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Basic Components of Convolutional Networks 
 
There are three main types of layers that you will see in almost every Convolutional Network (CNN): 
 
1. Convolutional layer 
2. Pooling layer 
3. Fully connected layer 
 
As we have seen, convolutional layers and pooling layers are to perform feature extraction, and fully 
connected layers for classification. These three basic components are illustrated below: 
 

 
 
We will go through the details of these components in sequel. 
 
1. Convolutional Layer 
 
A convolutional layer is the core building block of a CNN. Convolutional layers act like a feature 
finder window that slides over the image pixel by pixel to extract meaningful features that identify the 
objects in the image. 
 
What Is Convolution? 
 
In mathematics, convolution is the operation of two functions to produce a third modified function. In 
the context of CNNs, the first function is the input image, and the second function is the convolutional 
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filter. We will perform some mathematical operations to produce a modified image with new pixel 
values. 
 
Let’s zoom in on a convolutional layer to see how it processes an image. By sliding the convolutional 
filter over the input image, the network breaks the image into little chunks and processes those chunks 
individually to assemble the modified image, a feature map. 
 

 
 
Remark on definition of feature map: In CNNs, a feature map is the output of one filter applied to 
the previous layer. It is called a feature map because it is a mapping of where a certain kind of feature 
is found in the image. CNNs look for features such as straight lines, edges, or even objects. Whenever 
they spot these features, they report them to the feature map. Each feature map is looking for something 
specific: one could be looking for straight lines and another for curves. 
 
Keeping the above figure in mind, here are some facts about convolution filters: 
 
l The small 3 × 3 matrix in the middle is the convolution filter, also called a kernel.  
l The kernel slides over the original image pixel by pixel and does some math calculations to get 

the values of the new “convolved” image on the next layer. 
 
The area of the image that the filter convolves is called the receptive field (see figure below). 
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Remark: What are the values in the convolutional filter? In CNNs, they are the weights. This means 
they are also randomly initialized and the values are learned by the network (so you will not have to 
worry about assigning its values). 
 
Convolutional Operations 
 
In CNNs, the neurons and weights are structured in a matrix shape. We multiply each pixel in the 
receptive field by the corresponding pixel in the convolution filter and sum them all together to get the 
value of the center pixel in the new image.  
 
The filter (or kernel) slides over the whole image. Each time, we multiply every corresponding pixel 
element-wise and then add them all together to create a new image with new pixel values as illustrated 
below. Again, this convolved image is called a feature map. 
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Applying Filters to Learn Features 
 
We are doing all convolution operation so the network extracts features from the image. How does 
applying filters lead toward this goal?  
 
In image processing, filters are used to filter out unwanted information or amplify features in an image. 
These filters are matrices of numbers that convolve with the input image to modify it. Let us look at 
this edge-detection filter: 
 

 
 
When this kernel (𝐾) is convolved with the input image 𝐹(𝑥, 𝑦), it creates a new convolved image 
𝐺(𝑥, 𝑦) (a feature map) that amplifies the edges. 
 

-1 -1 -1 -1 -1 -1 -1 -1 -1
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-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
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1 -1 -1
-1 1 -1
-1 -1 1

Fun Time: consider the following 9x9 input image and 3x3 filter, what are the values in the 7x7 
output feature map for the two highlighted patches? (1) 1 and 1 (2) 1 and 50 (3) 55 and 1 (4) 1 and 

55. 

Fun Time: consider the following 9x9 input image and 3x3 filter, what are the positions in the 
7x7 output feature map for the two highlighted patches? (1) (0, 0) and (3, 3) (2) (1, 1) and (4, 4) 

(3) (1, 1) and (3, 3). 
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Mathematically, it read: 
 

𝐹(𝑥, 𝑦) ⋆ 𝐾 = 𝐺(𝑥, 𝑦) 
 
Remarks:  
 
1. Other filters can be applied to detect different types of features. For example, some filters detect 

horizontal edges, others detect vertical edges, still others detect more complex shapes like corners, 
and so on.  

