
Introduction to Machine Learning and Deep Learning
2021/12/15

 1

Fine Tune Image Classification using CNN

In this project, we will revisit the CIFAR-10 classification project and apply some of the improvement
techniques to increase the accuracy from ~66% to ~85%.

We will accomplish the project by following these steps:
1. Import the dependencies.
2. Get the data ready for training:

– Download the data from the Keras library.
– Split it into train, validate, and test datasets.
– Normalize the data.
– One-hot encode the labels.
– Data augmentation

3. Build the model architecture. In addition to simple convolutional and pooling layers, we add the
following layers to our architecture:
– Deeper neural network to increase learning capacity
– Dropout layers
– L2 regularization to our convolutional layers
– Batch normalization layers

4. Train the model.
5. Plot the learning curve.
6. Evaluate the model.

Remark: This is assumed that you can run the entire program in one shot. If not, you will need to save
and reload the model or weights to continue training your data and keep the log if you want to plot the
learning curve.

Step 1: Import Dependencies

Here’s the Keras code to import the needed dependencies:

#import dependencies
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.layers import Dense, Activation, Flatten,
Dropout, BatchNormalization
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras.datasets import cifar10

Introduction to Machine Learning and Deep Learning
2021/12/15

 2

from tensorflow.keras import regularizers, optimizers
import numpy as np
from matplotlib import pyplot

Step 2: Get the Data Ready for Training

(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')

1. Normalize the data

Normalizing the pixel values of our images is done by subtracting the mean from each pixel and then
dividing the result by the standard deviation:

Normalize the data to speed up training
mean = np.mean(x_train)
std = np.std(x_train)
x_train = (x_train-mean)/(std+1e-7)
x_test = (x_test-mean)/(std+1e-7)

2. One-hot encode the labels

num_classes = 10
y_train = to_categorical(y_train,num_classes)
y_test = to_categorical(y_test,num_classes)

3. Data augmentation

For augmentation techniques, we will arbitrarily go with the following transformations: rotation, width
and height shift, and horizontal flip.

data augmentation
datagen = ImageDataGenerator(
 featurewise_center=False,
 samplewise_center=False,
 featurewise_std_normalization=False,
 samplewise_std_normalization=False,
 zca_whitening=False,
 rotation_range=15,
 width_shift_range=0.1,
 height_shift_range=0.1,
 horizontal_flip=True,
 vertical_flip=False
)

compute the data augmentation on the training set
datagen.fit(x_train)

Introduction to Machine Learning and Deep Learning
2021/12/15

 3

Remark: When you are working on problems, view the images that the network missed or provided
poor detections for and try to understand why it is not performing well on them. Then create your
hypothesis and experiment with it. For example, if the missed images were of shapes that are rotated,
you might want to try the rotation augmentation. You would apply that, experiment, evaluate, and
repeat. You will come to your decisions purely from analyzing your data and understanding the
network performance.

Step 3: Build the Model Architecture

In this project, we will build a deeper network for increased learning capacity (6 CONV + 1 FC). The
network has the following configuration:

l Instead of adding a pooling layer after each convolutional layer, we will add one after every two

convolutional layers. This idea was inspired by VGGNet, a popular neural network architecture
developed by the Visual Geometry Group (University of Oxford). VGGNet will be explained later.

l Inspired by VGGNet, we will set the kernel_size of our convolutional layers to 3 × 3 and the
pool_size of the pooling layer to 2 × 2.

l We will add dropout layers every other convolutional layer, with (p) ranges from 0.2 and 0.4.
l A batch normalization layer will be added after each convolutional layer to normalize the input

for the following layer.
l In Keras, L2 regularization is added to the convolutional layer code.

build the model

base_hidden_units = 32

l2 regularization hyperparameter
weight_decay = 1e-4

model = Sequential()

CONV1
model.add(Conv2D(base_hidden_units, (3,3), padding='same',
kernel_regularizer = regularizers.l2(weight_decay), input_shape =
x_train.shape[1:]))
model.add(Activation('relu'))
model.add(BatchNormalization())

CONV2
model.add(Conv2D(base_hidden_units, (3,3), padding='same',
kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())

Introduction to Machine Learning and Deep Learning
2021/12/15

 4

POOL + Dropout
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.2))

CONV3
model.add(Conv2D(2*base_hidden_units, (3,3), padding='same',
kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())

CONV4
model.add(Conv2D(2*base_hidden_units, (3,3), padding='same',
kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())

POOL + Dropout
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.3))

CONV5
model.add(Conv2D(4*base_hidden_units, (3,3), padding='same',
kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())

CONV6
model.add(Conv2D(4*base_hidden_units, (3,3), padding='same',
kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())

