https://www.sli.do/ #073374

AI Frontier (I) – On-site Rebar Inspection using Deep Learning and Digital Twin

Learning Objectives

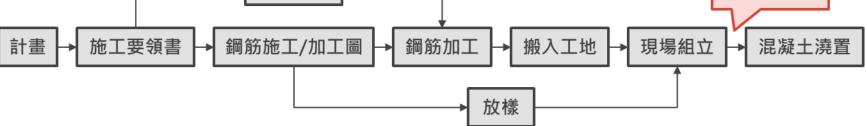
- Learn how we use deep learning to conduct rebar inspection.
- Learn the techniques we use to make the deep learning model perform better.

Rebar Inspection using Deep Learning

Rebar Project Construction Inspection Process

- Current inspection method
 - Tape measure
 - Construction drawing
 - Hard-copy record

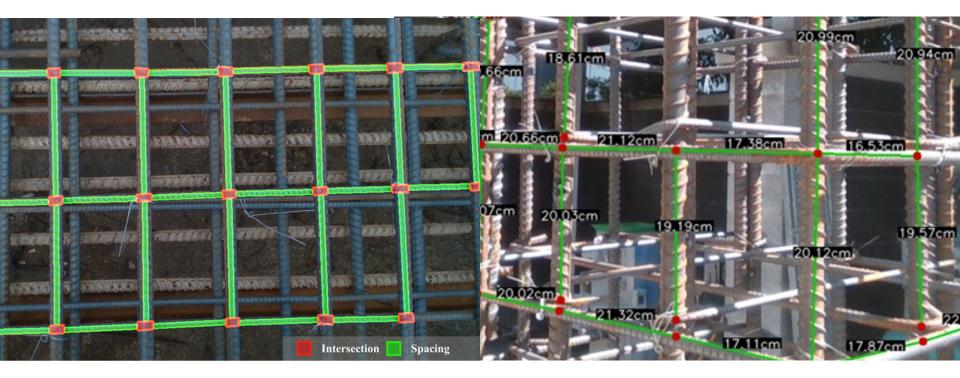
- Issues
 - Large number of rebars
 - Difficult measurement
 - Timeliness



Instance Segmentation (Pixel Level Recognition) Mask R-CNN

Kaiming He et al. (2018). Mask R-CNN. axXiv:1703.06870

Instance Segmentation (Pixel Level Recognition) Mask R-CNN

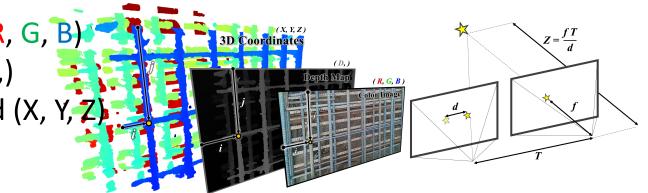


Kaiming He et al. (2018). Mask R-CNN. axXiv:1703.06870

Data Collection

• RGB-D data

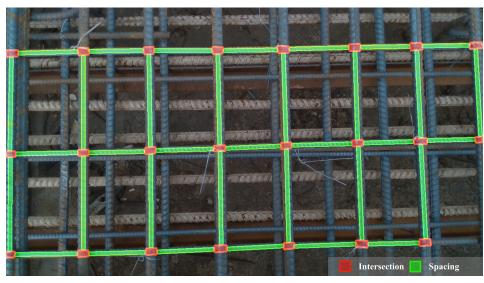
- Color image (R, G, B)
- Depth map (D,)
- 3D point cloud (X, Y, Z)



Collected Date	Rebar assembly	Training set	Testing set
2019/05/31	Precast U-girder	93	_
2019/07/10	Precast U-girder	81	—
2019/10/24	Precast U-girder	56	_
2021/04/07	Precast U-girder	—	85
2021/04/07	Continuous wall	—	40
Total		230	125

Rebar Dataset

- Features and class definitions
 - Intersection
 - Spacing
- Labeling configuration
 - Intersection
 - Def: Overlap area of rebars
 - Shape: Polygon
 - Format: Boundary points
 - Goal: Reference point
 - Spacing
 - Def: Link between intersection
 - Shape: Line
 - Format: Two endpoints
 - Goal: Link prediction



