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A Simple End-to-end Image Classification using CNN 
 
In this project, we will train a CNN to classify images from the CIFAR-10 dataset 
(www.cs.toronto.edu/~kriz/cifar.html). CIFAR-10 is an established CV dataset used for object 
recognition. It is a subset of the 80 Million Tiny Images dataset and consists of 60,000 (32 × 32) color 
images containing 1 of 10 object classes, with 6,000 images per class. 
 
Step 1: Load the Dataset 
 
The first step is to load the dataset into our train and test objects. Luckily, Keras provides the CIFAR 
dataset for us to load using the load_data() method. All we have to do is import keras.datasets 
and then load the data: 
 

from tensorflow.keras.datasets import cifar10 
 
# load the pre-shuffled train and test data 
(x_train, y_train), (x_test, y_test) = cifar10.load_data() 
 

 
Note that Keras splits the data into 50,000 training examples and 10,000 testing examples. We can 
then visualize the first 36 training images: 
 

import numpy as np 
import matplotlib.pyplot as plt 
%matplotlib inline 
 
fig = plt.figure(figsize=(20,5)) 
for i in range(36): 
    ax = fig.add_subplot(3, 12, i + 1, xticks=[], yticks=[]) 
    ax.imshow(np.squeeze(x_train[i])) 

 
Step 2: Image Preprocessing 
 
Based on your dataset and the problem you are solving, you will need to do some data cleanup and 
preprocessing to get it ready for your learning model. A cost function has the shape of a bowl, but it 
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can be an elongated bowl if the features have very different scales. Figure below shows gradient 
descent on a training set where features 1 and 2 have the same scale (on the left), and on a training set 
where feature 1 has much smaller values than feature 2 (on the right). 

 
Rescale the images 
 
A typical image preprocessing involves resizing the images and rescaling the features. As the images 
all have the same size, we thus only rescale the input images as follows: 
 

# rescale [0,255] --> [0,1] 
x_train = x_train.astype('float32')/255 
x_test = x_test.astype('float32')/255 

 
Prepare the labels (one-hot encoding) 
 

from tensorflow.keras.utils import to_categorical 
 
# one-hot encode the labels 
num_classes = len(np.unique(y_train)) 
y_train = to_categorical(y_train, num_classes) 
y_test = to_categorical(y_test, num_classes) 

 
Split the dataset for training and validation 
 

# break training set into training and validation sets 
(x_train, x_valid) = x_train[5000:], x_train[:5000] 
(y_train, y_valid) = y_train[5000:], y_train[:5000] 

 
 
 
 
 
 

Fun Time: how many training examples and validation examples we have after splitting (1) 5000 
and 5000 (2) 10000 and 5000 (3) 5000 and 45000 (4) 45000 and 5000. 
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Step 3: Define the Model 
 
You learned that the core building block of CNNs (and neural networks in general) is the layer. Most 
DL projects consist of stacking together simple layers that implement a form of data distillation. As 
you learned, the main CNN layers are convolution, pooling, fully connected, and activation functions. 
 
Remark: How many convolutional layers should you create? How many pooling layers? It is very 
helpful to read about some of the most popular architectures (AlexNet, ResNet, Inception) and extract 
the key ideas leading to the design decisions. We will discuss the most popular CNN architectures later. 
 
For now, let us try a smaller version of AlexNet and see how it performs with our dataset. Based on 
the results, we might add more layers. Our architecture will stack three convolutional layers and two 
fully connected (dense) layers as follows: 
 

CNN: INPUT ⇒ CONV_1 ⇒ POOL_1 ⇒ CONV_2 ⇒ POOL_2 ⇒ CONV_3 ⇒ POOL_3 ⇒ 
DO ⇒ FC ⇒ DO ⇒ FC (softmax) 

 
from tensorflow.keras.models import Sequential 
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, 
Dense, Dropout 
 
model = Sequential() 
model.add(Conv2D(filters=16, kernel_size=2, padding='same', 
activation='relu',  
                        input_shape=(32, 32, 3))) 
model.add(MaxPooling2D(pool_size=2)) 
model.add(Conv2D(filters=32, kernel_size=2, padding='same', 
activation='relu')) 
model.add(MaxPooling2D(pool_size=2)) 
model.add(Conv2D(filters=64, kernel_size=2, padding='same', 
activation='relu')) 
model.add(MaxPooling2D(pool_size=2)) 
model.add(Dropout(0.3)) 
model.add(Flatten()) 
model.add(Dense(500, activation='relu')) 
model.add(Dropout(0.4)) 
model.add(Dense(10, activation='softmax')) 
 

 
Step 4: Compile the Model 
 
The last step before training our model is to define three more hyperparameters—a loss function, an 
optimizer, and metrics to monitor during training and testing: 
 
l Loss function—How the network will be able to measure its performance on the training data. 
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l Optimizer—The mechanism that the network will use to optimize its parameters (weights and 
biases) to yield the minimum loss value. It is usually one of the variants of stochastic gradient 
descent. 

l Metrics—List of metrics to be evaluated by the model during training and testing. Typically we 
use metrics=['accuracy']. 

