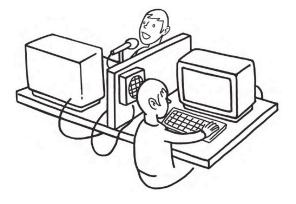
https://www.sli.do/ #073374



Deep Learning for Computer Vision (III)

Learning Objectives

- Learn the basic concepts of transfer learning.
- Learn how to use a pretrained network to significantly increase the accuracy of image classification task.

Improve Performance of Your CNN Model

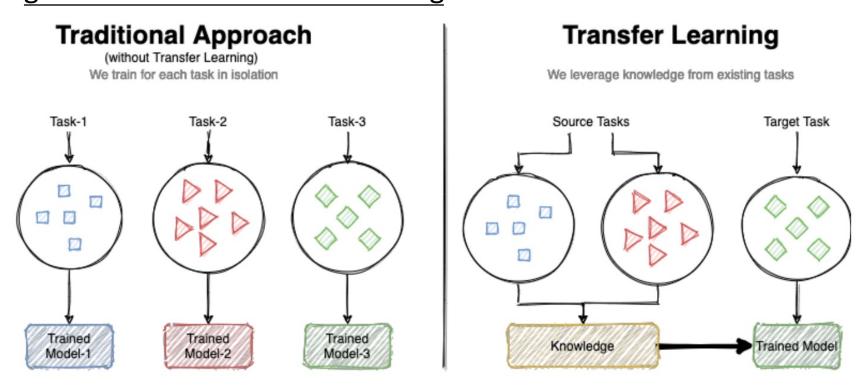
- Network architecture
 - Number of hidden layers (network depth)
 - Number of neurons in each layer (layer width)
 - Activation type
- Learning and optimization
 - Learning rate and decay schedule
 - Mini-batch size
 - Optimization algorithms
 - Number of training iterations or epochs (and early stopping criteria)
- Regularization techniques to avoid overfitting
 - L2 regularization
 - Dropout layers
 - Data augmentation
- Batch normalization
- Transfer learning

Transfer Learning

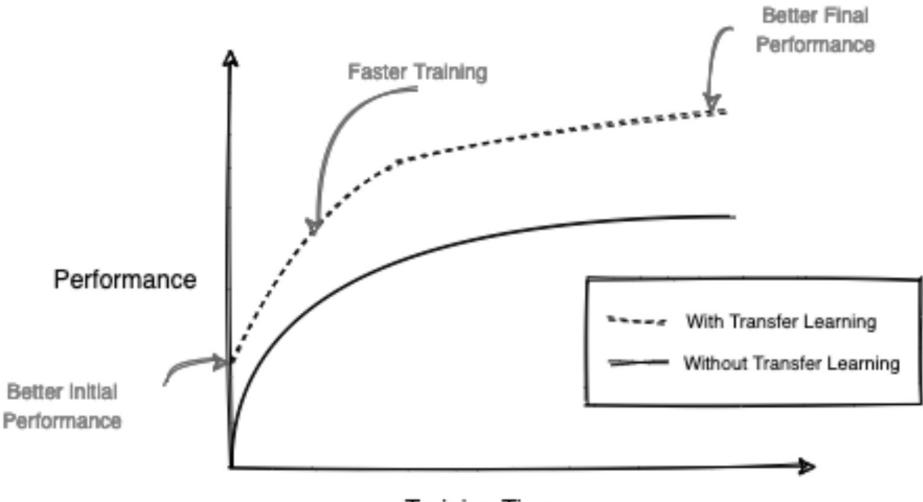
TL will be the next driver of ML commercial success after supervised learning, Andrew Ng (2016 NIPS)

Transfer Learning

- Transfer learning is one of the most important techniques of deep learning.
- Loosely, transfer learning is referred to <u>a situation where what</u> <u>has been learned in one setting is exploited to improve</u> generalization in another setting.



Typical Benefit of Transfer Learning



Training Time

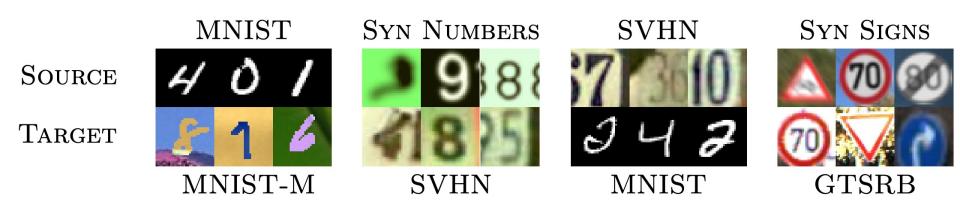
Transfer Learning: A Formal Definition

- The definition of transfer learning is given in terms of **domains** and **tasks**.
- A domain \mathbb{D} consists of a feature space \mathcal{X} and a probability distribution P(X) where $X = \{x_1, x_2 \dots, x_n\} \in \mathcal{X}$
- A task $\mathbb T$ consists of a label space $\mathcal Y$ and a predictive function $f\colon \mathcal X\to \mathcal Y$