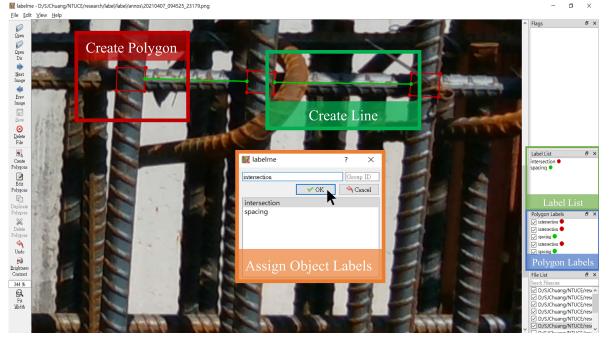
Rebar Dataset

Labeling tool

labelme

• Saved format (.json)

```
"shapes": [
    {
        "label": "intersection",
        "points": [
            [504, 7], [501, 44], [532, 48],
    [534, 8]
    ],
        "shape_type": "polygon"
    },
    {
        "label": "spacing",
        "points": [
            [924, 162], [924, 59]
    ],
        "shape_type": "line"
    }
}
```



Deep Learning Models

Dataset preparation

- 230 labeled data from Precast U-girder in 2019
- Data splitting: Training [179], validation [22], testing [29]
- Preprocessing: <u>centroid point</u> and <u>line segment to polygon conversion</u>
- Loss
 - $L = L_{cls} + L_{box} + L_{mask} + \lambda L_{keypoint}$
- Performance metrics
 - Average precision
 - Area under precision-recall curve
 - AP₅₀: AP at IoU = 0.50
 - AP: mean AP at IoU = 0.50 : 0.05 : 0.95
 - AP, AP₅₀, AP₇₅
 - Dice coefficient (DC)
 - DC_J: How accurate is the indexed point (*Junction*)
 - DC_L: How accurate are the paired points (*Link*)

Mask R-CNN config	Description	
Framework	Detectron2 (FAIR)	
Input format	RGB	
Backbone	ResNet-101-FPN	
Pretrained weights	MS COCO	
Batch size	4	
Iteration	30,000	
Optimizer	SGD	
Base learning rate	0.0002	

