
Introduction to Machine Learning and Deep Learning
2021/12/01

 1

Validation Curve and Learning Curve

Validation curve and learning curve (or sometimes short for learning curves) are important topics for
machine learning (and deep learning). The validation curve summarizes the tradeoff between
training and validation errors as we vary the model complexity. The learning curve summarizes
the tradeoff between training and validation errors as we vary the size of the training set.

Food for Thought
1. The fundamental issue in machine learning (and deep learning) is the tension between

optimization and generalization. Optimization refers to the process of adjusting a model to get
the best performance possible on the training data (the learning in machine learning), whereas
generalization refers to how well the trained model performs on data it has never seen before.

2. The goal of the game is to get good generalization, of course, but you don’t control generalization;
you can only fit the model to its training data. If you do that too well, overfitting kicks in and
generalization suffers.

3. In classical machine learning, we use the cross validation technique to help us identify overfit and
pick up the model that perform best on generalization.

4. In deep learning, we do not have the computational luxury to do cross validation and often rely on
the validation curve to help us identify overfit and pick up the model that perform best on
generalization.

1. Validation Curve

In deep learning, we often do a simple holdout validation and split the data into training set and
validation set.

When we increase the number of epochs (model complexity) in deep learning, we would expect the
loss from training curve and validation curve to behave like:

Introduction to Machine Learning and Deep Learning
2021/12/01

 2

1. At the beginning of training, optimization and generalization are correlated: the lower the loss on

training data, the lower the loss on test data. While this is happening, your model is said to be
underfit: there is still progress to be made; the network hasn’t yet modeled all relevant patterns in
the training data.

2. After a certain number of iterations on the training data, generalization stops improving, validation
metrics stall and then begin to degrade: the model is starting to overfit. That is, it’s beginning to
learn patterns that are specific to the training data but that are misleading or irrelevant when it
comes to new data.

2. Example

In the following, we will first use IMDB dataset: a set of 50,000 highly polarized reviews from the
Internet Movie Database to illustrate the overfitting problem for neural network.

2.1 The IMDB dataset

You’ll work with the IMDB dataset: a set of 50,000 highly polarized reviews from the Internet Movie

Fun Time: We should use a deep learning model in (1) underfit region (2) robust fit region (3)
overfit region.

Introduction to Machine Learning and Deep Learning
2021/12/01

 3

Database. They’re split into 25,000 reviews for training and 25,000 reviews for testing, each set
consisting of 50% negative and 50% positive reviews.

Just like the MNIST dataset, the IMDB dataset comes packaged with Keras. It has already been
preprocessed: the reviews (sequences of words) have been turned into sequences of integers, where
each integer stands for a specific word in a dictionary.

The following code will load the dataset (when you run it the first time, about 80 MB of data will be
downloaded to your machine).

from tensorflow.keras.datasets import imdb

(train_data, train_labels), (test_data, test_labels) =
imdb.load_data(num_words=10000)

The argument num_words=10000 means that we will only keep the top 10,000 most frequently
occurring words in the training data. Rare words will be discarded. This allows us to work with vector
data of manageable size.

The variables train_data and test_data are lists of reviews, each review being a list of word
indices (encoding a sequence of words). train_labels and test_labels are lists of 0s and 1s,
where 0 stands for "negative" and 1 stands for "positive":

For example, if we type

train_data[0]

We see a list of word indices encoding a sequence of words for the first review:

Introduction to Machine Learning and Deep Learning
2021/12/01

 4

…

If we type

train_labels[0]

We see the first review results:

You can quickly decode one of these reviews back to English words, for example, for the first
review:

word_index is a dictionary mapping words to an integer index
word_index = imdb.get_word_index()
We reverse it, mapping integer indices to words
reverse_word_index = dict([(value, key) for (key, value) in
word_index.items()])
We decode the review; note that our indices were offset by 3
because 0, 1 and 2 are reserved indices for "padding",
"start of sequence", and "unknown".
decoded_review = ' '.join([reverse_word_index.get(i - 3, '?') for i in
train_data[0]])

decoded_review

Fun Time: Is the first review positive or negative? (1) positive (2) negative.

Introduction to Machine Learning and Deep Learning
2021/12/01

 5

2.2 Preparing the data

You can’t feed lists of integers into a neural network. You have to turn your lists into tensors. One way
to do it is through on-hot encoding. One-hot encode your lists to turn them into vectors of 0s and 1s.
This would mean, for instance, turning the sequence [3, 5] into a 10,000-dimensional vector that would
be all 0s except for indices 3 and 5, which would be 1s. Then you could use as the first layer in your
network a Dense layer, capable of handling floating-point vector data.

