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Validation Curve and Learning Curve 
 
Validation curve and learning curve (or sometimes short for learning curves) are important topics for 
machine learning (and deep learning). The validation curve summarizes the tradeoff between 
training and validation errors as we vary the model complexity. The learning curve summarizes 
the tradeoff between training and validation errors as we vary the size of the training set.  
 
Food for Thought 
1. The fundamental issue in machine learning (and deep learning) is the tension between 

optimization and generalization. Optimization refers to the process of adjusting a model to get 
the best performance possible on the training data (the learning in machine learning), whereas 
generalization refers to how well the trained model performs on data it has never seen before.  

2. The goal of the game is to get good generalization, of course, but you don’t control generalization; 
you can only fit the model to its training data. If you do that too well, overfitting kicks in and 
generalization suffers.  

3. In classical machine learning, we use the cross validation technique to help us identify overfit and 
pick up the model that perform best on generalization. 

4. In deep learning, we do not have the computational luxury to do cross validation and often rely on 
the validation curve to help us identify overfit and pick up the model that perform best on 
generalization. 

 
1. Validation Curve 
 
In deep learning, we often do a simple holdout validation and split the data into training set and 
validation set. 

 
When we increase the number of epochs (model complexity) in deep learning, we would expect the 
loss from training curve and validation curve to behave like: 
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1. At the beginning of training, optimization and generalization are correlated: the lower the loss on 

training data, the lower the loss on test data. While this is happening, your model is said to be 
underfit: there is still progress to be made; the network hasn’t yet modeled all relevant patterns in 
the training data.  

2. After a certain number of iterations on the training data, generalization stops improving, validation 
metrics stall and then begin to degrade: the model is starting to overfit. That is, it’s beginning to 
learn patterns that are specific to the training data but that are misleading or irrelevant when it 
comes to new data. 

 
 
 
 
 
2. Example 
 
In the following, we will first use IMDB dataset: a set of 50,000 highly polarized reviews from the 
Internet Movie Database to illustrate the overfitting problem for neural network.  
 
2.1 The IMDB dataset 
 
You’ll work with the IMDB dataset: a set of 50,000 highly polarized reviews from the Internet Movie 

Fun Time: We should use a deep learning model in (1) underfit region (2) robust fit region (3) 
overfit region. 
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Database. They’re split into 25,000 reviews for training and 25,000 reviews for testing, each set 
consisting of 50% negative and 50% positive reviews.  
 
Just like the MNIST dataset, the IMDB dataset comes packaged with Keras. It has already been 
preprocessed: the reviews (sequences of words) have been turned into sequences of integers, where 
each integer stands for a specific word in a dictionary. 
 
The following code will load the dataset (when you run it the first time, about 80 MB of data will be 
downloaded to your machine). 
 

from tensorflow.keras.datasets import imdb 
 
(train_data, train_labels), (test_data, test_labels) = 
imdb.load_data(num_words=10000) 

 
The argument num_words=10000 means that we will only keep the top 10,000 most frequently 
occurring words in the training data. Rare words will be discarded. This allows us to work with vector 
data of manageable size. 
 
The variables train_data and test_data are lists of reviews, each review being a list of word 
indices (encoding a sequence of words). train_labels and test_labels are lists of 0s and 1s, 
where 0 stands for "negative" and 1 stands for "positive": 
 
For example, if we type 
 

train_data[0] 

 
We see a list of word indices encoding a sequence of words for the first review: 
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… 
 
If we type  
 

train_labels[0] 

 
We see the first review results: 

 

 
 
 
 
You can quickly decode one of these reviews back to English words, for example, for the first 
review: 
 

# word_index is a dictionary mapping words to an integer index 
word_index = imdb.get_word_index() 
# We reverse it, mapping integer indices to words 
reverse_word_index = dict([(value, key) for (key, value) in 
word_index.items()]) 
# We decode the review; note that our indices were offset by 3 
# because 0, 1 and 2 are reserved indices for "padding",  
# "start of sequence", and "unknown". 
decoded_review = ' '.join([reverse_word_index.get(i - 3, '?') for i in 
train_data[0]]) 
 
decoded_review 

 

Fun Time: Is the first review positive or negative? (1) positive (2) negative. 



Introduction to Machine Learning and Deep Learning 
2021/12/01 

 5 

 
 
2.2 Preparing the data 
 
You can’t feed lists of integers into a neural network. You have to turn your lists into tensors. One way 
to do it is through on-hot encoding. One-hot encode your lists to turn them into vectors of 0s and 1s. 
This would mean, for instance, turning the sequence [3, 5] into a 10,000-dimensional vector that would 
be all 0s except for indices 3 and 5, which would be 1s. Then you could use as the first layer in your 
network a Dense layer, capable of handling floating-point vector data. 
 
Let's vectorize our data, which we will do manually for maximum clarity: 
 

import numpy as np 
 
def vectorize_sequences(sequences, dimension=10000): 
    # Create an all-zero matrix of shape (len(sequences), dimension) 
    results = np.zeros((len(sequences), dimension)) 
    for i, sequence in enumerate(sequences): 
        results[i, sequence] = 1.   

# set specific indices of results[i] to 1s 
    return results 
 
# Our vectorized training data 
x_train = vectorize_sequences(train_data) 
# Our vectorized test data 
x_test = vectorize_sequences(test_data) 

 
Here’s what the first sample look like now: 
 

x_train[0] 

 

 
 
You should also vectorize your labels, which is straightforward: 
 

# Our vectorized labels 
y_train = np.asarray(train_labels).astype('float32') 
y_test = np.asarray(test_labels).astype('float32') 

 
Now the data is ready to be fed into a neural network. 
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2.3 Building your network 
 
For this example, the input data is vectors, and the labels are scalars (1s and 0s): this is the easiest 
setup you’ll ever encounter. A type of network that performs well on such a problem is a simple stack 
of fully connected (Dense) hidden layers with RELU activations: Dense(16, 

activation='relu'). 
 