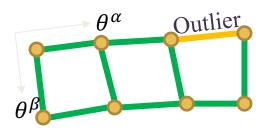
Post Processing

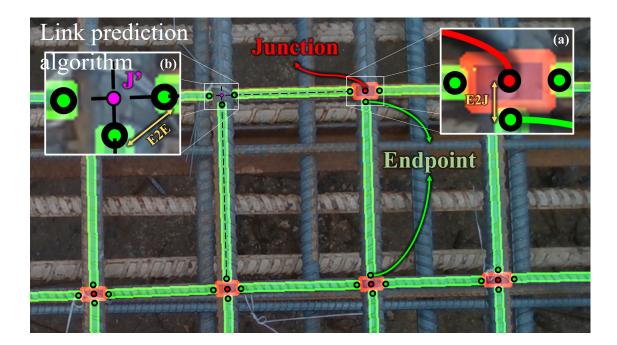
• Link prediction

 $\circ \delta_{E2J} = 30 \ px$

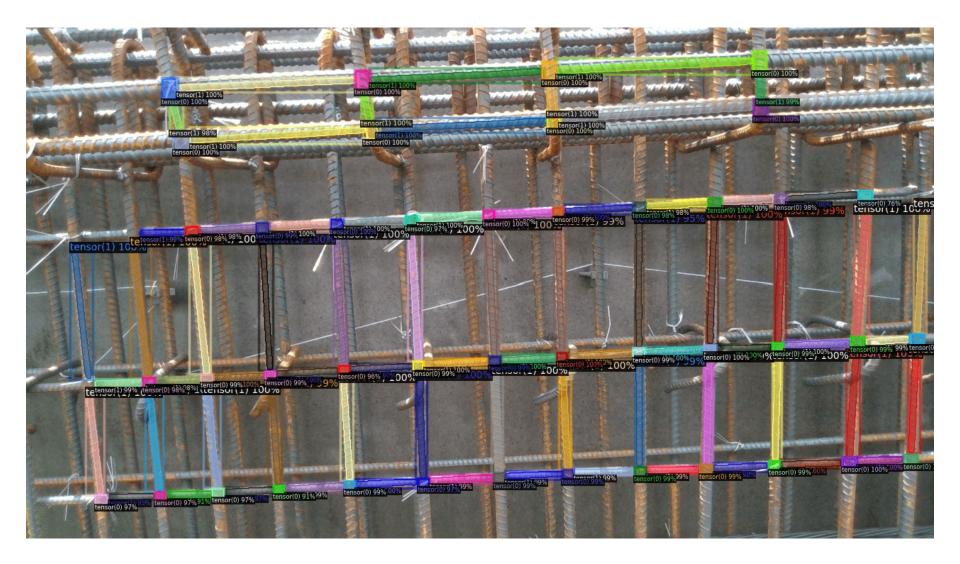
$$\circ \quad \delta_{E2E} = 50 \ px$$

- Spacing measurement
- Visualization
- Active screening

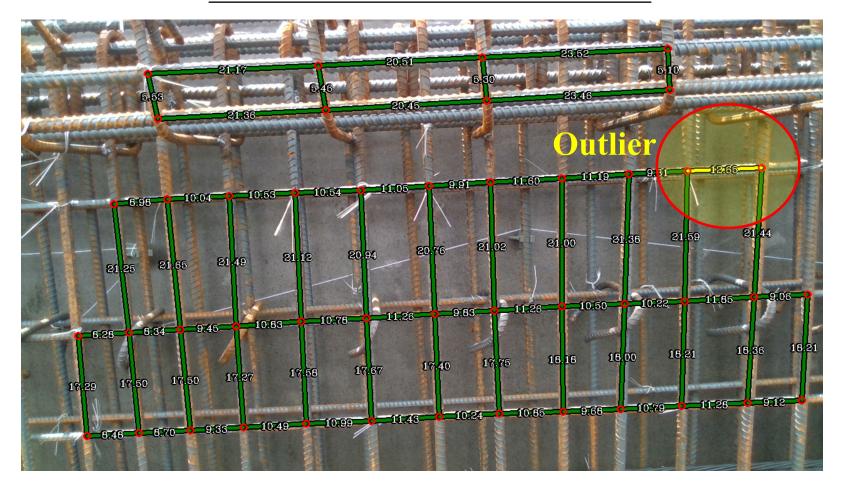




Rebar Spacing Measurements



Rebar Spacing Measurements



Absolute Error(AE) =
$$|S_{pred} - S_{GT}|$$

Relative Error(RE) = $\frac{|S_{pred} - S_{GT}|}{S_{GT}}$

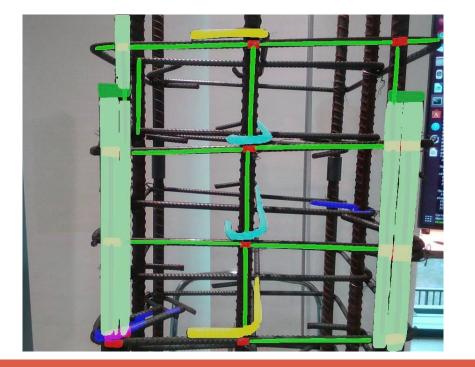
Detected spacings	AE (cm)	RE (%)
1368	0.166	1.388