Let's vectorize our data, which we will do manually for maximum clarity:

import numpy as np

def vectorize_sequences(sequences, dimension=10000):
 # Create an all-zero matrix of shape (len(sequences), dimension)
 results = np.zeros((len(sequences), dimension))
 for i, sequence in enumerate(sequences):
 results[i, sequence] = 1.

set specific indices of results[i] to 1s
 return results

Our vectorized training data
x_train = vectorize_sequences(train_data)
Our vectorized test data
x_test = vectorize_sequences(test_data)

Here’s what the first sample look like now:

x_train[0]

You should also vectorize your labels, which is straightforward:

Our vectorized labels
y_train = np.asarray(train_labels).astype('float32')
y_test = np.asarray(test_labels).astype('float32')

Now the data is ready to be fed into a neural network.

Introduction to Machine Learning and Deep Learning
2021/12/01

 6

2.3 Building your network

For this example, the input data is vectors, and the labels are scalars (1s and 0s): this is the easiest
setup you’ll ever encounter. A type of network that performs well on such a problem is a simple stack
of fully connected (Dense) hidden layers with RELU activations: Dense(16,

activation='relu').

For this example, we will make the following architecture choice:
1. Two intermediate layers with 16 hidden units each
2. A third layer that will output the scalar prediction regarding the sentiment of the current review

Figure below shows what the network looks like.

And here’s the Keras implementation, similar to the MNIST example you saw previously.

from tensorflow.keras import models
from tensorflow.keras import layers

model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

Q: How many training parameters for this network model?
A:
(10000 + 1) ∗ 16 + (16 + 1) ∗ 16 + (16 + 1) ∗ 1 = 160305

Finally, you need to choose a loss function and an optimizer. Because you’re facing a binary

Introduction to Machine Learning and Deep Learning
2021/12/01

 7

classification problem and the output of your network is a probability (you end your network with a
single-unit layer with a sigmoid activation), it’s best to use the binary_crossentropy loss. It isn’t
the only viable choice: you could use, for instance, mean_squared_error. But crossentropy is
usually the best choice when you’re dealing with models that output probabilities.

Here’s the step where you configure the model with the rmsprop optimizer and the
binary_crossentropy loss function. Note that you’ll also monitor accuracy during training.

model.compile(optimizer='rmsprop',
 loss='binary_crossentropy',
 metrics=['accuracy'])

2.4 Validating your approach

In order to monitor during training the accuracy of the model on data it has never seen before, you’ll
create a validation set by setting apart 10,000 samples from the original training data.

x_val = x_train[:10000]
partial_x_train = x_train[10000:]

y_val = y_train[:10000]
partial_y_train = y_train[10000:]

We will now train our model for 20 epochs (20 iterations over all samples in the partial_x_train
and partial_y_train tensors), in mini-batches of 512 samples. At this same time we will monitor
loss and accuracy on the 10,000 samples that we set apart. This is done by passing the validation data
as the validation_data argument:

history = model.fit(partial_x_train,
 partial_y_train,
 epochs=20,
 batch_size=512,
 validation_data=(x_val, y_val))

…
Note that the call to model.fit() returns a History object. This object has a member history,
which is a dictionary containing data about everything that happened during training. Let’s look at it:

Introduction to Machine Learning and Deep Learning
2021/12/01

 8

history_dict = history.history
history_dict.keys()

It contains 4 entries: one per metric that was being monitored, during training and during validation.
Let's use Matplotlib to plot the training and validation loss side by side, as well as the training and
validation accuracy:

import matplotlib.pyplot as plt

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

"bo" is for "blue dot"
plt.plot(epochs, loss, 'bo', label='Training loss')
b is for "solid blue line"
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()

plt.clf() # clear figure
acc_values = history_dict['accuracy']
val_acc_values = history_dict['val_accuracy']

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()

plt.show()

Introduction to Machine Learning and Deep Learning
2021/12/01

 9

Q: what have you observed from these plots?
A:
The training loss decreases with every epoch, and the training accuracy increases with every epoch.
That’s what you would expect when running gradient-descent optimization—the quantity you’re trying
to minimize should be less with every iteration. But that isn’t the case for the validation loss and
accuracy: they seem to peak at the fourth epoch. This is an example of what we warned against earlier:
a model that performs better on the training data isn’t necessarily a model that will do better on data it
has never seen before. In precise terms, what you’re seeing is overfitting: after the second epoch,
you’re overoptimizing on the training data, and you end up learning representations that are specific
to the training data and don’t generalize to data outside of the training set.

You can download the above code Keras_IMDB.ipynb from course website.

3. Learning Curve

We close the discussion with learning curve. One important aspect of model complexity is that the
optimal model will generally depend on the size of your training data.

It is often useful to explore the behavior of the model as a function of the number of training points,
which we can do by using increasingly larger subsets of the data to fit our model. A plot of the
training/validation score with respect to the size of the training set is known as a learning curve.

We illustrate the learning curves for a simple learning model and a complex one:

Introduction to Machine Learning and Deep Learning
2021/12/01

 10

Fun Time: For the simple model, what should you do if you would like to improve the
performance of your deep learning model? (1) increase model complexity (2) label more training

data

Fun Time: For the complex model, what should you do if you would like to improve the
performance of your deep learning model? (1) increase model complexity (2) label more training

data