Given a source domain \mathbb{D}_s and a learning task \mathbb{T}_s , a target domain \mathbb{D}_t and a learning task \mathbb{T}_t , transfer learning aims to help improve the learning of the target predictive function $f_t(\cdot)$ for the target domain using the knowledge in \mathbb{D}_s and \mathbb{T}_s , where $\mathbb{D}_s \neq \mathbb{D}_t$ or $\mathbb{T}_s \neq \mathbb{T}_t$

Domain Adaptation: A Subfield of Transfer Learning

Domain adaptation is a specific scenario where the label space remains same, yet the probabilities between source and target domains change $P(X_s) \neq P(X_t)$

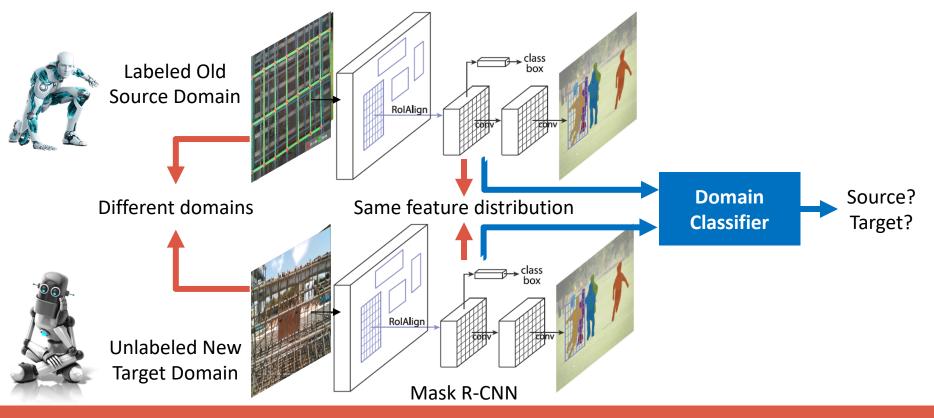


Waymo's Cars Drive 10 Million Miles (A Day in Virtual Space, 10 Years in Real Space)

http://dipakramoliya.com/uncategorized/in-a-perilous-virtual-world-waymos-cars-drive-10-million-miles-a-day/

Domain Adaptation for Rebar Image Segmentation

- Domain variance in rebar dataset: rebar assembly, collecting time, shooting position
- **Domain adversarial training:** reduce discrepancy between domains
 - Domain classifier: try to distinguish between source and target domain
 - Feature extractor: try to fool domain classifier while training model

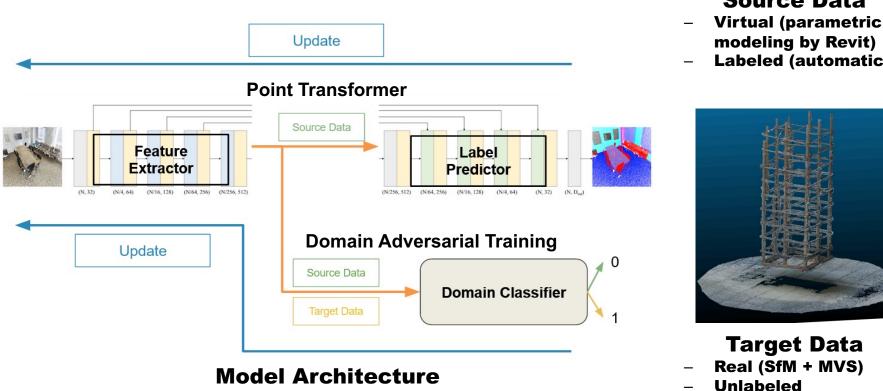


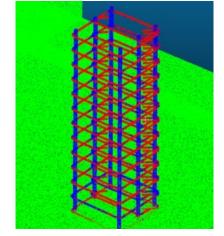
Domain Adaptation for Rebar Point Cloud

Segmentation

Task: 3D semantic segmentation Classes:

- 1. Background
- Main rebars (主筋) 2.
- 3. Ties (箍筋)





Source Data

- Labeled (automatic)

