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Neural Networks with Keras 
 
1. TensorFlow and Keras 
 
TensorFlow (tensorflow.org) is a Python-based, free, open-source machine learning platform, 
developed primarily by Google. Keras is a deep-learning API for Python, built on top of TensorFlow, 
that provides a convenient way to define and train any kind of deep-learning model. Through 
TensorFlow, Keras can run on top different types of hardware (see figure below) — GPU, TPU, or 
plain CPU — and can be seamlessly scaled to thousands of machines. 

 

Since 2019, Keras is now a part of TensorFlow. Installation of TensorFlow is straightforward. Just 
select tensorflow packages in your Anaconda environments and install the package accordingly.  
 
Remark: Keras is now better maintained and has better integration with TensorFlow features in 
TensorFlow 2.0. Switching between the codes using old version of Keras and new version of 
Keras is as simple as changing your import lines with tensorflow preface: 
 

from keras... import ... # for TensorFlow 1.x 

 
from tensorflow.keras... import ... # for TensorFlow 2.x 

 
A Brief History of TensorFlow and Keras 
 
Keras predates TensorFlow by eight months. It was released in March 2015, while TensorFlow 
was released in November 2015. Throughout 2016 and 2017, Keras became well known as the user-
friendly way to develop TensorFlow applications, funneling new users into the TensorFlow 
ecosystem. By late 2017, a majority of TensorFlow users were using it through Keras or in 
combination with Keras. In 2018, the TensorFlow leadership picked Keras as TensorFlow’s 
official high-level API. As a result, the Keras API is front and center in TensorFlow 2.0, released 
in September 2019 — an extensive redesign of TensorFlow and Keras that takes into account over 
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four years of user feedback and technical progress. 
 
Remarks:  
1. We refer Keras before its merge with TensorFlow the multi-backend Keras.  

 

Multi-backend Keras has been discontinued. It is recommended that Keras users who use multi-
backend Keras with the TensorFlow backend switch to tf.keras in TensorFlow 2.0. 
 
2. Although installation of TensorFlow is straightforward, it is sometimes frustrating (and non-

trivial) to run it under your hardware or TensorFlow version (2.x). In case you meet some 
mysterious difficulty, use Google Colab might be a good alternative. 

 
2. Developing with Keras: a quick overview 
 
Keras provides high-level APIs to handle deep learning concept. These are: 
 
l Layers, which are combined into a model 
l A loss function, which defines the feedback signal used for learning 
l An optimizer, which determines how learning proceeds 
l Metrics to evaluate model performance, such as accuracy 
l A training loop that performs mini-batch stochastic gradient descent 
 
The typical Keras workflow is very similar to what we have learned in Scikit-Learn. The 
workflow looks like: 
 
1. Define your training data: input tensors1 and target tensors. 
2. Define a network of layers (or model) that maps your inputs to your targets. 
3. Configure the learning process by choosing a loss function, an optimizer, and some metrics to 

monitor. 
4. Iterate on your training data by calling the fit() method of your model. 

 
1 Tensor is a multidimensional Numpy arrays. Scalar is a 0D tensor, vector is a 1D tensor and matrix is a 2D tensor. 
Tensors are a generalization to an arbitrary number of dimensions (note that in the context of tensors, a dimension is 
often called an axis). 
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5. Evaluate your model performance. 
 
We will now take a look at a concrete example of a neural network, which makes use of the Python 
library Keras to learn to classify hand-written digits, the original MNIST dataset. The problem we are 
trying to solve here is to classify grayscale images of handwritten digits (28 pixels by 28 pixels, 784 
pixels total), into their 10 categories (0 to 9). What we have seen before is a reduced-resolution version 
of MNIST dataset (8 pixels by 8 pixels, 64 pixels total). 
 
The MNIST dataset is a classic dataset in the machine learning community, which has been around for 
almost as long as the field itself and has been very intensively studied. It's a set of 60,000 training 
images, plus 10,000 test images, assembled by the National Institute of Standards and Technology (the 
NIST in MNIST) in the 1980s. 
 
The MNIST dataset comes pre-loaded in Keras, in the form of a set of four Numpy arrays: 
 

from tensorflow.keras.datasets import mnist 
 
# fix random seed for reproducibility 
seed = 42 
np.random.seed(seed)  
(train_images, train_labels), (test_images, test_labels) = 
mnist.load_data() 

 
train_images and train_labels form the training set, the data that the model will learn from. 
The model will then be tested on the test set, test_images and test_labels. Our images are 
encoded as Numpy arrays, and the labels are simply an array of digits, ranging from 0 to 9. There is a 
one-to-one correspondence between the images and the labels. 
 
