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Transfer Learning for Image Classification: Part 1 
 
A CNN learns the features in a dataset step by step in increasing levels of complexity, one layer after 
another. These are called feature maps. The deeper you go through the network layers, the more image-
specific features are learned. In the figure below, the first layer detects low-level features such as edges 
and curves. The output of the first layer becomes input to the second layer, which produces higher-
level features like semicircles and squares. The next layer assembles the output of the previous layer 
into parts of familiar objects, and a subsequent layer detects the objects. As we go through more layers, 
the network yields a feature map that represents more complex features. As we go deeper into the 
network, the filters begin to be more responsive to a larger region of the pixel space. Higher-level 
layers amplify aspects of the received inputs that are important for discrimination and suppress 
irrelevant variations. 

 

 
A common and highly effective approach to deep learning on small image datasets is to use transfer 
learning with a pretrained network. A pretrained network is a saved network that was previously 
trained on a large dataset, typically on a large-scale image-classification task, for instance, a large CNN 
(e.g., ResNet) trained on the ImageNet dataset (1.4 million labeled images and 1,000 different classes). 
 
Note that the level of generality (and therefore reusability) of the representations extracted by specific 
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convolution layers depends on the depth of the layer in the model. Layers that come earlier in the 
model extract local, highly generic feature maps (such as visual edges, colors, and textures), whereas 
layers that are higher up extract more-abstract concepts (such as “cat ear” or “dog eye”). So if your 
new dataset differs a lot from the dataset on which the original model was trained, you may be better 
off using only the first few layers of the model to do feature extraction, rather than using the entire 
convolutional base. 
 
Let’s compare the feature maps extracted from four models that are trained to classify faces, cars, 
elephants, and chairs (see figure below). Notice that the earlier layers’ features are very similar for all 
the models. They represent low-level features like edges, lines, and blobs. This means models that are 
trained on one task capture similar relations in the data types in the earlier layers of the network and 
can easily be reused for different problems in other domains. The deeper we go into the network, the 
more specific the features.  
 
The lower-level features are almost always transferable from one task to another because they contain 
generic information like the structure and nature of how images look. Transferring information like 
lines, dots, curves, and small parts of objects is very valuable for the network to learn faster and with 
less data on the new task. 
 

 
 
There are two ways to use a pretrained network: feature extractor and fine-tuning. We’ll cover feature 
extractor in part 1 and fine-tuning in part 2 of the notes.  
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1. Feature extractor 
 
Feature extraction consists of using the representations learned by a pretrained network to extract 
interesting features. As you saw previously, CNNs used for image classification comprise two parts: 
they start with a series of convolution and pooling layers, and they end with a densely connected 
classifier. The first part is called the convolutional base of the model. In the case of CNNs, feature 
extraction consists of taking the convolutional base of a previously trained network, running the new 
data through it, and training a new classifier on top of the output (see figure below). 
 

 
 
1.1 Project: Using Pretrained Network As a Feature Extractor 
 
Let’s put this in practice by using the convolutional base of the VGG16 network, trained on ImageNet. 
The VGG16 model, among others, comes prepackaged with Keras. You can import it from the 
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keras.applications module. Below are a few image-classification models (all pretrained on the 
ImageNet dataset) that are available as part of keras.applications: 
 

 
 
l The top-1 and top-5 accuracy refers to the model's performance on the ImageNet validation 

dataset. 
l Depth refers to the topological depth of the network. This includes activation layers, batch 

normalization layers etc. 
l Time per inference step is the average of 30 batches and 10 repetitions. - CPU: AMD EPYC 

Processor (with IBPB) (92 core) - Ram: 1.7T - GPU: Tesla A100 - Batch size: 32 
 
In this project, we will use a very small amount of data to train a classifier that detects images of dogs 
and cats (202 training samples, 103 validation samples, 451 testing samples).  
 
This is a pretty simple project, but the goal of the exercise is to see how to implement transfer learning 
when you have a very small amount of data and the target domain is similar to the source domain. We 
will use the pretrained convolutional network as a feature extractor. This means we are going to freeze 
the feature extractor part of the network, add our own classifier, and then retrain the network on our 
new small dataset. 
 
