frac{(-2x)((x^2+1)^2) - (1-x^2)(2(x^2+1)(2x))}{((x^2+1)^2)^2} = \frac{(x^2+1)(-2x)[(x^2+1) + 2(1-x^2)]}{(x^2+1)^4} = \frac{2x(x^2-3)}{(x^2+1)^3}$$

 $f''(x) > 0 \iff -\sqrt{3} < x < 0 \text{ or } x > \sqrt{3}, \text{ and } f''(x) < 0 \iff x < -\sqrt{3} \text{ or } 0 < x < \sqrt{3}.$ Thus, f is concave upward on $(-\sqrt{3},0)$ and $(\sqrt{3},\infty)$ and concave downward on $(-\infty,-\sqrt{3})$ and $(0,\sqrt{3})$. There are inflection points at $(-\sqrt{3},\frac{-\sqrt{3}}{4}),(0,0),$ and $(\sqrt{3},\frac{\sqrt{3}}{4}).$

- 28. (a) Find the intervals on which f is increasing or decreasing.
 - (b) Find the local maximum and minimum values of f.
 - (c) Find the intervals of concavity and the inflection points.

$$f(x) = \cos^2 x - 2\sin x, \quad 0 \le x \le 2pi$$

Sol.

$$f(x) = \cos^2 x - 2\sin x \Rightarrow f'(x) = -2\cos x \sin x - 2\cos x = -2\cos x (1 + \sin x)$$

Note that $1+\sin x \geq 0$ [since $\sin x \geq -1$], with equality $\iff \sin x = -1 \iff x = \frac{3\pi}{2}$ [since $0 \leq x \leq 2\pi$] $\Rightarrow \cos x = 0$. Thus, $f'(x) > 0 \iff \cos x < 0 \iff \frac{\pi}{2} < x < \frac{3\pi}{2}$ and $f'(x) < 0 \iff \cos x > 0 \iff 0 < x < \frac{\pi}{2}$ or $\frac{3\pi}{2} < x < 2\pi$. So f is increasing on $(\frac{\pi}{2}, \frac{3\pi}{2})$ and f is decreasing on $(0, \frac{\pi}{2})$ and $(\frac{3\pi}{2}, 2\pi)$

f changes from decreasing to increasing at $x = \frac{\pi}{2}$ and from increasing to decreasing at $x = \frac{3\pi}{2}$. Thus, $f(\frac{\pi}{2}) = -2$ is a local minimum and $f(\frac{3\pi}{2}) = 2$ is a local maximum value.

$$f''(x) = 2\sin x(1+) - 2\cos^2 x = 2(\sin x + \sin^2 x - (1 - \sin^2 x))$$
$$= 2(2\sin^2 x + \sin x) = 2(2\sin x - 1)(\sin x + 1)$$

so
$$f''(x) > 0 \iff \sin x > \frac{1}{2} \iff \frac{\pi}{6} < x < \frac{5\pi}{6}$$
, and

$$f''(x) < 0 \iff \sin x < \frac{1}{2} \text{ and } \sin x \neq -1 \iff 0 < x < \frac{\pi}{6} \text{ or } \frac{5\pi}{6} < x < \frac{3\pi}{2} \text{ or } \frac{3\pi}{2} < x < 2\pi.$$

Thus, f is concave upward on $(\frac{\pi}{6}, \frac{5\pi}{6})$ and concave downward on $(0, \frac{\pi}{6})$, $(\frac{5\pi}{6}, \frac{3\pi}{2})$, and $(\frac{3\pi}{2}, 2\pi)$. There are inflection points at $(\frac{\pi}{6}, \frac{-1}{4})$ and $(\frac{5\pi}{6}, \frac{-1}{4})$.

- 50. (a) Find the intervals of increase or decrease.
 - (b) Find the local maximum and minimum values.
 - (c) Find the intervals of concavity and the inflection points.
 - (d) Use the information from parts (a)-(c) to sketch the graph. You may want to check your work with a graphing calculator or computer.

$$h(x) = 5x^3 - 3x^5$$

Sol.

 $h(x) = 5x^3 - 3x^5 \Rightarrow h'(x) = 15x^2 - 15x^4 = 15x^2(1+x)(1-x).$ $h'(x) > 0 \iff -1 < x < 0 \text{ and } 0 < x < 1 \text{ [note that } h'(0) = 0] \text{ and } h'(x) < 0 \iff x < -1 \text{ or } x < 0 \text{ or } x < 0 \text{ and } x < 0 \text{ or } x < 0 \text{ or$

So h is increasing on (-1,1) and h is decreasing on $(-\infty,-1)$ and $(1,\infty)$.

h changes from decreasing to increasing at x = -1, so h(-1) = -2 is a local minimum value. h changes from increasing to decreasing at x = 1, so h(1) = 2 is a local maximum value.