POOL + Dropout
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.4))

FC7
model.add(Flatten())
model.add(Dense(num_classes, activation='softmax'))

Step 4: Train the Model

Before we jump into the training code, let’s discuss the strategy behind some of the hyperparameter
settings:

l batch_size — This is the mini-batch hyperparameter that we covered. The higher the

batch_size, the faster your algorithm learns. You can start with a mini-batch of 64 and double
this value to speed up training.

l epochs—I started with 50 training iterations and found that the network was still improving. So
I kept adding more epochs and observing the training results. In this project, I was able to achieve

Introduction to Machine Learning and Deep Learning
2021/12/15

 5

85% accuracy of validation after 125 epochs. As you will see soon, there is still room for
improvement if you let it train longer.

l Optimizer—I used the Adam optimizer.

Remark: you will need to use GPU for training.

training
batch_size = 128
epochs = 125

from tensorflow.keras.callbacks import ModelCheckpoint

checkpointer = ModelCheckpoint(filepath='model.125epochs.hdf5',

verbose=1, save_best_only=True)
optimizer = tf.keras.optimizers.Adam(learning_rate=0.0001,decay=1e-6)
model.compile(loss='categorical_crossentropy', optimizer=optimizer,

metrics=['accuracy'])
history = model.fit(datagen.flow(x_train, y_train, batch_size =

batch_size), callbacks=[checkpointer],
steps_per_epoch=x_train.shape[0] // batch_size,
epochs = epochs,verbose = 2,
validation_data=(x_valid,y_valid))

When you run this code, you will see the verbose output of the network training for each epoch. Keep
your eyes on the loss and val_loss values to analyze the network and diagnose bottlenecks. Figure
below shows the verbose output of epochs 115 to 117. The val_loss does not improve after epoch
115.

Epoch 115/125

Epoch 00115: val_loss improved from 0.45393 to 0.44453, saving model to
model.125epochs.hdf5
351/351 - 24s - loss: 0.4558 - accuracy: 0.8537 - val_loss: 0.4445 -
val_accuracy: 0.8674 - 24s/epoch - 69ms/step
Epoch 116/125

Epoch 00116: val_loss did not improve from 0.44453
351/351 - 24s - loss: 0.4527 - accuracy: 0.8534 - val_loss: 0.4668 -
val_accuracy: 0.8570 - 24s/epoch - 68ms/step
Epoch 117/125

Epoch 00117: val_loss did not improve from 0.44453
351/351 - 24s - loss: 0.4540 - accuracy: 0.8549 - val_loss: 0.4653 -
val_accuracy: 0.8596 - 24s/epoch - 68ms/step

Step 5: Plot Learning Curve

You should always plot the learning curves to analyze the training performance and diagnose

Introduction to Machine Learning and Deep Learning
2021/12/15

 6

overfitting and underfitting.

import matplotlib.pyplot as plt

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

"bo" is for "blue dot"
plt.plot(epochs, loss, 'bo', label='Training loss')
b is for "solid blue line"
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()

plt.clf() # clear figure
acc_values = history.history['accuracy']
val_acc_values = history.history['val_accuracy']

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()

plt.show()

Introduction to Machine Learning and Deep Learning
2021/12/15

 7

Step 6: Final Verdict: Evaluate Your Model Based on New Data

evaluating the model

load the weights that yielded the best validation accuracy
model.load_weights('model.125epochs.hdf5')
scores = model.evaluate(x_test, y_test, batch_size=128, verbose=1)
print('\nTest result: %.3f loss: %.3f' % (scores[1]*100,scores[0]))

And we reach the accuracy of 84.72%.

You can download the above code CNN_Cifar10_FineTune.ipynb from the course website.

Further Improvement

Accuracy of 85% is not bad, but you can still improve further. Here are some ideas you can experiment
with:
l More training epochs—Notice that the network was improving until epoch 115. You can increase

the number of epochs and let the network train longer.
l Deeper network—Try adding more layers to increase the model complexity, which increases the

learning capacity.
l Lower learning rate—Decrease the learning rate (you should train longer if you do so).
l Different CNN architecture—Try something like Inception or ResNet (explained later).
l Transfer learning—In the follow-up lecture, we will explore the technique of using a pre-trained

network on your dataset to get higher results with almost no cost of training time.

Fun Time: Judging from these figures, do you further performance improvement can be achieved
if we increase more epochs? (1) Yes (2) No.

Introduction to Machine Learning and Deep Learning
2021/12/15

 8

Increase Number of Epochs to 500

In this case, the best model occurs at epoch 464 and we can reach accuracy of 88.3% for testing data.