One other important takeaway from this project is learning how to preprocess custom data and make 
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it ready to train your neural network. In previous projects, we used the CIFAR and MNIST datasets: 
they are preprocessed by Keras, so all we had to do was download them from the Keras library and 
use them directly to train the network. This project provides a tutorial of how to structure your data 
repository and use the Keras library to get your data ready. 
 
The process to use a pretrained model as a feature extractor is well established: 
 
1. Import the necessary libraries. 
2. Preprocess the data to make it ready for the neural network. 
3. Load pretrained weights from the VGG16 network trained on a large dataset. 
4. Freeze all the weights in the convolutional layers (feature extraction part). 
5. Remember, the layers to freeze are adjusted depending on the similarity of the new task to the 

original dataset. In our case, we observed that ImageNet has a lot of dog and cat images, so the 
network has already been trained to extract the detailed features of our target object. 

6. Replace the fully connected layers of the network with a custom classifier. You can add as many 
fully connected layers as you see fit, and each can have as many hidden units as you want. For 
simple problems like this, we will just add one hidden layer with 64 units. You can observe the 
results and tune up if the model is underfitting or down if the model is overfitting. For the softmax 
layer, the number of units must be set equal to the number of classes (two units, in our case). 

7. Compile the network, and run the training process on the new data of cats and dogs to optimize the 
model for the smaller dataset. 

8. Evaluate the model. 
 
1. Import the necessary libraries 
 

from tensorflow.keras.preprocessing.image import ImageDataGenerator 
from tensorflow.keras.preprocessing import image 
from tensorflow.keras.applications import imagenet_utils 
from tensorflow.keras.applications import vgg16 
from tensorflow.keras.applications import mobilenet 
from tensorflow.keras.optimizers import Adam, SGD 
from tensorflow.keras.metrics import categorical_crossentropy 
 
from sklearn.metrics import confusion_matrix 
import itertools 
import matplotlib.pyplot as plt 
%matplotlib inline 

 
2. Preprocess the data to make it ready for the neural network 
 
Keras has an ImageDataGenerator class that allows us to easily perform image augmentation on 
the fly; you can read about it at https://keras.io/api/preprocessing/image. In this example, we use 
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ImageDataGenerator to generate our image tensors, but for simplicity, we will not implement 
image augmentation. 
 
The ImageDataGenerator class has a method called flow_from_directory() that is used to 
read images from folders containing images. This method expects your data directory to be structured 
as in figure below. 

 
 
You can load the data into train_path, valid_path, and test _path variables, and then generate 
the train, valid, and test batches: 
 

train_path  = 'data/train' 
valid_path  = 'data/valid' 
test_path  = 'data/test' 
 
train_batches = ImageDataGenerator().flow_from_directory(train_path, 
target_size=(224,224), batch_size=30) 
 
valid_batches = ImageDataGenerator().flow_from_directory(valid_path, 
target_size=(224,224), batch_size=30) 
 
test_batches = ImageDataGenerator().flow_from_directory(test_path, 
target_size=(224,224), batch_size=30) 

 
3. Load in pretrained weights from the VGG16 network trained on a large dataset 
 
We can download the VGG16 network from Keras and download its weights after they are pretrained 
on the ImageNet dataset. Remember that we want to remove the classifier part from this network, so 
we set the parameter include_top=False: 
 

base_model = vgg16.VGG16(weights = "imagenet", include_top=False, 
input_shape = (224,224, 3)) 

 
You pass three arguments to the VGG16 pretrained network constructor: 
l weights specifies the weight checkpoint from which to initialize the model. 
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l include_top refers to including (or not) the densely connected classifier on top of the network. 
By default, this densely connected classifier corresponds to the 1,000 classes from ImageNet. 
Because you intend to use your own densely connected classifier (with only two classes: cat and 
dog), you don’t need to include it. 

l input_shape is the shape of the image tensors that you’ll feed to the network. This argument is 
purely optional: if you don’t pass it, the network will be able to process inputs of any size. 

 
Here’s the detail of the architecture of the VGG16 convolutional base. It’s similar to the simple 
convnets you’re already familiar with: 

 
 

base_model.summary()  
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Remark: The VGG16 architecture strictly uses 3x3 convolution kernels with intermediate max- 
pooling layers for feature extraction. The design choice of using smaller kernels leads to a relatively 
reduced number of parameters, and therefore an efficient training and testing.  
 
The final feature map has shape (4, 4, 512). That's the feature on top of which we will stick a 
densely-connected classifier. 
 
