
222 6.3. Reproducing Kernel Hilbert Spaces

6.3 Reproducing Kernel Hilbert Spaces

In this section, we formalize the idea outlined at the end of Section 6.1 of extending finite
dimensional feature maps to those that are functions by introducing a special type of Hil-
bert space of functions known as a reproducing kernel Hilbert space (RKHS). Although
the theory extends naturally to Hilbert spaces of complex-valued functions, we restrict
attention to Hilbert spaces of real-valued functions here.

To evaluate the loss of a learner g in some class of functions G, we do not need to expli-
citly construct g — rather, it is only required that we can evaluate g at all the feature vectors
x1, . . . , xn of the training set. A defining property of an RKHS is that function evaluation
at a point x can be performed by simply taking the inner product of g with some feature
function κx associated with x. We will see that this property becomes particularly useful
in light of the representer theorem (see Section 6.5), which states that the learner g itself! 230
can be represented as a linear combination of the set of feature functions {κxi

, i = 1, . . . , n}.
Consequently, we can evaluate a learner g at the feature vectors {xi} by taking linear com-
binations of terms of the form κ(xi, x j) = 〈κxi

, κx j
〉G. Collecting these inner products into

a matrix K = [κ(xi, x j), i, j = 1, . . . , n] (the Gram matrix of the {κxi
}), we will see that the

feature vectors {xi} only enter the loss minimization problem through K.

Definition 6.1: Reproducing Kernel Hilbert Space

For a non-empty set X, a Hilbert space G of functions g : X→ R with inner product
〈·, ·〉G is called a reproducing kernel Hilbert spacereproducing

kernel Hilbert
space

(RKHS) with reproducing kernel

κ : X × X→ R if:

1. for every x ∈ X, κx := κ(x, ·) is in G,

2. κ(x, x) < ∞ for all x ∈ X,

3. for every x ∈ X and g ∈ G, g(x) = 〈g, κx〉G.

The reproducing kernel of a Hilbert space of functions, if it exists, is unique; see Exer-
cise 2. The main (third) condition in Definition 6.1 is known as the reproducing propertyreproducing

property
.

This property allows us to evaluate any function g ∈ G at a point x ∈ X by taking the inner
product of g and κx; as such, κx is called the representer of evaluation. Further, by taking
g = κx′ and applying the reproducing property, we have 〈κx′ , κx〉G = κ(x, x′), and so by sym-
metry of the inner product it follows that κ(x, x′) = κ(x′, x). As a consequence, reproducing
kernels are necessarily symmetric functions. Moreover, a reproducing kernel κ is a positive

semidefinitepositive
semidefinite

function, meaning that for every n ! 1 and every choice of α1, . . . ,αn ∈ R and
x1, . . . , xn ∈ X, it holds that

n∑

i=1

n∑

j=1

αi κ(xi, x j)α j ! 0. (6.13)

In other words, every Gram matrix K associated with κ is a positive semidefinite matrix;
that is α(Kα ! 0 for all α. The proof is addressed in Exercise 1.

The following theorem gives an alternative characterization of an RKHS. The proof
uses the Riesz representation Theorem A.17. Also note that in the theorem below we could! 390

Chapter 6. Regularization and Kernel Methods 223

have replaced the word “bounded” with “continuous”, as the two are equivalent for linear
functionals; see Theorem A.16.

Theorem 6.1: Continuous Evaluation Functionals Characterize a RKHS

An RKHS G on a set X is a Hilbert space in which every evaluation functional evaluation
functionalδx : g)→ g(x) is bounded. Conversely, a Hilbert space G of functions X → R for

which every evaluation functional is bounded is an RKHS.

Proof: Note that, since evaluation functionals δx are linear operators, showing bounded-
ness is equivalent to showing continuity. Given an RKHS with reproducing kernel κ, sup-
pose that we have a sequence gn ∈ G converging to g ∈ G, that is ‖gn − g‖G → 0. We apply
the Cauchy–Schwarz inequality (Theorem A.15) and the reproducing property of κ to find ! 389
that for every x ∈ X and any n:

|δxgn − δxg| = |gn(x) − g(x)| = |〈gn − g, κx〉G| " ‖gn − g‖G ‖κx‖G = ‖gn − g‖G
√
〈κx, κx〉G

= ‖gn − g‖G
√
κ(x, x).

Noting that
√
κ(x, x) < ∞ by definition for every x ∈ X, and that ‖gn − g‖G → 0 as n→ ∞,

we have shown continuity of δx, that is |δxgn − δxg|→ 0 as n→ ∞ for every x ∈ X.
Conversely, suppose that evaluation functionals are bounded. Then from the Riesz

representation Theorem A.17, there exists some gδx
∈ G such that δxg = 〈g, gδx

〉G for all
g ∈ G— the representer of evaluation. If we define κ(x, x′) = gδx

(x′) for all x, x′ ∈ X, then
κx := κ(x, ·) = gδx

is an element of G for every x ∈ X and 〈g, κx〉G = δxg = g(x), so that the
reproducing property in Definition 6.1 is verified. #

The fact that an RKHS has continuous evaluation functionals means that if two func-
tions g, h ∈ G are “close” with respect to ‖ · ‖G, then their evaluations g(x), h(x) are close
for every x ∈ X. Formally, convergence in ‖ · ‖G norm implies pointwise convergence for
all x ∈ X.

