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Neural Networks: Backpropagation1 
 
For a single perceptron, computing the partial derivatives was trivial. For a multilevel network with 
multiple neurons per layer, it can be hairy. This is where backprop comes to the rescue. It is a 
simple and efficient way to compute partial derivatives with respect to weights in a neural 
network.  
 
Similar to perceptron, the gradient descent method is used for getting to a local minimum of a smooth 
training error surface.  
 

 
 
The gradient descent method is a first-order iterative optimization algorithm for finding the 
minimum of a function. To find a local minimum of a function using gradient descent, one takes steps 
proportional to the negative of the gradient. We initialize the weights to 𝐰(0) and for 𝑡 = 1, 2, … 
update the weights by taking a step in the negative gradient direction, 
 

𝐰(𝑡 + 1) = 𝐰(𝑡) − 𝜂 ∙ 𝛁𝐸1𝐰(𝑡)2 

= 𝐰(𝑡) − 𝜂 ∙
𝜕𝐸
𝜕𝐰 

 
where 0 < 𝜂 < 1 is a constant that defines the learning rate. We call this (batch) gradient decent2. To 
implement gradient descent, we need the gradient. 
 
Let us consider the sigmoidal multi-layer neural network with 𝜃(𝑥) = tanh	(𝑥) . Since ℎ(𝐱)  is 
smooth, we can apply gradient descent to the resulting error function. To do so, we need the gradient 
𝛁𝐸(𝐰). Recall that the weight vector 𝐰 contains all the weight matrices 𝐖("),𝐖($), … ,𝐖(%), and 
we need the derivatives with respect to all these weights. For the weights 𝐖(&) for 𝑙 = 1, 2, … , 𝐿: 

 
1 Major contents are adapted from dynamic e-chapters of Abu-Mostafa, Y S, Magdon-Ismail, M., Lin, H-T (2012) Learning 
from Data, AMLbook.com. 
2 In batch gradient decent, the gradient is computed for the error on the whole data set before a weight update is done.  
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𝐖(&)(𝑡 + 1) = 𝐖(&)(𝑡) − 𝜂 ∙ 𝛁𝐸1𝐖(&)2 

= 𝐖(&)(𝑡) − 𝜂 ∙
𝜕𝐸
𝜕𝐖(&) 

 
The normalized total error is the sum of the point-wise errors over the N data points 
(𝐱", 	𝑦"), (𝐱$, 	𝑦$),⋯ , (𝐱' , 	𝑦') normalized by N: 
 

𝐸(𝐰) =
1
𝑁De(

'

()"

 

 
where a pointwise error e( = e(ℎ(𝐱(), 𝑦(). For the squared error e = (ℎ(𝐱) − 𝑦)$. To compute the 
gradient of 𝐸, we need its derivative with respective to each weight matrix: 
 

𝜕𝐸
𝜕𝐖(&) =

1
𝑁D

𝜕e(
𝜕𝐖(&)

'

()"

 

 
Remarks:  
1. The basic building block in the above equation is the partial derivative of error on a data point e 

with respect to the 𝐖(&) . We now derive an elegant algorithm know as backpropagation to 
compute these quantities efficiently. 

2. We describe backpropagation to get the partial derivative of the squared error e, but the algorithm 
is general enough to get the partial derivatives of any error function e( with respect to the weights. 

 
Backpropagation is based on several applications of the chain rule to write partial derivatives in layer 
𝑙 using partial derivatives in layer (𝑙 + 1). To describe the algorithm, we define the sensitivity vector 
for layer 𝑙, which is the sensitivity (gradient) of the error e with respect to the input signal 𝐬(&) that 
goes into layer 𝑙. We denote the sensitivity by 𝛅(&), 
 

𝛅(&) =
𝜕e
𝜕𝐬(&)

 

 
The sensitivity quantifies how the error e changes with 𝐬(&). Using the sensitivity, we can write the 
partial derivatives with respect to the weights as: 
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(1) 
𝜕e

𝜕𝐖(&) = 𝐱(&*")1𝛅(&)2
+

 

 
1. We will derive the equation later but for now let’s examine it closely. The partial derivatives on the 

left form a weight matrix with dimensions (𝑑(&*") + 1) × 𝑑(&) and the ‘outer product’ of the two 
vectors on the right give exactly such a matrix.  

2. The partial derivatives ,-
,𝐖(") = 𝐱(&*")1𝛅(&)2

+
 have contributions from two components. (i) 𝐱(&*"): 

the output vector of the layer from which the weights originate; the larger the output, the more 
sensitive e is to the weights in the layer. (ii) 𝛅(&): the sensitivity vector of the layer into which the 
weights go; the larger the sensitivity vector, the more sensitive e is to the weights in that layer. 

 

 
 
The outputs 𝐱(&) for every layer 𝑙 ≥ 0 can be computed by a forward propagation. So to get the 
partial derivatives, it suffices to obtain the sensitivity vectors 𝛅(&) for every layer 𝑙 ≥ 1 (remember 
that there is no input signal 𝐬(/)).  
 