Let's have a look at the dimensions of training data and testing data: 
 

train_images.shape 
train_labels.shape 
test_images.shape 
test_labels.shape 

 
Q: what are the expected outputs? 
A: 
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We can then plot first four images of the training set: 
 

plt.subplot(221) 
plt.imshow(train_images[0], cmap=plt.get_cmap('gray')) #5 
plt.subplot(222) 
plt.imshow(train_images[1], cmap=plt.get_cmap('gray')) #0 
plt.subplot(223) 
plt.imshow(train_images[2], cmap=plt.get_cmap('gray')) #4 
plt.subplot(224) 
plt.imshow(train_images[3], cmap=plt.get_cmap('gray')) #1 
# show the plot 
plt.show() 

 

 
 
We now ready to go through the Keras workflow:  
 
1. Define your training data: input tensors and target tensors. 
 
The training dataset is structured as a 3-dimensional array of instance, image width and image height. 
For a neural network model, we must reduce the images down into a vector of pixels. In this case the 
28×28 sized images will be 784 pixel input vectors. We can do this transform easily using the 
reshape() function on the NumPy array. The pixel values are integers, so we cast them to floating 
point values so that we can normalize them easily in the next step. 
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The pixel values are gray scale between 0 and 255. It is almost always a good idea to perform some 
scaling of input values when using neural network models. Because the scale is well known and well 
behaved, we can very quickly normalize the pixel values to the range 0 and 1 by dividing each value 
by the maximum of 255. 
 

train_images = train_images.reshape((60000, 28 * 28)) 
train_images = train_images.astype('float32') / 255 
 
test_images = test_images.reshape((10000, 28 * 28)) 
test_images = test_images.astype('float32') / 255 

 
Finally, the output variable is an integer from 0 to 9. This is a multiclass classification problem. As 
such, it is good practice to use a one hot encoding of the class values, transforming the vector of class 
integers into a binary matrix. We can easily do this using the utils.to_categorical() helper 
function in Keras. 
 

from tensorflow.keras.utils import to_categorical 
 
train_labels = to_categorical(train_labels) 
test_labels = to_categorical(test_labels) 

 
Remark: One hot encoding 
 
One hot encoding is a proven technique typically used in machine learning for categorical features 
(and targets). For example, a person could have features ["male", "female"], ["from Europe", 
"from US", "from Asia"], ["uses Firefox", "uses Chrome", "uses Safari", "uses 
Internet Explorer"]. Such features can be efficiently coded as integers, for instance ["male", 
"from US", "uses Internet Explorer"] could be expressed as [0, 1, 3] while ["female", 
"from Asia", "uses Chrome"] would be [1, 2, 1].  
 
Q: what is wrong with this approach? 
A: 
Such integer representation can, however, not be used directly with all Scikit-Learn and Keras 
estimators, as these expect continuous input, and would interpret the categories as being ordered, 
which is often not desired. Such a mapping would imply, for example, that "male" < "female" 
or even that "uses Internet Explorer" - "uses Safari" = "uses Chrome", which 
does not make much sense.  
 
One-hot encoding encode categorical integer features as a one-hot numeric array. It transforms each 
categorical feature with n_categories possible values into n_categories binary features, with 
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one of them 1, and all others 0. For example: 
 

vector = [0, 1, 2, 3] 
to_categorical(vector) 

 

 
Q: Recall the labels for first four samples in the MNIST dataset is [5, 0, 4, 1]. What happens when 
we apply one hot encoding for the data?  
 

train_labels = to_categorical(train_labels) 
train_labels[:4] 

 

 
A:  

array([[0., 0., 0., 0., 0., 1., 0., 0., 0., 0.], 
       [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.], 
       [0., 0., 0., 0., 1., 0., 0., 0., 0., 0.], 
       [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32) 

 
2. Define a network of layers (or model) that maps your inputs to your targets. 
3. Configure the learning process by choosing a loss function, an optimizer, and some metrics 

to monitor. 
 
We are now ready to create our simple neural network model. We will define our model in a function. 
This is handy if you want to extend the example later and try and get a better score. 
 

from tensorflow.keras import models 
from tensorflow.keras import layers 
 
def mlp_model(): 
# create mlp model 
    model = models.Sequential() 
    num_pixels = 28*28 
    num_classes = 10 
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    model.add(layers.Dense(num_pixels, activation='relu', 
input_shape=(num_pixels,))) 
    model.add(layers.Dense(num_classes, activation='softmax')) 
    # Compile model 
    model.compile(optimizer='rmsprop', 
                loss='categorical_crossentropy', 
                metrics=['accuracy']) 
    return model 

 
network = mlp_model() 

 
There are two ways to define a model in Keras: using the Sequential class (only for linear stacks 
of layers, which is the most common network architecture by far) or the functional API (for directed 
acyclic graphs of layers, which lets you build completely arbitrary architectures).  
 
