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Fine Tune Image Classification using CNN 
 
In this project, we will revisit the CIFAR-10 classification project and apply some of the improvement 
techniques to increase the accuracy from ~66% to ~85%.  
 
We will accomplish the project by following these steps: 
1. Import the dependencies. 
2. Get the data ready for training: 

– Download the data from the Keras library. 
– Split it into train, validate, and test datasets. 
– Normalize the data. 
– One-hot encode the labels. 
– Data augmentation 

3. Build the model architecture. In addition to simple convolutional and pooling layers, we add the 
following layers to our architecture: 
– Deeper neural network to increase learning capacity 
– Dropout layers 
– L2 regularization to our convolutional layers 
– Batch normalization layers 

4. Train the model. 
5. Plot the learning curve. 
6. Evaluate the model. 
 
Remark: This is assumed that you can run the entire program in one shot. If not, you will need to save 
and reload the model or weights to continue training your data and keep the log if you want to plot the 
learning curve. 
 
Step 1: Import Dependencies 
 
Here’s the Keras code to import the needed dependencies: 
 

#import dependencies 
import tensorflow as tf 
from tensorflow.keras.models import Sequential 
from tensorflow.keras.utils import to_categorical 
from tensorflow.keras.preprocessing.image import ImageDataGenerator 
from tensorflow.keras.layers import Dense, Activation, Flatten, 
Dropout, BatchNormalization 
from tensorflow.keras.layers import Conv2D, MaxPooling2D 
from tensorflow.keras.datasets import cifar10 
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from tensorflow.keras import regularizers, optimizers 
import numpy as np 
from matplotlib import pyplot 

 
Step 2: Get the Data Ready for Training 
 

(x_train, y_train), (x_test, y_test) = cifar10.load_data() 
x_train = x_train.astype('float32') 
x_test = x_test.astype('float32') 

 
1. Normalize the data 
 
Normalizing the pixel values of our images is done by subtracting the mean from each pixel and then 
dividing the result by the standard deviation: 
 

# Normalize the data to speed up training 
mean = np.mean(x_train) 
std = np.std(x_train) 
x_train = (x_train-mean)/(std+1e-7) 
x_test = (x_test-mean)/(std+1e-7) 

 
2. One-hot encode the labels 
 

num_classes = 10 
y_train = to_categorical(y_train,num_classes) 
y_test = to_categorical(y_test,num_classes) 

 
3. Data augmentation 
 
For augmentation techniques, we will arbitrarily go with the following transformations: rotation, width 
and height shift, and horizontal flip.  
 

# data augmentation 
datagen = ImageDataGenerator( 
    featurewise_center=False, 
    samplewise_center=False, 
    featurewise_std_normalization=False, 
    samplewise_std_normalization=False, 
    zca_whitening=False, 
    rotation_range=15, 
    width_shift_range=0.1, 
    height_shift_range=0.1, 
    horizontal_flip=True, 
    vertical_flip=False 
    ) 
 
# compute the data augmentation on the training set 
datagen.fit(x_train) 
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Remark: When you are working on problems, view the images that the network missed or provided 
poor detections for and try to understand why it is not performing well on them. Then create your 
hypothesis and experiment with it. For example, if the missed images were of shapes that are rotated, 
you might want to try the rotation augmentation. You would apply that, experiment, evaluate, and 
repeat. You will come to your decisions purely from analyzing your data and understanding the 
network performance. 
 
Step 3: Build the Model Architecture 
 
In this project, we will build a deeper network for increased learning capacity (6 CONV + 1 FC). The 
network has the following configuration: 
 
l Instead of adding a pooling layer after each convolutional layer, we will add one after every two 

convolutional layers. This idea was inspired by VGGNet, a popular neural network architecture 
developed by the Visual Geometry Group (University of Oxford). VGGNet will be explained later. 

l Inspired by VGGNet, we will set the kernel_size of our convolutional layers to 3 × 3 and the 
pool_size of the pooling layer to 2 × 2. 

l We will add dropout layers every other convolutional layer, with (p) ranges from 0.2 and 0.4. 
l A batch normalization layer will be added after each convolutional layer to normalize the input 

for the following layer. 
l In Keras, L2 regularization is added to the convolutional layer code. 
 