It turns out that the sensitivity vectors can be obtained by running a slightly modified version of 
the neural network backwards, and hence the name backpropagation. In forward propagation, 
each layer outputs the vector 𝐱(&) and in backpropagation, each layer outputs (backwards) the vector 
𝛅(&). In forward propagation, we compute 𝐱(&) from 𝐱(&*") and in backpropagation, we compute 𝛅(&) 
from 𝛅(&0"). The basic idea is illustrated in the following figure: 
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As you can see in the figure, the neural network is slightly modified only in that we have changed the 
activation function for the nodes. In forward propagation, the activation was sigmoid 𝜃(∙) . In 
backpropagation, the activation is multiplication by 𝜃′(𝐬(&)), where 𝐬(&) is the input to the node. So 
the activation function is now different for each node, and it depends on the input to the node, which 
depends on 𝐱. This input was computed already in the forward propagation.  
 
Example: For the hyperbolic tangent tanh(∙) activation function, the derivative of tanh(𝑥) = 1 −
tanh$(𝑥) 
 

 

Thus, tanh ′1𝐬(&)2 = 1 − tanh$1𝐬(&)2 = 1 − 𝐱(&)⊗𝐱(&) , where ⊗ denotes component-wise 
multiplication. 
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In the figure, layer (𝑙 + 1) outputs (backwards) the sensitivity vector 𝛅(&0"), which gets multiplied 
by the weights 𝐖(&0"), summed and passed into the node in layer 𝑙 multiply by 𝜃11𝐬(&)2 to get 𝛅(&). 
Using component-wise multiplication ⊗,	a	shorthand notation for this backpropagation step is: 
 

(2) 𝛅(&) = 𝜃11𝐬(&)2⊗ L𝐖(&0")𝛅(&0")M
"
2(")

 

 

where the vector L𝐖(&0")𝛅(&0")M
"
2(")

 contains components of 1, 2, … , 𝑑(&) of the vector 𝐖(&0")𝛅(&0") 

(excluding the bias component which has index 0).  
 
Remark: We will derive the equation later but for now let’s examine it closely. This formula 𝛅(&) =

𝜃11𝐬(&)2 ⊗ L𝐖(&0")𝛅(&0")M
"
2(")

 is not surprising. The sensitivity 𝛅(&)  of e to inputs of layer 𝑙  is 

proportional to: 
(i) 𝜃11𝐬(&)2: the slope of the activation function in layer 𝑙 (bigger slope means a small change in 

𝐬(&) will have a larger effect on 𝐱(&)),  
(ii) 𝐖(&0"): the size of the weights going out of the layer (bigger weights mean a small change in 

𝐬(&) will have more impact on 𝐬(&0")) and  
(iii) 𝛅(&0"): the sensitivity in the next layer (a change in layer 𝑙 affects the inputs to layer 𝑙 + 1, so 

if e is more sensitive to layer 𝑙 + 1, then it will also be more sensitive to layer 𝑙). 
 
We now observe an important fact: if we know 𝛅(&0"), then we can get 𝛅(&). We thus use 𝛅(%) to seed 

the backward process. We can get 𝛅(%)  explicitly because e = 1𝐱(%) − 𝑦2
$
= 1𝜃1𝐬(%)2 − 𝑦2

$
. 

Therefore,  
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𝛅(%) =
𝜕e
𝜕𝐬(%)

=
𝜕

𝜕𝐬(%)
1𝐱(%) − 𝑦2

$
= 21𝐱(%) − 𝑦2

𝜕𝐱(%)

𝜕𝐬(%)
= 21𝐱(%) − 𝑦2𝜃′1𝐬(%)2 

 
With 𝛅(%), we can compute all the sensitivities: 
 

 
 
Remark: since there is only one output node, 𝐬(%) is a scalar, and so too is 𝛅(%). 
 
The algorithm box below summarizes backpropagation 
 

 

 
Remark: In step 3, we assumed tanh-hidden node activation. If the hidden unit activation functions 
are not tanh(∙), then the derivative in step 3 should be updated accordingly. 
 
Example: Let us consider a very simple network with a single data point where the input 𝑥 = 2 and 
output 𝑦 = 1. 
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There is a single input, and the weight matrices are: 
 

𝐖(") = N0.1 0.2
0.3 0.4R, 𝐖

($) = S
0.2
1
−3
T, 𝐖(3) = N12R 

 
Forward propagation: 
 
𝐱(/) 𝐬(") 𝐱(") 𝐬($) 𝐱($) 𝐬(3) 𝐱(3) 

N12R N0.1 0.2
0.3 0.4R

4
N12R = N0.71 R 

V
1
0.6
0.76

X [−1.48] N 1
−0.90R 

[−0.8] −0.66 

 

We show above how 𝐬(") = 1𝐖(")2
+
𝐱(/) is computed. 