2. These filters, when applied in the convolutional layers, yield the feature-learning behavior we 
discussed earlier: first they learn simple features like edges and straight lines, and later layers learn 
more complex features. For example, below is a simplified version of how CNNs learn faces.  
 
You can see that the early layers detect patterns in the image to learn low-level features like edges, 
and the later layers detect patterns within patterns to learn more complex features like parts of the 
face, then patterns within patterns within patterns, and so on: 
 

 
 
Conv2D in Keras 
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Let’s take a look at the convolutional layer as a whole: each convolutional layer contains some 
convolutional filters. The number of filters in each convolutional layer determines the depth of the 
next layer, because each filter produces its own feature map (convolved image). Let’s look at a typical 
convolutional layer in Keras to see how they work: 
 

model.add(layers.Conv2D(64, (3, 3), activation='relu')) 

 
Or equivalently, 
 

model.add(layers.Conv2D(filters=64, kernel_size=3, strides=1,  
padding= ‘valid’, activation='relu')) 

 

 
 
Let us take a look of each hyperparameter. 
 
Number of Filters in the Convolutional Layer 
 
Each convolutional layer has some filters. Similar to MLPs, the convolutional layers in CNNs are the 
hidden layers. By increasing the number of kernels in a convolutional layer, we increase the number 
of neurons, which makes our network more complex and able to detect more complex patterns.  
 
Kernel Size 
 
Remember that a convolution filter is also known as a kernel. It is a matrix of weights that slides over 
the image to extract features. The kernel size refers to the dimensions of the convolution filter (width 
times height). 
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Remark: kernel_size is one of the hyperparameters that you will be setting when building a 
convolutional layer. Like most neural network hyperparameters, no single best answer fits all problems. 
The intuition is that smaller filters will capture very fine details of the image, and bigger filters will 
miss minute details in the image. 
 
Kernel filters are almost always square and range from the smallest at 2×2 to the largest at 5×5. 
Theoretically, you can use bigger filters, but this is not preferred because it results in losing important 
image details. 
 
Strides and Padding 
 
You will usually think of these two hyperparameters together, because they both control the shape of 
the output of a convolutional layer. Let’s see how: 
 
Strides—The amount by which the filter slides over the image. For example, to slide the convolution 
filter one pixel at a time, the strides value is 1 (default). If we want to jump two pixels at a time, the 
strides value is 2. Strides of 3 or more are uncommon and rare in practice.  
 
Strides of 1 will make the output image roughly the same height and width of the input image, while 
strides of 2 will make the output image roughly half of the input image size. We say “roughly” because 
it depends on what you set the padding parameter to do with the edge of the image. 
 
In figure below, you can see the patches extracted by a 3×3 convolution filter with stride 2 over a 5×5 
input (without padding). 
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Padding—Often called zero-padding because we add zeros around the border of an image (see figure 
below). Padding is most commonly used to allow us to preserve the spatial size of the input volume so 
the input and output width and height are the same. This way, we can use convolutional layers without 
necessarily shrinking the height and width of the volumes. This is important for building deeper 
networks, since, otherwise, the height/width would shrink as we went to deeper layers. 
 

 
 

 

In Keras, you can apply ‘valid’ or ‘same’ options, ‘valid’ means no padding and ‘same’ means Keras 
will maintain the output shape as its input if you use a stride of 1. 
 
The output width and height (𝑤′ × ℎ′) are determined by the input width and height (𝑤 × ℎ), the filter 
width and height (𝑓 × 𝑓), the padding (𝑝) and the stride (𝑠). 
 