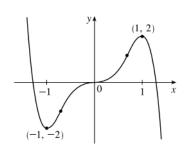
$$h''(x) = 30x - 60x^3 = 30x(1 - 2x^2).$$

$$h''(x) = 0 \iff x = 0 \text{ or } x = \pm \frac{1}{\sqrt{2}}$$

$$h''(x) > 0$$
 on $(-\infty, -\frac{1}{\sqrt{2}})$ and $(0, \frac{1}{\sqrt{2}})$, and $h''(x) < 0$ on $(-\frac{1}{\sqrt{2}}, 0)$ and $(\frac{1}{\sqrt{2}}, \infty)$

So h is concave upward on $(-\infty, -\frac{1}{\sqrt{2}})$ and $(0, \frac{1}{\sqrt{2}})$ and concave downward on $(-\frac{1}{\sqrt{2}}, 0)$ and $(\frac{1}{\sqrt{2}},\infty).$

There are inflection points at $\left(-\frac{1}{\sqrt{2}}, -\frac{7}{4\sqrt{2}}\right)$, (0,0), and $\left(\frac{1}{\sqrt{2}}, \frac{7}{4\sqrt{2}}\right)$



- 58. (a) Find the intervals of increase or decrease.
 - (b) Find the local maximum and minimum values.
 - (c) Find the intervals of concavity and the inflection points.
 - (d) Use the information from parts (a)-(c) to sketch the graph. You may want to check your work with a graphing calculator or computer.

$$S(x) = x - \sin x, \quad 0 \le x \le 4\pi$$

(a)

$$S(x) = x - \sin x \Rightarrow S'(x) = 1 - \cos x.$$

 $S'(x) = 0 \iff \cos x = 1 \iff x = 0, 2\pi, \text{ and } 4\pi.$

 $S'(x) > 0 \iff \cos x < 1$, which is true for all x except integer multiples of 2π , so S is increasing on $(0, 4\pi)$ since $S'(2\pi) = 0$.

There is no local maximum or minimum.

$$S''(x) = \sin x.$$

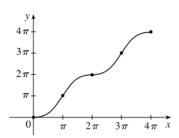
$$S''(x) > 0$$
 if $0 < x < \pi$ or $2\pi < x < 3\pi$, and

$$S''(x) < 0$$
 if $\pi < x < 2\pi$ or $3\pi < x < 4\pi$, and

So S is concave upward on $(0,\pi)$ and $(2\pi,3\pi)$ and concave downward on $(\pi,2\pi)$ and $(3\pi,4\pi)$.

There are inflection points at (π, π) , $(2\pi, 2\pi)$, and $(23\pi, 3\pi)$

(d)



- 62. (a) Find the vertical and horizontal asymptotes.
 - (b) Find the intervals of increase or decrease.
 - (c) Find the local maximum and minimum values.
 - (d) Find the intervals of concavity and the inflection points.
 - (e) Use the information from parts (a)-(d) to sketch the graph.

$$f(x) = \frac{e^x}{1 - e^x}$$

Note that f(x) has domain $\{x|1 - e^x \neq 0\} = \{x|e^x \neq 1\} = \{x|x \neq 0\}$

$$\lim_{x \to \infty} \frac{e^x}{1 - e^x} = \lim_{x \to \infty} \frac{1}{1/e^x - 1} = \frac{1}{0 - 1} = -1$$

$$\lim_{x\to -\infty}\frac{e^x}{1-e^x}=\frac{0}{1-0}=0$$
 So $y=0$ is a horizontal asymptotes.

And
$$\lim_{x\to 0^-} \frac{e^x}{1-e^x} = \infty$$

So $x=0$ is a vertical asymptotes.

$$f'(x) = \frac{e^x(1 - e^x) - e^x(-e^x)}{(1 - e^x)^2} = \frac{e^x(1 - e^x + e^x)}{(1 - e^x)^2} = \frac{e^x}{(1 - e^x)^2}.$$

$$f'(x) > 0 \text{ for } x \neq 0, \text{ so } f \text{ is increasing on } (-\infty, 0) \text{ and } (0, \infty).$$

There is no local maximum or minimum.

(d)
$$f''(x) = \frac{e^x (1 - e^x)^2 - e^x \cdot 2(1 - e^x)(-e^x)}{((1 - e^x)^2)^2} = \frac{e^x (1 - e^x)(1 - e^x + 2e^x)}{(1 - e^x)^4} = \frac{e^x (e^x + 1)}{(1 - e^x)^3}.$$

$$f''(x) > 0 \iff (1 - e^x)^3 > 0 \iff e^x < 1 \iff x < 0, \text{ and}$$

$$f''(x) < 0 \iff x > 0$$

So f is concave upward on $(-\infty,0)$ and concave downward on $(0,\infty)$. There is no inflection point.

(e)

