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Transfer Learning for Image Classification: Part 2 
 
There are two ways to use a pretrained network: feature extractor and fine-tuning. We now cover the 
fine-tuning.  
 
As we discussed earlier, feature maps that are extracted early in the network are generic. The feature 
maps get progressively more specific as we go deeper in the network. Based on the domain similarity 
between the pretrained network and your classification task, we can decide to freeze the network at 
the appropriate level of feature maps: 
 
- If the domains are similar, we might want to freeze the network up to the last feature map level 

(feature maps 4, in the example). 
- If the domains are very different, we might decide to freeze the pretrained network after feature 

maps 1 and retrain all the remaining layers. 
 
Between these two possibilities are a range of fine-tuning options that we can apply. We can retrain 
the entire network, or freeze the pretrained network at any level of feature maps 1, 2, 3, or 4 and retrain 
the remainder of the network. We typically decide the appropriate level of fine-tuning by trial and error.  
 

 
 
Project: fine tuning 
 
In this project, we are going to explore fine tuning scenario where the target dataset is small and very 
different from the source dataset. The goal of this project is to build a sign language classifier that 
distinguishes 10 classes: the sign language digits from 0 to 9. Figure below shows a sample of our 
dataset. 
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Following are the details of our dataset: 
l Number of classes = 10 (digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) 
l Image size = 100 × 100 
l Color space = RGB 
l 1,712 images in the training set 
l 300 images in the validation set 
l 50 images in the test set 
 
It is very noticeable how small our dataset is. If you try to train a network from scratch on this very 
small dataset, you will not achieve good results. On the other hand, we were able to achieve an 
accuracy higher than 98% by using transfer learning, even though the source and target domains were 
very different. 
 
For ease of comparison with the previous project, we will use the VGG16 network trained on the 
ImageNet dataset. The process to fine-tune a pretrained network is as follows: 
 
1. Import the necessary libraries. 
2. Preprocess the data to make it ready for the neural network. 
3. Load in pretrained weights from the VGG16 network trained on a large dataset (ImageNet). 
4. Freeze part of the feature extractor part. 
5. Add the new classifier layers. 
6. Compile the network, and run the training process to optimize the model for the smaller dataset. 
7. Evaluate the model. 
 
1. Import the necessary libraries 
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from tensorflow.keras.preprocessing.image import ImageDataGenerator 
from tensorflow.keras.preprocessing import image 
from tensorflow.keras.applications import imagenet_utils 
from tensorflow.keras.applications import vgg16 
from tensorflow.keras.optimizers import Adam, SGD 
from tensorflow.keras.metrics import categorical_crossentropy 
 
from tensorflow.keras.layers import Dense, Flatten, Dropout, 
BatchNormalization 
from tensorflow.keras.models import Model 
 
from sklearn.metrics import confusion_matrix 
import itertools 
import matplotlib.pyplot as plt 
%matplotlib inline 

 
2. Preprocess the data to make it ready for the neural network 
 
Preprocess the data to make it ready for the neural network. Similar to the previous project, we use the 
ImageDataGenerator class from Keras and the flow_from_directory() method to preprocess 
our data. The data is already structured for you to directly create your tensors: 
 

train_path  = 'dataset/train' 
valid_path  = 'dataset/valid' 
test_path  = 'dataset/test' 
 
train_batches = ImageDataGenerator().flow_from_directory(train_path, 
target_size=(224,224), batch_size=10) 
 
valid_batches = ImageDataGenerator().flow_from_directory(valid_path, 
target_size=(224,224), batch_size=30) 
 
test_batches = ImageDataGenerator().flow_from_directory(test_path, 
target_size=(224,224), batch_size=50, shuffle=False) 

 
3. Load in pretrained weights from the VGG16 network trained on a large dataset (ImageNet) 
 
Load in pretrained weights from the VGG16 network trained on a large dataset (ImageNet). We 
download the VGG16 architecture from the Keras library with ImageNet weights. Note that we use 
the parameter pooling='avg' here: this basically means global average pooling will be applied to 
the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. We use 
this as an alternative to the Flatten layer before adding the fully connected layers: 
 

base_model = vgg16.VGG16(weights = "imagenet", include_top=False, 
input_shape = (224,224, 3), pooling='avg') 
base_model.summary() 
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4. Freeze part of the feature extractor part 
 
Freeze some of the feature extractor part, and fine-tune the rest on our new training data. The level of 
fine-tuning is usually determined by trial and error. VGG16 has 13 convolutional layers: you can freeze 
them all or freeze a few of them, depending on how similar your data is to the source data. In the sign 
language case, the new domain is very different from our domain, so we will start with fine-tuning 
only the last five layers; if we don’t get satisfying results, we can fine-tune more. It turns out that after 
we trained the new model, we got 98% accuracy, so this was a good level of fine-tuning. But in other 
cases, if you find that your network doesn’t converge, try fine-tuning more layers. 
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# iterate through its layers and lock them to make them not trainable 
with this code 
for layer in base_model.layers[:-5]: 
    layer.trainable = False 
 
base_model.summary() 

 
5. Add the new classifier layers and build the new model 
 

# use “get_layer” method to save the last layer of the network 
last_layer = base_model.get_layer('global_average_pooling2d') 
 
# save the output of the last layer to be the input of the next layer 
last_output = last_layer.output 
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# add our new softmax layer with 3 hidden units 
x = Dense(10, activation='softmax', name='softmax')(last_output) 
 
# instantiate a new_model using keras’s Model class 
new_model = Model(inputs=base_model.input, outputs=x) 
 
# print the new_model summary 
new_model.summary() 
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6. Compile the network, and run the training process to optimize the model for the smaller dataset 
 

new_model.compile(Adam(lr=0.0001), loss='categorical_crossentropy', 
metrics=['accuracy']) 
from tensorflow.keras.callbacks import ModelCheckpoint 
 
checkpointer = ModelCheckpoint(filepath='signlanguage.model.hdf5', 
save_best_only=True) 
 
history = new_model.fit(train_batches, steps_per_epoch=18, 
            validation_data=valid_batches, validation_steps=3, epochs=20,  

verbose=1, callbacks=[checkpointer]) 
 
The model can be trained very quickly using regular CPU computing power. 
 
7. Evaluate the model 
 
We can plot the learning curves and perform evaluation from test set similar to the previous project  
 

  
The testing accuracy can reach 98%. You can download the package 
sign_language_project.zip from the course website to reproduce and play around the results.  
 
 
 