4. Freeze all the weights in the convolutional layers (feature extraction part). 
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# iterate through its layers and lock them to make them not trainable 
with this code 
for layer in base_model.layers: 
    layer.trainable = False 
base_model.summary() 

 

 
 
 
 
 
 

Fun Time: How many trainable parameters we have after freezing all the weights? (1) 0 (2) 
14,714,688. 
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5. Add the new classifier, and build the new model. 
 
We add a few layers on top of the base model. In this example, we add one fully connected layer with 
64 units and a softmax 2 hidden units. We also add batch norm and dropout layers to avoid overfitting: 
 

from tensorflow.keras.layers import Dense, Flatten, Dropout, 
BatchNormalization 
from tensorflow.keras.models import Model 
 
# use “get_layer” method to save the last layer of the network 
# save the output of the last layer to be the input of the next layer 
last_layer = base_model.get_layer('block5_pool') 
last_output = last_layer.output 
 
# flatten the classifier input which is output of the last layer of 
VGG16 model 
x = Flatten()(last_output) 
 
# add a 64 unit FC layer and relu activation  
x = Dense(64, activation='relu', name='FC_2')(x) 
x = BatchNormalization()(x) 
x = Dropout(0.5)(x) 
# add our new softmax layer with 2 units 
x = Dense(2, activation='softmax', name='softmax')(x) 
 
# instantiate a new_model using keras’s Model class 
new_model = Model(inputs=base_model.input, outputs=x) 
 
# print the new_model summary 
new_model.summary() 
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Remark: The number of training parameters for FC_2 can be calculated from 25088*64+64 = 
1,605,696 
 
6. Compile the model and run the training process 
 

new_model.compile(Adam(lr=0.0001), loss='categorical_crossentropy', 
metrics=['accuracy']) 
 
from tensorflow.keras.callbacks import ModelCheckpoint    
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checkpointer = ModelCheckpoint(filepath='model.20epochs.hdf5', 
verbose=1, save_best_only=True) 
 
history = new_model.fit(train_batches, 
steps_per_epoch=4,callbacks=[checkpointer], 
validation_data=valid_batches, validation_steps=2, epochs=20, 
verbose=2) 

 
Remark: notice that the model was trained very quickly using regular CPU computing power. 
 
We can then plot the learning curves as usual: 
 

 
7. Evaluate the model 
 
First, let’s define the load_dataset() method that we will use to convert our dataset into tensors: 
 

from sklearn.datasets import load_files 
from tensorflow.keras.utils import to_categorical 
import numpy as np 
 
def load_dataset(path): 
    data = load_files(path) 
    paths = np.array(data['filenames']) 
    targets = to_categorical(np.array(data['target'])) 
    return paths, targets 
 
test_files, test_targets = load_dataset('data/test') 

 
Then, we create test_tensors to evaluate the model on them: 
 

from tensorflow.keras.preprocessing import image   
from tensorflow.keras.applications.vgg16 import preprocess_input 
from tqdm import tqdm 
 
def path_to_tensor(img_path): 
    # loads RGB image as PIL.Image.Image type 
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    img = image.load_img(img_path, target_size=(224, 224)) 
    # convert PIL.Image.Image type to 3D tensor with shape (224, 224, 
3) 
    x = image.img_to_array(img) 
    # convert 3D tensor to 4D tensor with shape (1, 224, 224, 3) and 
return 4D tensor 
    return np.expand_dims(x, axis=0) 
 
def paths_to_tensor(img_paths): 
    list_of_tensors = [path_to_tensor(img_path) for img_path in 
tqdm(img_paths)] 
    return np.vstack(list_of_tensors) 
 
test_tensors = preprocess_input(paths_to_tensor(test_files)) 

 
Now we can run Keras’s evaluate() method to calculate the model accuracy: 
 

# evaluate and print test accuracy 
# load the weights that yielded the best validation accuracy 
new_model.load_weights('model.20epochs.hdf5') 
score = new_model.evaluate(test_tensors, test_targets) 
print('\n', 'Test accuracy:', score[1]) 

 
The model has achieved an accuracy of 96% in less than 10 minutes of training. This is very good, 
given our very small dataset. 
 
You can download the package dogs_vs_cats_project.zip from the course website to reproduce 
and play around the results.  
 
 