# build the model 
 
base_hidden_units = 32 
 
# l2 regularization hyperparameter 
weight_decay = 1e-4  
 
model = Sequential() 
 
# CONV1 
model.add(Conv2D(base_hidden_units, (3,3), padding='same', 
kernel_regularizer = regularizers.l2(weight_decay), input_shape = 
x_train.shape[1:])) 
model.add(Activation('relu')) 
model.add(BatchNormalization()) 
 
# CONV2 
model.add(Conv2D(base_hidden_units, (3,3), padding='same', 
kernel_regularizer=regularizers.l2(weight_decay))) 
model.add(Activation('relu')) 
model.add(BatchNormalization()) 
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# POOL + Dropout 
model.add(MaxPooling2D(pool_size=(2,2))) 
model.add(Dropout(0.2)) 
 
# CONV3 
model.add(Conv2D(2*base_hidden_units, (3,3), padding='same', 
kernel_regularizer=regularizers.l2(weight_decay))) 
model.add(Activation('relu')) 
model.add(BatchNormalization()) 
 
# CONV4 
model.add(Conv2D(2*base_hidden_units, (3,3), padding='same', 
kernel_regularizer=regularizers.l2(weight_decay))) 
model.add(Activation('relu')) 
model.add(BatchNormalization()) 
 
# POOL + Dropout 
model.add(MaxPooling2D(pool_size=(2,2))) 
model.add(Dropout(0.3)) 
 
# CONV5 
model.add(Conv2D(4*base_hidden_units, (3,3), padding='same', 
kernel_regularizer=regularizers.l2(weight_decay))) 
model.add(Activation('relu')) 
model.add(BatchNormalization()) 
 
# CONV6 
model.add(Conv2D(4*base_hidden_units, (3,3), padding='same', 
kernel_regularizer=regularizers.l2(weight_decay))) 
model.add(Activation('relu')) 
model.add(BatchNormalization()) 
 
# POOL + Dropout 
model.add(MaxPooling2D(pool_size=(2,2))) 
model.add(Dropout(0.4)) 
 
# FC7 
model.add(Flatten()) 
model.add(Dense(num_classes, activation='softmax')) 

 
Step 4: Train the Model 
 
Before we jump into the training code, let’s discuss the strategy behind some of the hyperparameter 
settings: 
 
l batch_size — This is the mini-batch hyperparameter that we covered. The higher the 

batch_size, the faster your algorithm learns. You can start with a mini-batch of 64 and double 
this value to speed up training.  

l epochs—I started with 50 training iterations and found that the network was still improving. So 
I kept adding more epochs and observing the training results. In this project, I was able to achieve 
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85% accuracy of validation after 125 epochs. As you will see soon, there is still room for 
improvement if you let it train longer. 

l Optimizer—I used the Adam optimizer.  
 
Remark: you will need to use GPU for training. 
 

# training 
batch_size = 128 
epochs = 125 
 
from tensorflow.keras.callbacks import ModelCheckpoint    
 
checkpointer = ModelCheckpoint(filepath='model.125epochs.hdf5',  

verbose=1, save_best_only=True) 
optimizer = tf.keras.optimizers.Adam(learning_rate=0.0001,decay=1e-6) 
model.compile(loss='categorical_crossentropy', optimizer=optimizer,  

metrics=['accuracy']) 
history = model.fit(datagen.flow(x_train, y_train, batch_size =  

batch_size), callbacks=[checkpointer],  
steps_per_epoch=x_train.shape[0] // batch_size,  
epochs = epochs,verbose = 2,  
validation_data=(x_valid,y_valid)) 

 
When you run this code, you will see the verbose output of the network training for each epoch. Keep 
your eyes on the loss and val_loss values to analyze the network and diagnose bottlenecks. Figure 
below shows the verbose output of epochs 115 to 117. The val_loss does not improve after epoch 
115. 
 

