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Deep Learning for Computer Vision (IV)

Learning Objectives

« Learn the basics of advanced computer vision tasks
beyond image classification: image segmentation and
object detection.



Beyond image classification: object
detection and image segmentation

C-S David Chen, Department of Civil Engineering, National Taiwan University
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Object Detection
 The goal is to draw rectangles (called bounding boxes) around objects of interest in an
image, and associate each rectangle with a class.

* A self-driving car could use an object-detection model to monitor cars, pedestrians,
and signs in view of its cameras, for instance.
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Image Segmentation

* The goalis to “segment” or “partition” an image into different areas, with each area
usually representing a category.
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Learn the basics of object detections
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Object Detection

e Goal: predict the location of objects in an image via bounding
boxes and the classes of the located objects

* Input: an image with one or more objects

e Qutput: one or more bounding boxes (defined by coordinates

| X1, V1, X2, V2] or [x,, V., W, h,]) and a class label for each
bounding box

 The two most popular object detection
systems are the R-CNN family of
networks and the YOLO family of
networks.

* R-CNN is a multi-stage detector and
YOLO is a single-stage detector.

* In general, single-stage detectors tend
to be less accurate than two-stage
detectors but are significantly faster.
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Object Detection: R-CNN Family

 The R-CNN family of networks has three main variations: R-CNN, Fast R-CNN,
and Faster R-CNN. R-CNN and Fast R-CNN use a selective search algorithm to
propose Rols, whereas Faster R-CNN is an end-to-end DL system that uses a
region proposal network to propose Rols.
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Selective Search Algorithm

* A greedy search algorithm that is used to provide region proposals that
potentially contain objects.

It tries to find areas that might contain an object by combining similar pixels
and textures into rectangular boxes.
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R-CNN

4. The network produces
Bb SVM
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1. Selective search algorithm
is used to extract Rols from
the input image.

C-S David Chen, Department of Civil Engineering, National Taiwan University



Fast R-CNN
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Faster R-CNN (RPN + Fast R-CNN)

Region proposal network (RPN)
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Region Proposals

Regions of interest (Rols) proposed by the system. Regions with high objectness
score represent areas of high likelihood to contain objects (foreground), and the
ones with low objectness score are ignored because they have a low likelihood

of containing objects (background).
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Object Detection:
R-CNN Family

R-CNN—Bounding boxes are proposed by the
selective search algorithm. Each is warped, and
features are extracted via a deep convolutional
neural network such as AlexNet, before a final set
of object classifications and bounding box
predictions is made with linear SVMs and linear
regressors.

Fast R-CNN—A simplified design with a single
model. An Rol pooling layer is used after the CNN to
consolidate regions. The model predicts both class
labels and Rols directly.

Faster R-CNN—A fully end-to-end DL object
detector. It replaces the selective search algorithm
to propose Rols with a region proposal network
that interprets features extracted from the deep
CNN and learns to propose Rols directly.



Detectron2

1. Detectron2

a. Data preparation (dataset registration)
DatasetCatalog
MetadataCatalog

b. Configuration setup (hyper-parameters)
cfg = get cfg()

c. Build a trainer

DefaultTrainer(cfg)
d. COCO evaluation
COCOEvaluator
e. Inference by predictor
DefaultPredictor

2. Rebar hook angle detection
Train your first Detectron2 detector
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https://colab.research.google.com/drive/1ItVP3XzErlvy7DllN8wTjFJBXRvg0viQ?usp=sharing

Object Detection: YOLO Family

 The YOLO family is a series of end-to-end DL models designed for fast object
detection, and it was among the first attempts to build a fast real-time object
detector.

e Although the accuracy of the models is close but not as good as R-CNNs, they
are popular for object detection because of their detection speed, often
demonstrated in real-time video or camera feed input.

* For a good introduction, see https://aiacademy.tw/yolo-v4-intro

Splits the image into grids Predicts bounding boxes Final predictions after
and classifications non-maximum suppression
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https://aiacademy.tw/yolo-v4-intro

Darknet (YOLO v4)

1. Darknet

a. Data preparation (dataset registration)
.jpg/.txt (images/annotations)
train.txt/valid.txt
b. Configuration setup (hyper-parameters)
Obj.data
Obj.names
yolov4.cfg
c. Training
./darknet detector train obj.data yolov4.cfg yo.weights -map

d. Evaluation
./darknet detector map obj.data yolov4.cfg yo.weights -iou thresh 0.5

e. Image prediction
./darknet detector test yolov4.cfg yo.weights image

2. Construction machine detection
Train your first YOLO v4 detector
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https://colab.research.google.com/drive/1lwlj9haehfsnrFMd5rbSfPNgYKzaL4fA?usp=sharing&fbclid=IwAR3WaqoQCe0ESKH9ROcGdRszvo7edPchyPzg-m2mip95ShIO11OKf_FlMZM

Learn the basics of image segmentation
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Image Segmentation

* The goalis to “segment” or “partition” an image into different areas, with each area
usually representing a category.
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Semantic segmentation Instance segmentation
each pixel is independently classified into seeks not only to classify image pixels by
a semantic category, like “cat.” If there are category, but also to parse out individual
two cats in the image, the corresponding object instances. In an image with two cats
pixels are all mapped to the same generic in it, instance segmentation would treat “cat
“cat” category 1” and “cat 2” as two separate classes of

pixels



Semantic Segmentation

e Convolution Encoder: closely resembles the kind of convnet you’d use for image
classification: a stack of Conv2D layers, with gradually increasing filter sizes. The purpose
is to encode the images into smaller feature maps, where each spatial location (or pixel)
contains information about a large spatial chunk of the original image. You can
understand it as a kind of compression.

* Convolution Decoder: apply a kind of inverse of the transformations we’ve
applied so far—something that will upsample the feature maps instead of
downsampling them.

* A Simple Encoder-Decoder Example for Semantic Segmentation

Convolutional Encoder-Decoder

Output

Pooling Indices

RGB Image I Conv + Batch Normalisation + ReLU Seg mentation
I Pooling [ Upsampling Softmax
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https://colab.research.google.com/drive/1kP0Cok-gCejJZ88zhota3ukWXvwkK-HZ?usp=sharing
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Semantic Segmentation (Pixel Level Recognition)
Google DeeplLab V3+
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Prediction

Atrous Spatial Pyramid Pooling ‘ ‘ Depthwise separable convolution

Apply several parallel atrous convolution with Reduce the computation cost and number of

different rates parameters while maintaining similar

performance.
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Instance Segmentation (Pixel Level Recognition) Mask R-
CNN
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Kaiming He et al. (2018). Mask R-CNN. axXiv:1703.06870
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Instance Segmentation (Pixel Level Recognition) Mask R-
CNN

1. Anchor sorting and filtering
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Instance Segmentation (Pixel Level Recognition) Mask R-
CNN

2. Bounding Box Refinement
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Instance Segmentation (Pixel Level Recognition) Mask R-
CNN

3. Mask Generation
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Instance Segmentation (Pixel Level Recognition) Mask R-

4. Composing the different
pieces into a final result
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