Mask R-CNN + Link Prediction Algorithm

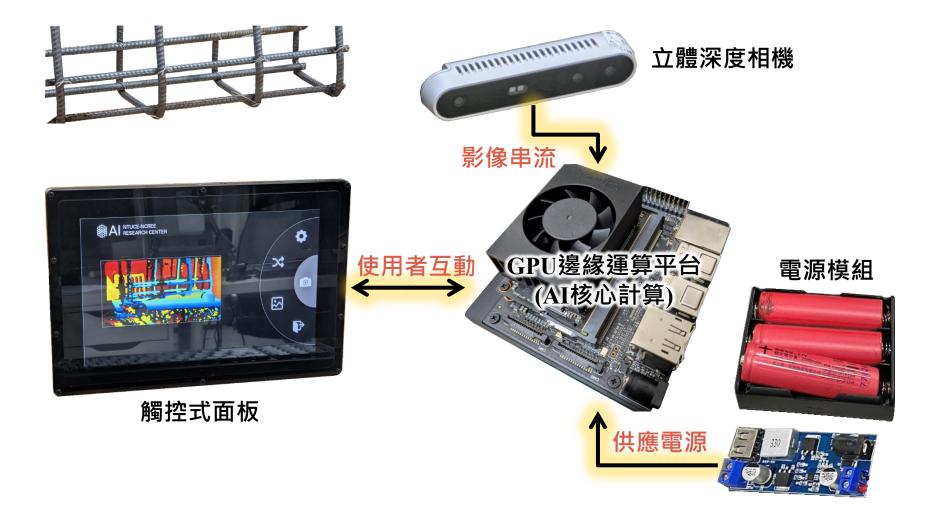
Mask R-CNN 實例分割預測

空間自動量測與物件定位

以演算法獲取實例分割圖中的關鍵像素點或 定界框後,索引三維點雲座標,即可計算空 間距離,達成自動量測效果。



人工智慧輔助工地鋼筋查驗智慧裝置

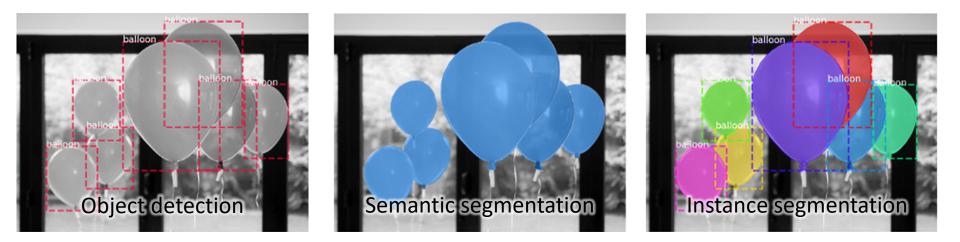


人工智慧輔助工地鋼筋查驗智慧裝置

Rebar Inspection using SSL, Active Learning & Domain Adaptation

Instance Segmentation

- Levels of image recognition
 - Object detection (bounding-box level)
 - Semantic segmentation (pixel-level segmentation)
 - Instance segmentation (instance-level segmentation)



- Labeling issues
 - Time-consuming & costly
 - Annotation by domain experts

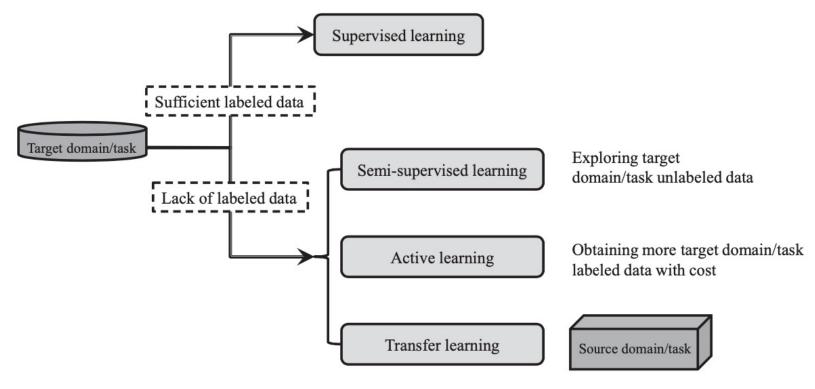
Rebar Dataset

- <u>Labeled data</u>: 50 ~ 200 images per domain
 - Pixel-wise labels
 - Labor-selected samples that should represent the domain data well
 - But the trained model only works on old known domain
- <u>Unlabeled data</u>: 8,000 ~ 37,000 images per domain
 - Large amount of continuous & highly similar images per shoot
 - Easy to collect on new domains
 - But not usable in supervised learning

Rebar Dataset

- rebar assembly
- collecting time
- shooting position

The current deep model by supervised training only performs well on its trained domain due to domain variance.