Fun Time: what is the shape of the output of a convolutional layer for this case? (1) 5x5x1 (2) 
4x4x1 (3) 3x3x1 (4) 2x2x1. 
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For the ‘valid’ padding: 
 

𝑤! = ceil(
𝑤 − 𝑓 + 1

𝑠 ) 

ℎ! = ceil(
ℎ − 𝑓 + 1

𝑠 ) 

 
For the ‘same’ padding: 
 

𝑤! = ceil(
𝑤
𝑠 ) 

ℎ! = ceil(
ℎ
𝑠) 

 
with the default values 𝑝 = ′valid′ (no padding) and 𝑠 = 1 (continuous). 
 
Example: what is the shape of the output of a convolutional layer after we apply the following 
command? 
 

from tensorflow.keras import models 
from tensorflow.keras.layers import Conv2D 
model = models.Sequential() 
model.add(Conv2D(64, 5, activation='relu', input_shape=(28, 28, 3))) 
model.summary() 

 
A:  

𝑤! = ceil("#$%&
'

) = ceil(()#*%&
&

) = 24  

 
Note that first dimension of output shape refers to batch_size. 
 
Example: What is the shape of the output of a convolutional layer after we apply the following 
command? 
 

from tensorflow.keras import models 
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from tensorflow.keras.layers import Conv2D 
model = models.Sequential() 
model.add(Conv2D(64, 5, padding=’same’, activation='relu', 
input_shape=(28, 28, 3))) 
model.summary() 

A:  

𝑤! = ceil >"
'
? = 28  

 
 
Remark: we rarely apply stride other than 1. But for fun, let us test our formula for computing output 
shape. What is the shape of the output of a convolutional layer after we apply the following command? 
 

from tensorflow.keras import models 
from tensorflow.keras.layers import Conv2D 
model = models.Sequential() 
model.add(Conv2D(64, 5, padding=’same’, strides=3, activation='relu', 
input_shape=(28, 28, 3))) 
model.summary() 

A:  

𝑤! = ceil >()
+
? = 10  

 
 
2. Pooling Layers or Subsampling 
 
Adding more convolutional layers increases the depth of the output layer, which leads to increasing 
the number of parameters that the network needs to optimize (learn). You can see that adding several 
convolutional layers (usually tens or even hundreds) will produce a huge number of parameters 
(weights).  
 
This is when pooling layers come in handy. Subsampling or pooling helps reduce the size of the 
network by reducing the number of parameters passed to the next layer. The pooling operation resizes 
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its input by applying a summary statistical function, such as a maximum or average, to reduce the 
overall number of parameters passed on to the next layer. 
 
The goal of the pooling layer is to downsample the feature maps produced by the convolutional layer 
into a smaller number of parameters, thus reducing computational complexity. It is a common practice 
to add pooling layers after every one or two convolutional layers in the CNN architecture (see figure 
below). 
 

 
 
Max Pooling 
 
The main type of pooling layers is max pooling. Similar to convolutional kernels, max pooling kernels 
are windows of a certain size and strides value that slide over the image. The difference with max 
pooling is that the windows don’t have weights or any values. All they do is slide over the feature map 
created by the previous convolutional layer and select the max pixel value to pass along to the next 
layer, ignoring the remaining values. In figure below, you see a pooling filter with a size of 2 × 2 and 
strides of 2 (the filter jumps 2 pixels when sliding over the image). This pooling layer reduces the 
feature map size from 4 × 4 down to 2 × 2. 
 

 
 
When we do that to all the feature maps in the convolutional layer, we get maps of smaller dimensions 
(width times height), but the depth of the layer is kept the same because we apply the pooling filter to 
each of the feature maps from the previous filter. So if the convolutional layer has three feature maps, 
the output of the pooling layer will also have three feature maps, but of smaller size (see figure below). 
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Why Use a Pooling Layer 
 