The model herein is a simple neural network with one hidden layer with the same number of neurons 
as there are inputs (784). A rectifier activation function (ReLU) is used for the neurons in the hidden 
layer. A softmax activation function is used on the output layer to turn the outputs into probability-
like values and allow one class of the 10 to be selected as the model’s output prediction. Logarithmic 
loss is used as the loss function (called categorical_crossentropy in Keras). We will discuss 
these activation functions, loss and optimizer in the following. A summary of the network structure is 
provided below: 
 

 
 
 
 
 
 
 
 
 
 

Fun Time: How many training parameters for this network model? (1) 784 (2) 622496 (3) 623290 
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The learning process is configured in the compilation step, where you specify the optimizer and loss 
function(s) that the model should use, as well as the metrics you want to monitor during training.  
 
Remark: Activation functions 
 
Rectified Linear Unit (RELU or ReLU) 
 

A rectified linear unit is defined as: 
 

𝜎(𝑥) = &0				for		𝑥 < 0
𝑥				for		𝑥 ≥ 0 

 
Rectified linear unit (RELU) is a more interesting transform that activates a node only if the input is 
above a certain quantity. While the input is below zero, the output is zero, but when the input rises 
above a certain threshold, it has a linear relationship with the dependent variable 𝑥, as demonstrated 
in the figure below. 
 

 
 
RELU is a typical choice for hidden layers because they have proven to work in many different 
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situations. RELU activation functions have shown to train better in practice than sigmoid activation 
functions such as tanh. 
 
Softmax 
 
Softmax is a generalization of sigmoidal function as illustrated in the figure below. It takes a vector of 
values and produces another vector of the same dimension, where the values are probability 
distribution over mutually exclusive output classes. 
 

 
 
Softmax is the function you will often find at the output layer of a classifier. If we have a multiclass 
modeling problem yet we care only about the best score across these classes, we’d use a softmax output 
layer to get the highest score of all the classes. 
 
Remark: loss function 
 
The categorical_crossentropy belongs to the cross entropy loss function, a logarithmic loss 
function that’s used as a feedback signal for learning the weight tensors, and which the training phase 
will attempt to minimize. For binary classification, this loss function of a real-valued probability 
prediction 𝑦/ ∈ (0, 1) on a data sample with binary label 𝑦 ∈ (0, 1) is defined as: 
 

𝐿𝑜𝑠𝑠(𝑦, 𝑦/) = −𝑦ln(𝑦/) − (1 − 𝑦)ln(1 − 𝑦/)  
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The cross entropy loss function has foundations in information theory and measures the amount of 
disagreement between 𝑦 and 𝑦/. 
 
Note that it isn’t always possible to directly optimize for the metric that measures success on a problem. 
Sometimes there is no easy way to turn a metric into a loss function. 
 
For instance, the widely used classification metric ROC AUC can’t be directly optimized. Hence, in 
classification tasks, it’s common to optimize for a proxy metric of ROC AUC, such as crossentropy. 
In general, you can hope that the lower the crossentropy gets, the higher the ROC AUC will be. 
 
Table below can help you choose a last-layer activation and a loss function for a few common problem 
types. 
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Remark: optimizer 
 
The reduction of the loss happens via gradient descent. A lot of variations to gradient descent have 
been used over the years. SGD (Stochastic Gradient Descent), RMSprop and Adam are three popular 
optimizers. The gist of RMSprop is to maintain a moving (discounted) average of the square of 
gradients and divide the gradient by the root of this average. Adam optimization is a stochastic gradient 
descent method that is based on adaptive estimation of first-order and second-order moments. Adam 
is computationally efficient, has little memory requirement, invariant to diagonal rescaling of gradients, 
and is well suited for problems that are large in terms of data/parameters". 
 
The exact rules (for example, learning rate) governing a specific use of gradient descent are defined 
by the rmsprop optimizer passed as the first argument. 
 
4. Iterate on your training data by calling the fit() method of your model. 
5. Evaluate your model performance. 
 
We can now fit and evaluate the model. The model is fit over 5 epochs with updates every 128 
images. The test data is used as the validation dataset, allowing you to see the skill of the model as it 
trains. Finally, the test dataset is used to evaluate the model and a classification score is printed. 
 

network.fit(train_images, train_labels, epochs=5, batch_size=128) 

 

 
 

# Final evaluation of the model 
scores = network.evaluate(test_images, test_labels) 
print("MLP score: %.2f%%" % (scores[1]*100)) 

 

 
 
When you call fit: the network will start to iterate on the training data in mini-batches of 128 samples, 
5 times over (each iteration over all the training data is called an epoch). At each iteration, the 
network will compute the gradients of the weights with regard to the loss on the batch, and update the 
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weights accordingly. For each epoch, we have total 60000/128 ≈ 469 iterations. 
 
After these 5 epochs, the loss of the network will be sufficiently low that the network will be capable 
of classifying handwritten digits with high accuracy. 
 
We then use evaluate to evaluate the performance of the model on the test data. If not specified, 
the mini-batch size is 32 samples. We thus have 10000/32 ≈ 313 for this forward pass. 
 
Remark: as randomness involves in stochastic mini-batch selection, your answers might be slightly 
different from mine. 
 
You can download the above code Keras_MNIST.ipynb from course website. 
 
 