Reusing source domain/task data and/or model via domain/task commonality

Yang et al., Transfer Learning, Cambridge University Press, 2020.

Active Learning

Small data for big performance

Active Learning

• Definition

- A Subfield of machine learning.
- A learning algorithm interactively query oracle to label new data with expected output.
- Query learning, optimal experimental design.

Data gathering

- Uncertainty sampling
 - Query strategy
 - Least model confidence
 Data
 sources
- Pool-based active learning cycle
 - Data sampling
 - Expert labeling
 - Model training
 - Model inference

Model

Pool-based Active Learning Cycle

Annotator

(Expert)

Model training

Expert labeling

Labeled

data pool

Model inference

Data sampling

11

Unlabeled

data pool

Active Learning

- Active learning loop
- Active learning for object detection
 - Entropy-based uncertainty measurement
 - Aggregation function (Sum, Average, Max)
 - Ensemble-based disagreement measurement
 - Consensus score
 - Rol matching

Active learning with clustering

```
Algorithm 1 Active learning loop
```

```
\mathcal{U}: A set of unlabeled data \{x^1, x^2, x^3, ...\}
```

 $\mathcal{L}: \text{A set of labeled data } \{\langle x^a, y^a \rangle, \langle x^b, y^b \rangle, \langle x^c, y^c \rangle, \dots \}$

B: Labeling budget

```
for i in \mathcal{B} do
```

Train a model \mathcal{M} based on \mathcal{L}

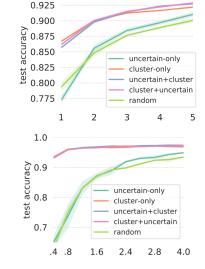
Select the most uncertain instance $x^* \in \mathcal{U}$ according to \mathcal{M}

Query the oracle to obtain label y^*

Let
$$\mathcal{L} \leftarrow \mathcal{L} \cup \{\langle x^*, y^* \rangle$$

Let
$$\mathcal{U} \leftarrow \mathcal{U} \setminus \{x^*\}$$

end for

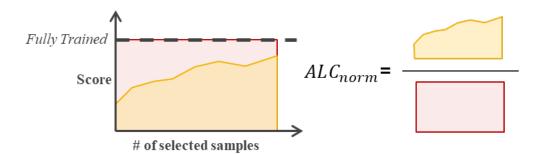


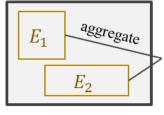
IoU = 0.85Consensus score = 1 - 0.85

IoU = 0.85, $\mathcal{VR} = 1 - 2/3$ Consensus score $\mathcal{VR} = 1 - 0.561$

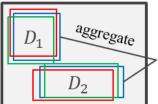
Active Learning Algorithms

- Uncertainty estimation
 - Entropy of the probability distribution
 - Three aggregation functions ($\sum_{N} \frac{1}{N} \sum_{E} m_{E} x$)
 - Rol matching method
 - Generate controversial predictions through MC dropout
 - Three disagreement measures (*E_{vote}*, *E_{consensus}*, *Div_{KL}*)
 - Aggregated by average
- Performance metrics
 - Normalized area under the learning curve ALC_{norm}