Transfer Learning for Image Classification

Transfer Learning for Image Classification: Rationale

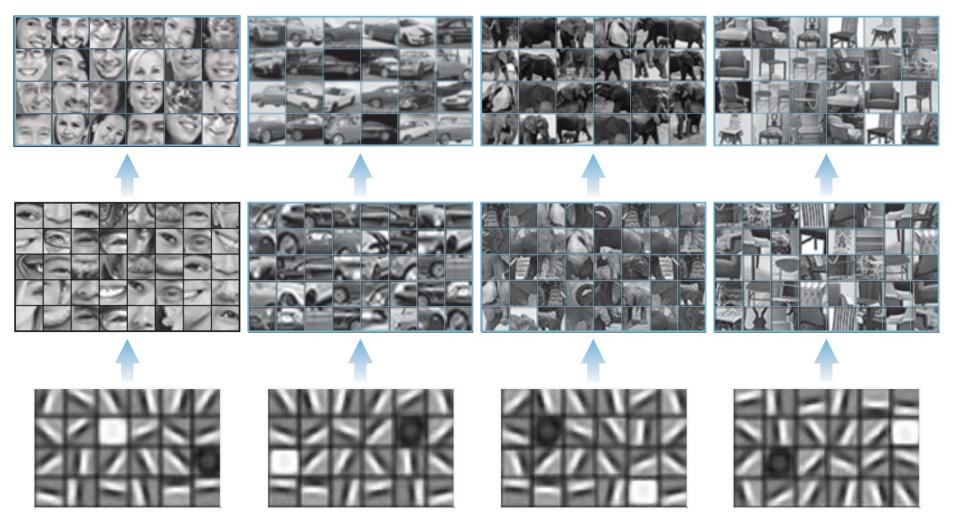
• A CNN learns the features in a dataset step by step in increasing levels of complexity. These are called feature maps. The deeper you go through the network layers, the more image-specific features are learned.

Faces

Cars

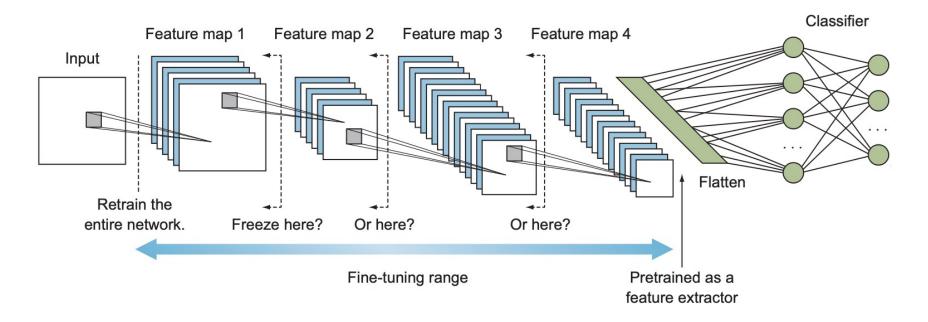
Elephants

Chairs



Transfer Learning for Image Classification: How

- Instead of starting from scratch, we can leverage a pretrained neural network (often a complex NN such as ResNet) and use their optimized parameters (weights) trained on a large dataset as a starting point to train our model on a smaller dataset for a given task.
- See CNN_Transfer_Learning_Part1.pdf

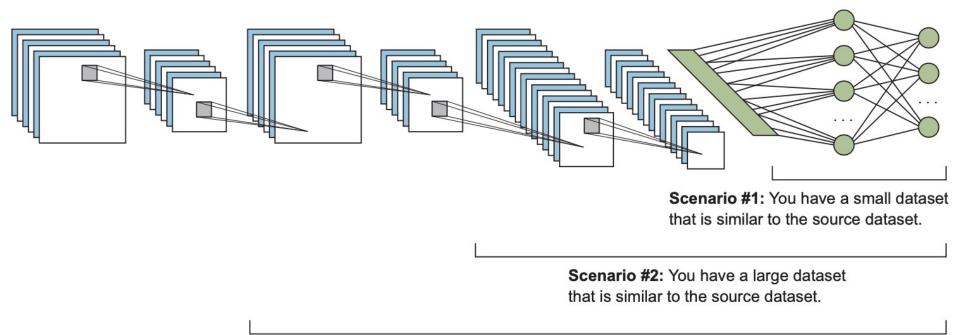


Transfer Learning Scenarios

Scenario	Size of the target data	Similarity of the original and new datasets	Approach
1	Small	Similar	Pretrained network as a feature extractor
2	Large	Similar	Fine-tune through the full network
3	Small	Very different	Fine-tune from activations earlier in the network
4	Large	Very different	Fine-tune through the entire network

• Scenario 3: see CNN_Transfer_Learning_Part2.pdf

Summary: Transfer Learning Scenarios and Strategies



Scenario #3: You have a small dataset that is different from the source dataset.

Scenario #4: You have a large dataset that is different from the source dataset.

Summary: Transfer Learning

- Given a source domain \mathbb{D}_s and a learning task \mathbb{T}_s , a target domain \mathbb{D}_t and a learning task \mathbb{T}_t , transfer learning aims to help improve the learning of the target predictive function $f_t(\cdot)$ for the target domain using the knowledge in \mathbb{D}_s and \mathbb{T}_s , where $\mathbb{D}_s \neq \mathbb{D}_t$ or $\mathbb{T}_s \neq \mathbb{T}_t$
- Domain adaptation is a subfield of transfer learning where the label space remains same, yet the probabilities between source and target domains change $P(X_s) \neq P(X_t)$
- Transfer learning migrates the knowledge learned from the source dataset to the target dataset, to save training time and computational cost and to improve generalization in target.
- The two main transfer learning approaches for image classification are using a pretrained network as a feature extractor, and fine-tuning.