As you can see from the examples we have discussed, pooling layers reduce the dimensionality of our 
convolutional layers. The reason it is important to reduce dimensionality is that in complex projects, 
CNNs contain many convolutional layers, and each has tens or hundreds of convolutional filters 
(kernels). Since the kernel contains the parameters (weights) that the network learns, this can get out 
of control very quickly, and the dimensionality of our convolutional layers can get very large. So 
adding pooling layers helps keep the important features and pass them along to the next layer, while 
shrinking image dimensionality. Think of pooling layers as image-compressing programs. They reduce 
the image resolution while keeping its important features: 
 

 
 
3. Visualize What Happens after Each Layer 
 
After the convolutional layers, the image keeps its width and height dimensions (usually), but it gets 
deeper and deeper after each layer. 
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After the pooling layers, the image keeps its depth but shrinks in width and height: 
 

 

 
Putting the convolutional and pooling together, we get something like this: 
 

 
 
This keeps happening until we have, at the end, a long tube of small shaped images that contain all the 
features in the original image. 
 
For example, the output of the convolutional and pooling layers can produce a feature tube (5 × 5 × 
40) that is almost ready to be classified. The last step is to flatten this tube before feeding it to the fully 
connected layer for classification. The flattened layer will have the dimensions of (1, m) where m = 5 
× 5 × 40 = 1,000 neurons. 
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4. Convolution Over Color Images 
 
Color images are interpreted by the computer as 3D matrices with height, width, and depth. In the case 
of RGB images (red, green, and blue) the depth is three: one channel for each color.  
 

 
 
Similar to what we did with grayscale images, we slide the convolutional kernel over the image and 
compute the feature maps. Now the kernel is itself three-dimensional: one dimension for each color 
channel. 
 
Remark: our kernel will adjust to the channels accordingly and even though we define a 3x3 kernel, 
the true dimensions of the kernel when initialized will be 3x3xchannels. For a RGB input, since we 
have 3 input channels, we will have the kernel of 3x3x3. 
 
To perform convolution, we will do the same thing we did before. Let’s see how (see figure below): 
l Each of the color channels has its own corresponding filter. 
l Each filter will slide over its image, multiply every corresponding pixel elementwise, and then 

add them all together to compute the convolved pixel value of each filter. This is similar to what 
we did previously. 

l We then add the three values to get the value of a single node in the convolved image or feature 
map. And don’t forget to add the bias value. We continue this process until we compute the pixel 
values of all nodes in the feature map. 
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5. Number of Trainable Parameters  
 
We finally show how to compute the number of trainable parameters in CNNs. During the training 
process, we basically learn the weights and bias from data. For example, for a 3x3 filter with channel 
= 3 (RGB), the total number of the trainable parameters for a single filter is 3*3*3 + 1.  
 
The general equation to compute the number of training parameters is: 
 

number of training params  
= kernel_width × kernel_height × (depth of the previous layer) × (#filters) + #filters (for biases) 
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= (kernel_width × kernel_height × depth of the previous layer + 1) × #filters 
 
Example: compute the number of training parameters for the MNIST example. 

 
 
The number of trainable parameters for each layer is: 
 
(3 ∗ 3 ∗ 1 + 1) ∗ 32 = 320  
(3 ∗ 3 ∗ 32 + 1) ∗ 64 = 18496  
(3 ∗ 3 ∗ 64 + 1) ∗ 64 = 36928  
 
These numbers look daunting but if we consider the alternative to use fully connected (FC) dense 
layers from conv2d_1 to conv2d_2 (ignore the max pooling layer for now), we will need: 
 
(26 ∗ 26 ∗ 32) ∗ (11 ∗ 11 ∗ 64) + (11 ∗ 11 ∗ 64) = 167,525,952 ! 
 
6. Summary  
 
At this point, you should understand the basic concepts and operations of CNNs—filters, feature 
maps, convolution, and max pooling—and you know how to build a small CNN in Keras to solve 
a toy problem such as MNIST digits classification. We are now ready to look at some more realistic 
examples and tricks to improve the performance of CNNs. 
 