For this example, we will make the following architecture choice: 
1. Two intermediate layers with 16 hidden units each 
2. A third layer that will output the scalar prediction regarding the sentiment of the current review 
 
Figure below shows what the network looks like.  
 

 
 
And here’s the Keras implementation, similar to the MNIST example you saw previously. 
 

from tensorflow.keras import models 
from tensorflow.keras import layers 
 
model = models.Sequential() 
model.add(layers.Dense(16, activation='relu', input_shape=(10000,))) 
model.add(layers.Dense(16, activation='relu')) 
model.add(layers.Dense(1, activation='sigmoid')) 

 
Q: How many training parameters for this network model? 
A: 
(10000 + 1) ∗ 16 + (16 + 1) ∗ 16 + (16 + 1) ∗ 1 = 160305  
 
Finally, you need to choose a loss function and an optimizer. Because you’re facing a binary 
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classification problem and the output of your network is a probability (you end your network with a 
single-unit layer with a sigmoid activation), it’s best to use the binary_crossentropy loss. It isn’t 
the only viable choice: you could use, for instance, mean_squared_error. But crossentropy is 
usually the best choice when you’re dealing with models that output probabilities.  
 
Here’s the step where you configure the model with the rmsprop optimizer and the 
binary_crossentropy loss function. Note that you’ll also monitor accuracy during training. 
 

model.compile(optimizer='rmsprop', 
              loss='binary_crossentropy', 
              metrics=['accuracy']) 

 
2.4 Validating your approach 
 
In order to monitor during training the accuracy of the model on data it has never seen before, you’ll 
create a validation set by setting apart 10,000 samples from the original training data. 
 

x_val = x_train[:10000] 
partial_x_train = x_train[10000:] 
 
y_val = y_train[:10000] 
partial_y_train = y_train[10000:] 

 
We will now train our model for 20 epochs (20 iterations over all samples in the partial_x_train 
and partial_y_train tensors), in mini-batches of 512 samples. At this same time we will monitor 
loss and accuracy on the 10,000 samples that we set apart. This is done by passing the validation data 
as the validation_data argument: 
 

history = model.fit(partial_x_train, 
                    partial_y_train, 
                    epochs=20, 
                    batch_size=512, 
                    validation_data=(x_val, y_val)) 

 

 

… 
Note that the call to model.fit() returns a History object. This object has a member history, 
which is a dictionary containing data about everything that happened during training. Let’s look at it: 
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history_dict = history.history 
history_dict.keys() 

 

 
 
It contains 4 entries: one per metric that was being monitored, during training and during validation. 
Let's use Matplotlib to plot the training and validation loss side by side, as well as the training and 
validation accuracy: 
 

import matplotlib.pyplot as plt 
 
acc = history.history['accuracy'] 
val_acc = history.history['val_accuracy'] 
loss = history.history['loss'] 
val_loss = history.history['val_loss'] 
 
epochs = range(1, len(acc) + 1) 
 
# "bo" is for "blue dot" 
plt.plot(epochs, loss, 'bo', label='Training loss') 
# b is for "solid blue line" 
plt.plot(epochs, val_loss, 'b', label='Validation loss') 
plt.title('Training and validation loss') 
plt.xlabel('Epochs') 
plt.ylabel('Loss') 
plt.legend() 
 
plt.show() 

 
plt.clf()   # clear figure 
acc_values = history_dict['accuracy'] 
val_acc_values = history_dict['val_accuracy'] 
 
plt.plot(epochs, acc, 'bo', label='Training acc') 
plt.plot(epochs, val_acc, 'b', label='Validation acc') 
plt.title('Training and validation accuracy') 
plt.xlabel('Epochs') 
plt.ylabel('Accuracy') 
plt.legend() 
 
plt.show() 
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Q: what have you observed from these plots? 
A: 
The training loss decreases with every epoch, and the training accuracy increases with every epoch. 
That’s what you would expect when running gradient-descent optimization—the quantity you’re trying 
to minimize should be less with every iteration. But that isn’t the case for the validation loss and 
accuracy: they seem to peak at the fourth epoch. This is an example of what we warned against earlier: 
a model that performs better on the training data isn’t necessarily a model that will do better on data it 
has never seen before. In precise terms, what you’re seeing is overfitting: after the second epoch, 
you’re overoptimizing on the training data, and you end up learning representations that are specific 
to the training data and don’t generalize to data outside of the training set. 
 
You can download the above code Keras_IMDB.ipynb from course website. 
 
3. Learning Curve 
 
We close the discussion with learning curve. One important aspect of model complexity is that the 
optimal model will generally depend on the size of your training data.  
 
It is often useful to explore the behavior of the model as a function of the number of training points, 
which we can do by using increasingly larger subsets of the data to fit our model. A plot of the 
training/validation score with respect to the size of the training set is known as a learning curve. 
 
We illustrate the learning curves for a simple learning model and a complex one: 
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Fun Time: For the simple model, what should you do if you would like to improve the 
performance of your deep learning model? (1) increase model complexity (2) label more training 

data 

Fun Time: For the complex model, what should you do if you would like to improve the 
performance of your deep learning model? (1) increase model complexity (2) label more training 

data 