 
Backpropagation: 
 
We start from the output layer: 
	

𝛅(%) =
𝜕e
𝜕𝐬(%)

=
𝜕

𝜕𝐬(%)
1𝐱(%) − 𝑦2

$
= 21𝐱(%) − 𝑦2

𝜕𝐱(%)

𝜕𝐬(%)
= 21𝐱(%) − 𝑦2𝜃′1𝐬(%)2	

	
𝛅(3) = [2 ∙ (−0.66 − 1) ∙ (1 − (−0.66)^2)] = [−1.855] 

 
And recall 
 

𝛅(&) = 𝜃11𝐬(&)2 ⊗ L𝐖(&0")𝛅(&0")M
"
2(")

 

y
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𝛅(3) 𝛅($) 𝛅(") 

[−1.855] [(1 − 0.9$) ∙ 2 ∙ (−1.855)] = [−0.69] N−0.440.88 R 

 
We have explicitly shown how 𝛅($) is obtained from 𝛅(3).  
 
It is now simple matter to combine the output vectors 𝐱(&) with sensitivity vector 𝛅(&) to obtain the 
partial derivatives that are needed for the gradient: 
 

𝜕e
𝜕𝐖(") = 𝐱(/)1𝛅(")2

4
= N−0.44 0.88

−0.88 1.75R 

𝜕e
𝜕𝐖($) = 𝐱(")1𝛅($)2

4
= S

−0.69
−0.42
−0.53

T 

𝜕e
𝜕𝐖(3) = 𝐱($)1𝛅(3)2

4
= N−1.851.67 R 

 
We can continue the exercise and work out all the N data points (𝐱", 	𝑦"), (𝐱$, 	𝑦$),⋯ , (𝐱' , 	𝑦'). For 
the batch gradient descent method, we sum up all the pointwise partial derivatives with respect to the 
weights: 
 

𝜕𝐸
𝜕𝐖(&) =

1
𝑁D

𝜕e(
𝜕𝐖(&)

'

()"

 

 
And update the weights for each layer: 
 

𝐖(&)(𝑡 + 1) = 𝐖(&)(𝑡) − 𝜂 ∙
𝜕𝐸
𝜕𝐖(&) 

 
Remarks: Mini-Batch Gradient Descent 
 
1. Recall the above updating scheme is batch gradient decent (or true gradient decent, full-batch 

gradient decent) which means an average gradient is computed for the error on the whole data set 
before a weight update is done. The opposite is stochastic gradient descent (SGD or online gradient 
descent) in which we compute the gradient for a single training example and updating the weights 
immediately.  

2. There is a clear trade-off here. Looping through the entire dataset gives us a more accurate estimate 
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of the gradient, but it requires many more computations before we update any weights. It turns out 
that a good happy medium is to use a small set of training examples known as a mini-batch. This 
enables more frequent weight updates (less computation per update) than true gradient descent 
while still getting a more accurate estimate of the gradient than when using just a single example. 
Further, modern hardware implementations, and in particular graphics processing units (GPUs), 
do a good job of computing a full mini-batch in parallel, so it does not take more time than 
computing just a single example. 

3. The terminology is confusing here. The true gradient descent method uses batches (the entire 
training dataset) and is also known as batch gradient descent. At the same time, there is the hybrid 
between batch and stochastic gradient descent that uses mini-batches, but the size of a mini-batch 
is often referred to as batch size. Finally, SGD technically refers only to the case where a single 
training example is used (mini-batch size = 1) to estimate the gradient, but the hybrid approach 
with mini-batches is often also referred to as SGD. thus, it is not uncommon to read statements 
such as “stochastic gradient descent with a mini-batch size of 64.”  

4. The mini-batch size is yet another parameter that can be tuned, and the current practice suggests 
that anything close to the range of 32 to 256 makes sense to try. Finally, SGD (mini-batch size of 
1, to be clear) is sometimes referred to as online learning because it can be used in an online setting 

5. Now we are also in position to introduce an important terminology. An epoch is one complete 
forward and backward pass over the whole training set. If we divide the training set of the size 
10000 in 10 mini-batches, then one forward and one backward pass over a batch is called one 
iteration, and ten iterations (the size of the mini-batch) is one epoch.  

 
Derivations of Equations (1) and (2) 
 
Let us derive (1) and (2), which are core equations of backpropagation. There’s nothing to it but 
repeated application of the chain rule. Let us start from (1): 
 

(1) 
𝜕e

𝜕𝐖(&) = 𝐱(&*")1𝛅(&)2
+

 

 

To begin, let’s take a closer look at the partial derivative, ,-
,𝐖("). The situation is illustrated in the figure 

below: 
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We can identify the following chain of dependencies by which 𝐖(&) influences the output 𝐱(%), and 
hence the error e. 

 
 

 

 

To derive (1), we drill down to a single weight and use the chain rule. For a single weight 𝑤56
(&), a 

change in 𝑤56
(&) only affect 𝑠6

(&) and so by the chain rule: 

 

𝜕e
𝜕𝑤56

(&) =
𝜕𝑠6

(&)

𝜕𝑤56
(&) ∙

𝜕e
𝜕𝑠6

(&) = 𝑥5
(&*") ∙ 𝛿6

(&) 

 
The component form of (1). We can derive (2) in a similar fashion and it is left as a self-exercise. 
 


