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Nonlinear Regression: Feature Transformation and Basis Functions 
 
One trick we can use to adapt linear regression for nonlinear data is to transform the features 
according to some functions. To apply such transformation systematically, we will often use some 
basis functions for 𝜙(𝑥). For example, a polynomial regression: 
 
(1) 𝜙(𝑥) = 𝛼!𝑥 + 𝛼"𝑥" +⋯+ 𝛼#𝑥# = ∑ 𝛼$𝑥$#

$%!  
 
(2)  𝑦 ≈ 𝑤& +𝑤!𝜙(𝑥) ≈ 𝑤& +𝑤!(∑ 𝛼$𝑥$#

$%! ) 
 
Remark: again, 𝑦 ≈ 𝑤& +𝑤!𝜙(𝑥) remains linear with respect to 𝑤!. 
 
In addition to polynomial basis functions, another popular choice of basis functions is Gaussian basis 
functions (or radial basis functions, RBF): 
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(4)  𝑦 ≈ 𝑤& +𝑤!𝜙(𝑥) ≈ 𝑤& +𝑤!(∑ 𝛼$𝑒
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where the 𝜇$ are the locations of the basis functions in input space and the parameter 𝑠 governs their 
spatial “coverage” in input space. 
 
We will briefly introduce the usage and Python implementation of these two frequently used basis 
functions. 
 
Polynomial basis functions 
 
This polynomial projection is useful enough that it is built into Scikit-Learn, using the 
PolynomialFeatures transformer: 
 

import numpy as np 
from sklearn.preprocessing import PolynomialFeatures 
x = np.array([2, 3, 4]) 
poly = PolynomialFeatures(3, include_bias=False) 
poly.fit_transform(x[:, np.newaxis]) 
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Notice that the np.newaxis object is used to reshape a one-dimensional array into a one-dimensional 
column vector as we have explained and the parameter include_bias:boolean is True (default), 
then the transformation will include a bias column, the feature in which all polynomial powers are zero 
(i.e. a column of ones - acts as an intercept term in a linear model). 
 

import numpy as np 
from sklearn.preprocessing import PolynomialFeatures 
x = np.array([2, 3, 4]) 
poly = PolynomialFeatures(3) 
poly.fit_transform(x[:, np.newaxis]) 

 

 

 
We see here that the transformer has converted our one-dimensional array into a three-dimensional 
array by taking the polynomial basis of each value. This new, higher dimensional data 
representation can then be plugged into a linear regression. 
 
The cleanest way to accomplish this in Python is to use a pipeline. Let’s make a 7th-degree polynomial 
model in this way: 
 

from sklearn.pipeline import make_pipeline 
poly_model = make_pipeline(PolynomialFeatures(7), LinearRegression()) 

 
With this transform in place, we can use the linear model to fit much more complicated relationships 
between 𝑥 and 𝑦. For example, here is a sine wave with noise 
 

import numpy as np 
from sklearn.preprocessing import PolynomialFeatures 
import matplotlib.pyplot as plt 
from sklearn.pipeline import make_pipeline 
from sklearn.linear_model import LinearRegression 
 
poly_model = make_pipeline(PolynomialFeatures(7), 
                           LinearRegression()) 
rng = np.random.RandomState(1) 
x = 10 * rng.rand(50) 
y = np.sin(x) + 0.1 * rng.randn(50) 
 
poly_model.fit(x[:, np.newaxis], y) 
xfit = np.linspace(0, 10, 1000) 
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yfit = poly_model.predict(xfit[:, np.newaxis]) 
 
plt.scatter(x, y, c='b', marker='o', s=20) 
plt.plot(xfit, yfit, c='r', lw='3') 
plt.show() 

 

 
 
Notice that np.random is random sampling in NumPy. np.random.RandomState exposes a 
number of methods for generating random numbers drawn from a variety of probability distributions. 
randn is a method that returns a sample (or samples) from the “standard normal” distribution.  
 
Our linear model, through the use of 7th-order polynomial basis functions, can provide an excellent fit 
to this non-linear data! You can download the above Python codes FT_PolyBasis.ipynb from the 
course website. 
 
Gaussian basis functions (Radial basis functions, RBF) 
 
Of course, other basis functions are possible. For example, one useful pattern is to fit a model that is 
not a sum of polynomial bases, but a sum of Gaussian basis (or radial basis). The results are: 
 



Introduction to Machine Learning and Deep Learning 
2021/11/10 

 4 

 
The shaded regions in the plot are the scaled basis functions, and when added together they reproduce 
the smooth curve through the data.  
 
These Gaussian basis functions are not built into Scikit-Learn, but we can write a custom 
transformer that will create them (Scikit-Learn transformers are implemented as Python classes; 
reading Scikit-Learn’s source is a good way to see how they can be created): 
 

import numpy as np 
import matplotlib.pyplot as plt 
from sklearn.base import BaseEstimator, TransformerMixin 
from sklearn.pipeline import make_pipeline 
from sklearn.linear_model import LinearRegression 
 
class GaussianFeatures(BaseEstimator, TransformerMixin): 
    """Uniformly spaced Gaussian features for one-dimensional input""" 
     
    def __init__(self, N, width_factor=2.0): 
        self.N = N 
        self.width_factor = width_factor 
     
    @staticmethod 
    def _gauss_basis(x, y, width, axis=None): 
        arg = (x - y) / width 
        return np.exp(-0.5 * np.sum(arg ** 2, axis)) 
         
    def fit(self, X, y=None): 
        # create N centers spread along the data range 
        self.centers_ = np.linspace(X.min(), X.max(), self.N) 
        self.width_ = self.width_factor * (self.centers_[1] - 
self.centers_[0]) 
        return self 
         
    def transform(self, X): 
        return self._gauss_basis(X[:, :, np.newaxis], self.centers_, 
                                 self.width_, axis=1) 
     
gauss_model = make_pipeline(GaussianFeatures(20), 
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                            LinearRegression()) 
rng = np.random.RandomState(1) 
x = 10 * rng.rand(50) 
y = np.sin(x) + 0.1 * rng.randn(50) 
gauss_model.fit(x[:, np.newaxis], y) 
xfit = np.linspace(0, 10, 1000) 
yfit = gauss_model.predict(xfit[:, np.newaxis]) 
 
plt.scatter(x, y) 
plt.plot(xfit, yfit) 
plt.xlim(0, 10) 
plt.show() 

 

 

 
You can download the above Python codes FT_GaussianBasis.ipynb from the course website.  
 
Remark: If you have some sort of intuition (domain knowledge, physics etc.) into the generating 
process of your data that makes you think one basis or another might be appropriate, you should use 
it.  
 
 