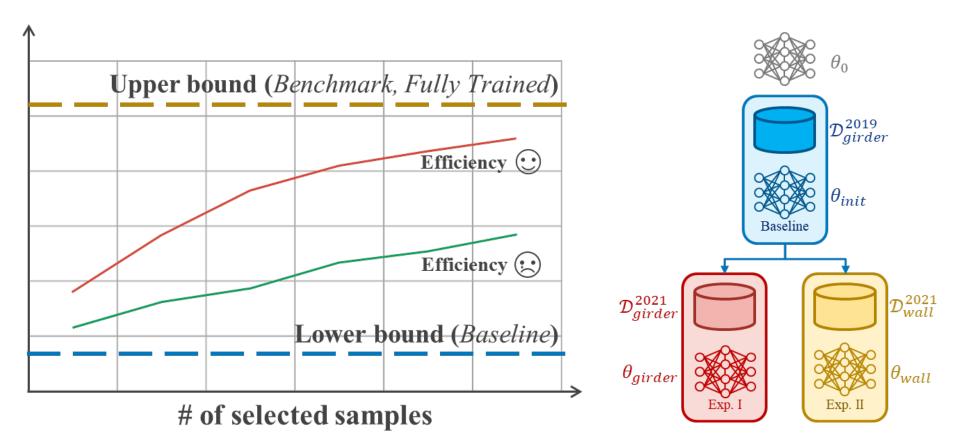
Uncertainty



T = 3

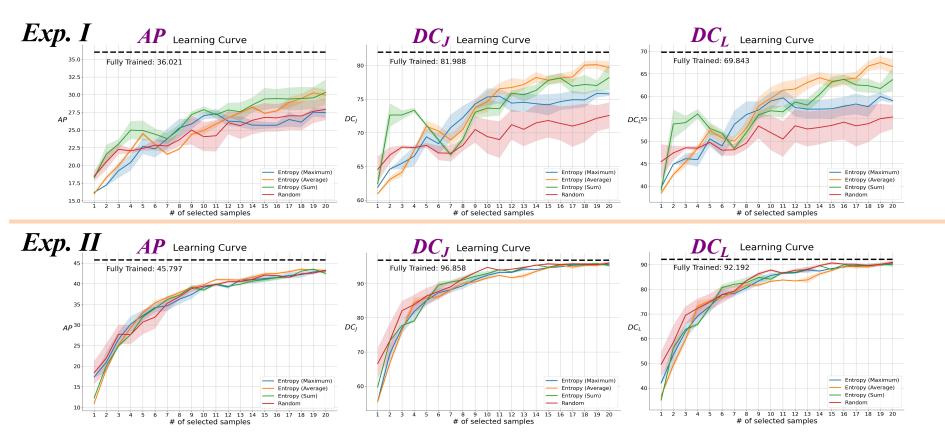
Uncertainty

Active Learning Experiments



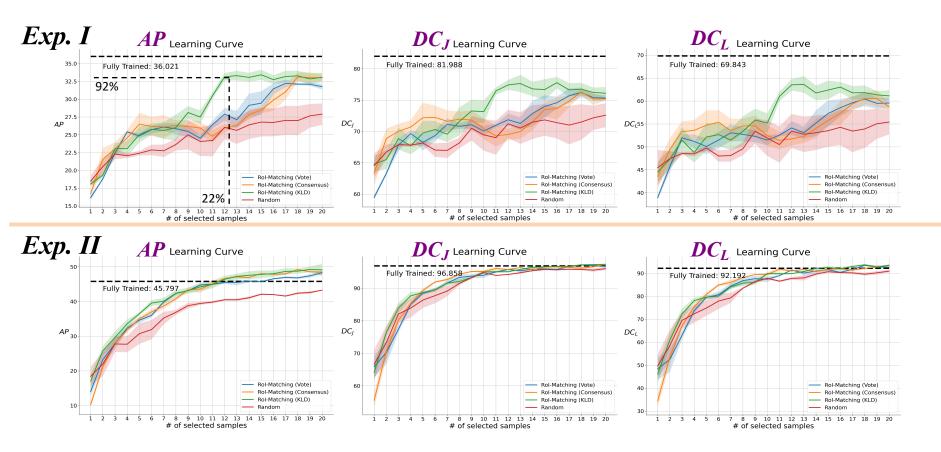
Active Learning Experiments (Entropy)