 
# compile the model 
model.compile(loss='categorical_crossentropy', optimizer='rmsprop', 
metrics=['accuracy']) 

 
Step 5: Train the Model 
 
We are now ready to train the network. In Keras, this is done via a call to the network’s .fit() 
method (as in fitting the model to the training data): 
 

from tensorflow.keras.callbacks import ModelCheckpoint    
 
# train the model 
checkpointer = ModelCheckpoint(filepath='model.weights.best.hdf5', 
verbose=1, save_best_only=True) 
 
hist = model.fit(x_train, y_train, batch_size=32, epochs=100, 
          validation_data=(x_valid, y_valid), callbacks=[checkpointer],  
          verbose=2, shuffle=True) 

 
When you run this cell, the training will start, and the verbose output shown in below will show one 
epoch at a time. Since 100 epochs of display do not fit on one page, the screenshot only shows the first 
6 epochs. 
 

Epoch 1/100 
 
Epoch 00001: val_loss improved from inf to 1.36389, saving model to 
model.weights.best.hdf5 
1407/1407 - 21s - loss: 1.5851 - accuracy: 0.4246 - val_loss: 1.3639 - 
val_accuracy: 0.5046 - 21s/epoch - 15ms/step 
Epoch 2/100 
 
Epoch 00002: val_loss improved from 1.36389 to 1.12162, saving model to 
model.weights.best.hdf5 
1407/1407 - 10s - loss: 1.2672 - accuracy: 0.5490 - val_loss: 1.1216 - 
val_accuracy: 0.6088 - 10s/epoch - 7ms/step 
Epoch 3/100 
 
Epoch 00003: val_loss did not improve from 1.12162 
1407/1407 - 10s - loss: 1.1598 - accuracy: 0.5907 - val_loss: 1.1614 - 
val_accuracy: 0.5906 - 10s/epoch - 7ms/step 
Epoch 4/100 
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Epoch 00004: val_loss improved from 1.12162 to 0.98136, saving model to 
model.weights.best.hdf5 
1407/1407 - 10s - loss: 1.0899 - accuracy: 0.6185 - val_loss: 0.9814 - 
val_accuracy: 0.6578 - 10s/epoch - 7ms/step 
Epoch 5/100 
 
Epoch 00005: val_loss did not improve from 0.98136 
1407/1407 - 10s - loss: 1.0517 - accuracy: 0.6339 - val_loss: 1.0071 - 
val_accuracy: 0.6484 - 10s/epoch - 7ms/step 
Epoch 6/100 
 
Epoch 00006: val_loss did not improve from 0.98136 
1407/1407 - 10s - loss: 1.0336 - accuracy: 0.6419 - val_loss: 1.2690 - 
val_accuracy: 0.6032 - 10s/epoch - 7ms/step 

 
 
 
 
 
 
 
 
Step 6: Load the Best Model  
 
Now that the training is complete, we can use the Keras method load_weights() to load into our 
model the weights that yielded the best validation accuracy score: 
 

# load the weights that yielded the best validation accuracy 
model.load_weights('model.weights.best.hdf5') 

 
Step 7: Evaluate the Model 
 
The last step is to evaluate our model and calculate the accuracy value as a percentage indicating how 
often our model correctly predicts the image classification: 
 

# evaluate and print test accuracy 
score = model.evaluate(x_test, y_test, verbose=0) 
print('\n', 'Test accuracy:', score[1]) 

 
When you run this cell, you will get an accuracy of about 66%. That is not bad but we can do a lot 
better. We revisit this project to apply these strategies and improve the accuracy to above 90%. 
 
You can download the above code CNN_Cifar10_Simple.ipynb from the course website.  

Fun Time: the best model is at epoch (1) 3 (2) 4 (3) 5 (4) 6. 

Fun Time: if we use the best model to predict new testing data, we expect to have the accuracy of 
(1) 0.60 (2) 0.62 (3) 0.64 (4) 0.66 (5) 0.68. 