Epoch 115/125 
 
Epoch 00115: val_loss improved from 0.45393 to 0.44453, saving model to 
model.125epochs.hdf5 
351/351 - 24s - loss: 0.4558 - accuracy: 0.8537 - val_loss: 0.4445 - 
val_accuracy: 0.8674 - 24s/epoch - 69ms/step 
Epoch 116/125 
 
Epoch 00116: val_loss did not improve from 0.44453 
351/351 - 24s - loss: 0.4527 - accuracy: 0.8534 - val_loss: 0.4668 - 
val_accuracy: 0.8570 - 24s/epoch - 68ms/step 
Epoch 117/125 
 
Epoch 00117: val_loss did not improve from 0.44453 
351/351 - 24s - loss: 0.4540 - accuracy: 0.8549 - val_loss: 0.4653 - 
val_accuracy: 0.8596 - 24s/epoch - 68ms/step 

 
Step 5: Plot Learning Curve 
 
You should always plot the learning curves to analyze the training performance and diagnose 
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overfitting and underfitting. 
 

import matplotlib.pyplot as plt 
 
acc = history.history['accuracy'] 
val_acc = history.history['val_accuracy'] 
loss = history.history['loss'] 
val_loss = history.history['val_loss'] 
 
epochs = range(1, len(acc) + 1) 
 
# "bo" is for "blue dot" 
plt.plot(epochs, loss, 'bo', label='Training loss') 
# b is for "solid blue line" 
plt.plot(epochs, val_loss, 'b', label='Validation loss') 
plt.title('Training and validation loss') 
plt.xlabel('Epochs') 
plt.ylabel('Loss') 
plt.legend() 
 
plt.show() 

 

 
 

plt.clf()   # clear figure 
acc_values = history.history['accuracy'] 
val_acc_values = history.history['val_accuracy'] 
 
plt.plot(epochs, acc, 'bo', label='Training acc') 
plt.plot(epochs, val_acc, 'b', label='Validation acc') 
plt.title('Training and validation accuracy') 
plt.xlabel('Epochs') 
plt.ylabel('Accuracy') 
plt.legend() 
 
plt.show() 
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Step 6: Final Verdict: Evaluate Your Model Based on New Data 
 

# evaluating the model 
 
# load the weights that yielded the best validation accuracy 
model.load_weights('model.125epochs.hdf5') 
scores = model.evaluate(x_test, y_test, batch_size=128, verbose=1) 
print('\nTest result: %.3f loss: %.3f' % (scores[1]*100,scores[0])) 

 
And we reach the accuracy of 84.72%. 
 
You can download the above code CNN_Cifar10_FineTune.ipynb from the course website. 
 
Further Improvement 
 
Accuracy of 85% is not bad, but you can still improve further. Here are some ideas you can experiment 
with: 
l More training epochs—Notice that the network was improving until epoch 115. You can increase 

the number of epochs and let the network train longer. 
l Deeper network—Try adding more layers to increase the model complexity, which increases the 

learning capacity. 
l Lower learning rate—Decrease the learning rate (you should train longer if you do so). 
l Different CNN architecture—Try something like Inception or ResNet (explained later).  
l Transfer learning—In the follow-up lecture, we will explore the technique of using a pre-trained 

network on your dataset to get higher results with almost no cost of training time. 
 

Fun Time: Judging from these figures, do you further performance improvement can be achieved 
if we increase more epochs? (1) Yes (2) No. 
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Increase Number of Epochs to 500 

 

 

In this case, the best model occurs at epoch 464 and we can reach accuracy of 88.3% for testing data. 