Sum, Average, Maximum, Random

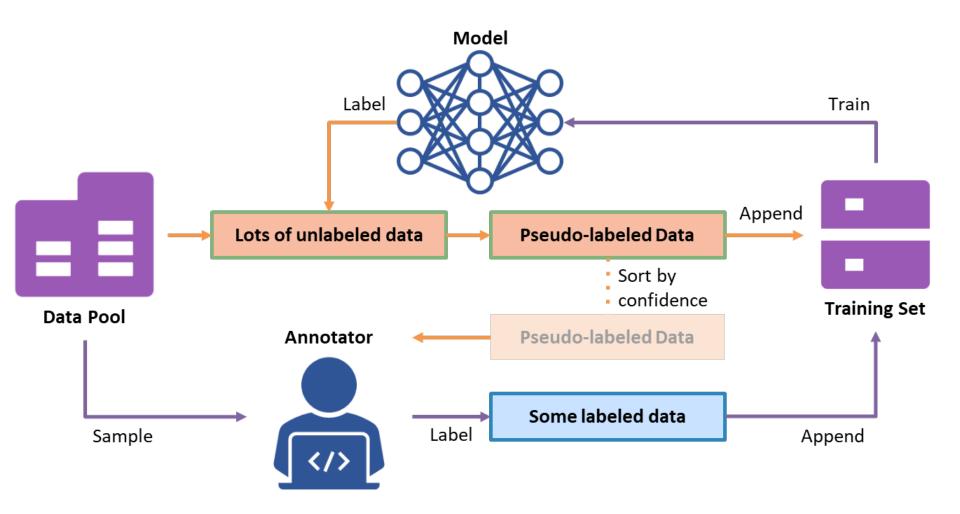


Active Learning Experiments (Rol Matching)

KL Divergence, Consensus Entropy, Vote Entropy, Random



Active Learning + Pseudo Labeling

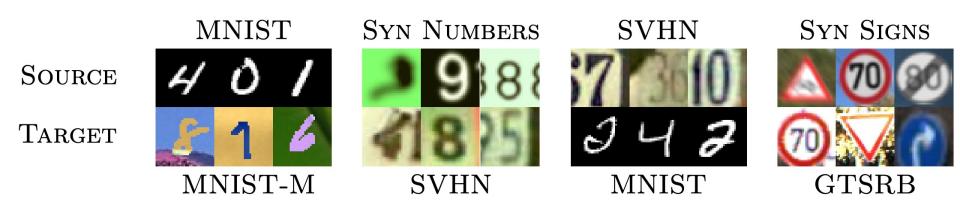


Domain Adaptation

TL will be the next driver of ML commercial success after supervised learning, Andrew Ng (2016 NIPS)

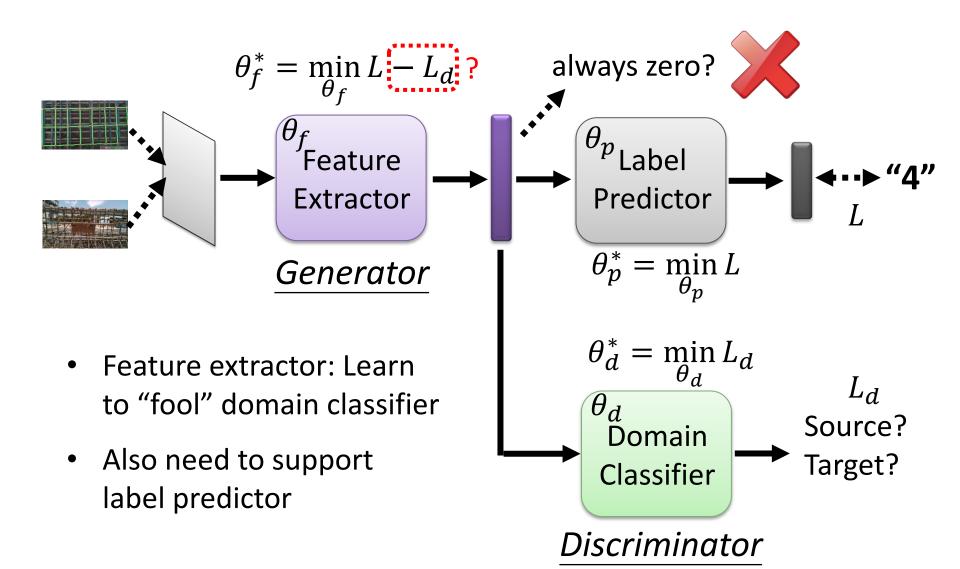
Domain Adaptation: A Subfield of Transfer Learning

