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Deep Learning for Computer Vision (I)

Learning Objectives

Learn the vast applications of deep learning for
computer vision.

Learn the basics of digital image representation
Learn the workhorse: convolutional neural networks
(CNNs)

Learn the basic components and theories behind CNNs.



ILSVRC (the ImageNet Large Scale Visual Recognition Challenge)
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Tesla released what Autopilot’s neural net can see (2020.01.31)

Apply cutting-edge research to train deep
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PN neural networks on problems ranging from
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semantic segmentation, object detection and
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view networks take video from all cameras to
output the road layout, static infrastructure
and 3D objects directly in the top-down view.

Our networks learn from the most complicated
and diverse scenarios in the world, iteratively
sourced from our fleet of nearly 1M vehicles in
real time. A full build of Autopilot neural
networks involves 48 networks that take
70,000 GPU hours to train &, Together, they
output 1,000 distinct tensors (predictions) at
each timestep.

https://www.tesla.com/autopilotAl
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Applications of Computer Vision

Tumor

Tumor

CT scan X-ray

Figure 1.5 Vision systems are now able to learn patterns in X-ray images to identify tumors in earlier
stages of development.

M. Elgendy (2020) Deep Learning for Vision System.



Applications of Computer Vision

Figure 1.6 Vision systems can detect traffic signs with very high performance.

M. Elgendy (2020) Deep Learning for Vision System.



Applications of Computer Vision
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Figure 1.7 Deep learning systems can segment objects in an image.

M. Elgendy (2020) Deep Learning for Vision System.



Applications of Computer Vision

Original image Style Generated art
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Figure 1.8 Style transfer from Van Gogh’s The Starry Night onto the original image, producing a piece of art that
feels as though it was created by the original artist

M. Elgendy (2020) Deep Learning for Vision System.



Applications of Computer Vision

This small blue bird
has a short, pointy beak
and brown on its wings.

This bird is completely
red with black wings and
a pointy beak.

Figure 1.9 Generative adversarial networks (GANS) can create new, “made-up” images from a set of
existing images.

M. Elgendy (2020) Deep Learning for Vision System.



Applications of Computer Vision

Face verification
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M. Elgendy (2020) Deep Learning for Vision System.



» Retrievals
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Image Representation 101
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Image as a Function

* Animage can be represented as a function of two variables x and y, which
define a two- dimensional area. A digital image is made of a grid of pixels.
* The pixel is the raw building block of an image. Every image consists of a set

of pixels in which their values represent the intensity of light that appears in
a given place in the image.

Grayscale image (32 x 16)
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How Computer See Image

* To a computer, the image looks like a 2D matrix of the pixels’ values, which represent
intensities. There is no context here, just a massive pile of data.
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How Computer See Color Image

* Colorimages have three channels (red, green, and blue) and are often
represented by three matrices: one represents the intensity of red in the pixel,
one represents green, and one represents blue

Color image RGB channels
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Image Flattening

* We often need to do image flattening when we use MLP for classification.

To help visualize the flattened input vector, let’s look at a much smaller matrix (4, 4):

The input (x) is a flattened vector with the dimensions (1, 16):

B = ] e -
| J| Il I| |
Row 2 Row 3 Row 4

Row 1

So, if we have pixel values of O for black and 255 for white, the input vector will be
as follows:
input = [0, 255, 255, 255, 0,0, 0, 255, 0,0, 2565, 0, 0, 255, 0, 0]

C-S David Chen, Department of Civil Engineering, National Taiwan University




Convolutional Neural Networks (CNNs) -
An Overview

C-S David Chen, Department of Civil Engineering, National Taiwan University



High-level architecture of CNNs: input layer, convolutional
layers, fully connected layers, and output prediction

Feature extraction Classification Prediction
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DNNs vs. CNNs: See CNN_MNIST.ipynb

Layer (type) Output Shape Param #
dense (Dense) (None, 784) 615440
dense_1 (Dense) (None, 10) 7850

Total params: 623,290
Trainable params: 623,290
Non-trainable params: 0

CNNs yield better results
with less training

Layer (type) Output Shape Param #

parameters
conv2d_3 (Conv2D) (None, 26, 26, 32) 320
max_pooling2d_2 (MaxPooling2 (None, 13, 13, 32) 0 DNNs and CNNs do not
conv2d_4 (Conv2D) (None, 11, 11, 64) 18496 usually yield comparable

, _ results; MNIST dataset is

max_pooling2d_3 (MaxPooling2 (None, 5, 5, 64) 0 i

an exception. In messy
conv2d_5 (Conv2D) (None, 3, 3, 64) 36928 real_world |mage data’
flatten_1 (Flatten) (None, 576) 0 CNNs truly outshine DNNs.
dense_4 (Dense) (None, 64) 36928
dense_5 (Dense) (None, 10) 650

Total params: 93,322
Trainable params: 93,322
Non-trainable params: 0



Fundamental Difference between DNNs and CNNs

Global vs. Local

Fully connected neural net Locally connected neural net

The patterns CNNs learn are translation invariant.
CNNs can learn spatial hierarchies of patterns.

C-S David Chen, Department of Civil Engineering, National Taiwan University



CNNs learn the image features through its layers.

The patterns CNNs learn are translation invariant.
CNNs can learn spatial hierarchies of patterns.

Later layers learn
more complex features

Output prediction “Cat” .
R like ear, nose, and eye.

. 2 /@}

S(o(&(en)o)E

Input prediction e & ‘\
I>

= Earlier layers learn
/- simple features like
curves and edges.
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Basic Components of Convolutional
Neural Networks (CNNs)

C-S David Chen, Department of Civil Engineering, National Taiwan University



The basic components of convolutional networks are convolutional layers and
pooling layers to perform feature extraction, and fully connected layers for

classification
Feature learning Classification
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Basic
components of
CNNs: theoretical
minimum and
example

* The phrase “theoretical minimum” is
taken from a very successful book series
written by Leonard Susskind, a great
physicist at Stanford University.

* “Theoretical minimum” means just the
minimum theories and equations you
need to know in order to proceed to the
next level.

* See CNN_Basics.pdf



