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Nonlinear Regression: Regularization 
 
The kernel method allows us to easily extend linear models into nonlinear models. Nonlinear models 
are powerful but tend to overfit. For example, if we choose too many Gaussian basis functions, we 
end up with results that don’t look so good: 
 

rng = np.random.RandomState(1) 
x = 10 * rng.rand(50) 
y = np.sin(x) + 0.1 * rng.randn(50) 
 
model = make_pipeline(GaussianFeatures(30), 
                      LinearRegression()) 
model.fit(x[:, np.newaxis], y) 
 
plt.scatter(x, y, c='b', marker='o', s=20) 
xfit = np.linspace(0, 10, 1000) 
plt.plot(xfit, model.predict(xfit[:, np.newaxis]), c='r', lw='2') 
 
plt.xlim(0, 10) 
plt.ylim(-1.5, 1.5); 
plt.show() 

 

 
 
Q: what do you observe? 
A: 
With the data projected to the 30 Gaussian basis, the model has far too much flexibility.  
 
The model goes to extreme values between locations where it is constrained by data.  
 
We can see the reason for this if we plot the coefficients of the Gaussian bases 𝛼! with respect to their 
locations 𝜇! (x-axis): 



Introduction to Machine Learning and Deep Learning 
2021/11/10 

 2 

 

𝑦 ≈ 𝑤" +𝑤#𝜙(𝑥) ≈ 𝑤" +𝑤#(+𝛼!𝑒
$%$&!'("

)

!*#

) 

 
def basis_plot(model, title=None): 
    fig, ax = plt.subplots(2, sharex=True) 
    model.fit(x[:, np.newaxis], y) 
    ax[0].scatter(x, y) 
    ax[0].plot(xfit, model.predict(xfit[:, np.newaxis])) 
    ax[0].set(xlabel='x', ylabel='y', ylim=(-1.5, 1.5)) 
     
    if title: 
        ax[0].set_title(title) 
 
    ax[1].plot(model.steps[0][1].centers_, 
               model.steps[1][1].coef_) 
    ax[1].set(xlabel='basis location', 
              ylabel='coefficient', 
              xlim=(0, 10)) 
    plt.show() 
     
model = make_pipeline(GaussianFeatures(30), LinearRegression()) 
basis_plot(model) 

 

 
 
The figures above show the amplitude of the basis function at each location.  
 
Q: what do you observe? 
A:  
This is typical overfitting behavior when basis functions overlap: the coefficients of adjacent basis 
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functions blow up and cancel each other out.  
 
We know that such behavior is problematic, and it would be nice if we could limit such spikes explicitly 
in the model by penalizing large values of the model parameters. Such a penalty is known as 
regularization, and the two best-known techniques are ridge regression and the lasso regression. 
 
1. Ridge Regression 
 
Theoretical Minimum 
 
The hypothesis or function for linear regression model is: 
 
ℎ(𝐱) = 𝑤" + ∑ 𝑤!𝑥!+

!*# = 𝐰,𝐱  
 
where 𝐰 is the column vector of the weights [𝑤"	𝑤#⋯𝑤+]-  for d distinct features. Consider a 
dataset (𝐱#, 	𝑦#), (𝐱', 	𝑦'),⋯ , (𝐱., 	𝑦.) and recall that the least squares fitting procedure estimates 
𝑤", 𝑤#, ⋯ , 𝑤+ using the dataset that minimizes: 
 

𝐸(𝐰) =+8𝑦! − ℎ(𝐱):
'

.

!*#

 

 
Ridge regression is very similar to least squares, except that the coefficients are estimated by 
minimizing a slightly different quantity. In particular, the ridge regression coefficient estimates are the 
values that minimize: 
 

𝐸/01(𝐰) = 𝐸(𝐰) + 𝛼𝐰,𝐰 
 
where 𝛼 ≥ 0 is a tuning parameter, to be determined separately. 
 
Remarks:  
1. Ridge regression trades off two different criteria. As with least squares, ridge regression seeks 

coefficient estimates that fit the data well, by making the 𝐸(𝐰) small. However, the second term, 
𝛼𝐰,𝐰 called a penalty, is shrinkage small when 𝑤", 𝑤#, ⋯ , 𝑤+ are close to zero, and so it has 
the effect of shrinking penalty the estimates of 𝐰 towards zero.  

2. The tuning parameter 𝛼 serves to control the relative impact of these two terms on the regression 
coefficient estimates. When 𝛼 = 0, the penalty term has no effect, and ridge regression will 
produce the least squares estimates. However, as 𝛼 → ∞, the impact of the shrinkage penalty 
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grows, and the 𝑤", 𝑤#, ⋯ , 𝑤+ will approach zero.  
 
Python Example 
 
We can now run the overfitting case of 30 Gaussian basis with the ridge regression. The ridge 
regression is built into Scikit-Learn with the Ridge estimator.  
 

from sklearn.linear_model import Ridge 
model = make_pipeline(GaussianFeatures(30), Ridge(alpha=0.1)) 
basis_plot(model, title='Ridge Regression') 

 

 
 
The 𝛼 parameter is essentially a knob controlling the complexity of the resulting model. In the limit 
𝛼 = 0, we recover the standard linear regression result; in the limit 𝛼 → ∞, all model responses will 
be suppressed. Ridge regression can be computed very efficiently—at hardly more computational cost 
than the original linear regression model. 
 
2. Lasso Regression 
 
Theoretical Minimum 
 
Another very common type of regularization is known as lasso, and involves penalizing the sum of 
absolute values (1-norms)1 of regression coefficients: 
 

 
1 Ridge regression is known as 𝐿# normalization and lasso 𝐿$ normalization. 
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Though this is conceptually very similar to ridge regression, the results can differ surprisingly: for 
example, due to geometric reasons lasso regression preferentially sets model coefficients to exactly 
zero. 
 
We can see this behavior in duplicating the ridge regression figure, but using 𝐿# -normalized 
coefficients: 
 

from sklearn.linear_model import Lasso 
model = make_pipeline(GaussianFeatures(30), Lasso(alpha=0.001, 
max_iter=10000)) 
basis_plot(model, title='Lasso Regression') 

 

 
 
Q: what do you observe? 
A:  
With the lasso regression penalty, the majority of the coefficients are exactly zero, with the functional 
behavior being modeled by a small subset of the available basis functions.  
 
As with ridge regularization, the 𝛼  parameter tunes the strength of the penalty, and should be 
determined via, for example, cross-validation.  
 
You can download the above Python codes Regularization.ipynb from the course website. 
 
 