Domain adaptation is a specific scenario where the label space remains same, yet the probabilities between source and target domains change $P(X_s) \neq P(X_t)$



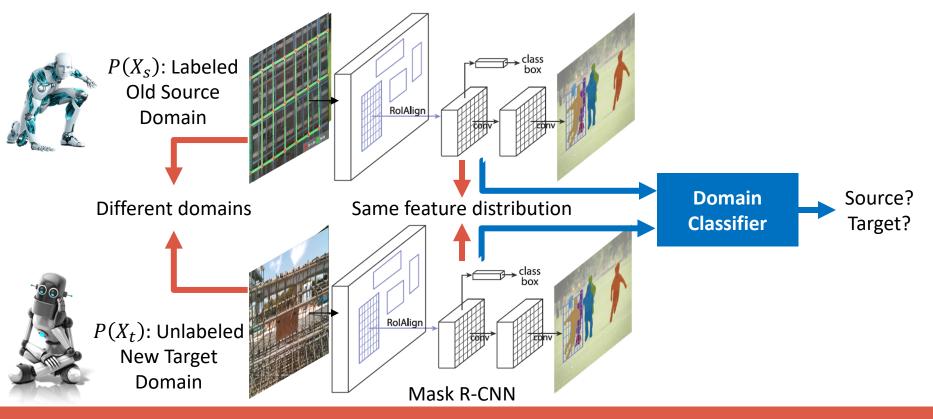
Domain Advesarial Training

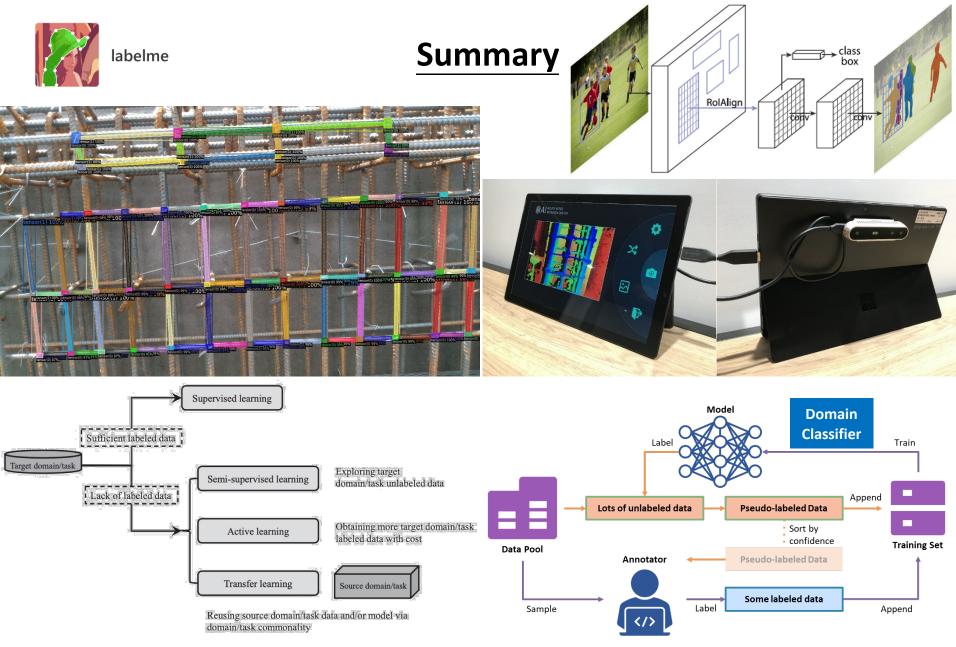
credit: Hung-Yi Lee, https://speech.ee.ntu.edu.tw/~h ylee/ml/2021-spring.html



Domain Adaptation for Rebar Image Segmentation

- **Domain variance** in rebar dataset: rebar assembly, collecting time, shooting position
- **Domain adversarial training:** reduce discrepancy between domains
 - Domain classifier: try to distinguish between source and target domain
 - Feature extractor: try to fool domain classifier while training model





Yang et al., Transfer Learning, Cambridge University Press, 2020.

Digital Twin