The following theorem shows that any finite function κ : X × X → R can serve as a
reproducing kernel as long as it is finite, symmetric, and positive semidefinite. The cor-
responding (unique!) RKHS G is the completion of the set of all functions of the form∑n

i=1 αi κxi
where αi ∈ R for all i = 1, . . . , n.

Theorem 6.2: Moore–Aronszajn

Given a non-empty set X and any finite symmetric positive semidefinite function
κ : X × X → R, there exists an RKHS G of functions g : X → R with reproducing
kernel κ. Moreover, G is unique.

Proof: (Sketch) As the proof of uniqueness is treated in Exercise 2, the objective is to
prove existence. The idea is to construct a pre-RKHS G0 from the given function κ that has
the essential structure and then to extend G0 to an RKHS G.

In particular, define G0 as the set of finite linear combinations of functions κx, x ∈ X:

G0 :=
{
g =

n∑

i=1

αi κxi

∣∣∣∣∣ x1, . . . , xn ∈ X, αi ∈ R, n ∈ N
}
.

224 6.4. Construction of Reproducing Kernels

Define on G0 the following inner product:

〈 f , g〉G0
:=

〈 n∑

i=1

αi κxi
,

m∑

j=1

β j κx′
j

〉

G0

:=
n∑

i=1

m∑

j=1

αi β j κ(xi, x
′
j).

ThenG0 is an inner product space. In fact,G0 has the essential structure we require, namely
that (i) evaluation functionals are bounded/continuous (Exercise 4) and (ii) Cauchy se-
quences in G0 that converge pointwise also converge in norm (see Exercise 5).

We then enlarge G0 to the set G of all functions g : X → R for which there exists a
Cauchy sequence in G0 converging pointwise to g and define an inner product on G as the
limit

〈 f , g〉G := lim
n→∞
〈 fn, gn〉G0

, (6.14)

where fn → f and gn → g. To show that G is an RKHS it remains to be shown that (1) this
inner product is well defined; (2) evaluation functionals remain bounded; and (3) the space
G is complete. A detailed proof is established in Exercises 6 and 7. #

6.4 Construction of Reproducing Kernels

In this section we describe various ways to construct a reproducing kernel κ : X × X →
R for some feature space X. Recall that κ needs to be a finite, symmetric, and positive
semidefinite function (that is, it satisfies (6.13)). In view of Theorem 6.2, specifying the
space X and a reproducing kernel κ : X × X → R corresponds to uniquely specifying an
RKHS.

6.4.1 Reproducing Kernels via Feature Mapping

Perhaps the most fundamental way to construct a reproducing kernel κ is via a feature
map φ : X → Rp. We define κ(x, x′) := 〈φ(x),φ(x′)〉, where 〈 , 〉 denotes the Euclidean
inner product. The function is clearly finite and symmetric. To verify that κ is positive
semidefinite, let Φ be the matrix with rows φ(x1)(, . . . ,φ(xn)(and let α = [α1, . . . ,αn](∈
Rn. Then,

n∑

i=1

n∑

j=1

αi κ(xi, x j)α j =

n∑

i=1

n∑

j=1

αi φ
((xi)φ(x j)α j = α

(ΦΦ(α = ‖Φ(α‖2 ! 0.

Example 6.4 (Linear Kernel) Taking the identity feature map φ(x) = x on X = Rp,
gives the linear kernellinear kernel

κ(x, x′) = 〈x, x′〉 = x(x′.

As can be seen from the proof of Theorem 6.2, the RKHS of functions corresponding to
the linear kernel is the space of linear functions on Rp. This space is isomorphic to Rp

itself, as discussed in the introduction (see also Exercise 12).

It is natural to wonder whether a given kernel function corresponds uniquely to a feature
map. The answer is no, as we shall see by way of example.

Chapter 6. Regularization and Kernel Methods 225

Example 6.5 (Feature Maps and Kernel Functions) Let X = R and consider feature
maps φ1 : X→ R and φ2 : X→ R2, with φ1(x) := x and φ2(x) := [x, x](/

√
2. Then

κφ1
(x, x′) = 〈φ1(x), φ1(x′)〉 = xx′,

but also
κφ2

(x, x′) = 〈φ2(x),φ2(x′)〉 = xx′.

Thus, we arrive at the same kernel function defined for the same underlying set X via two
different feature maps.

6.4.2 Kernels from Characteristic Functions

Another way to construct reproducing kernels on X = Rp makes use of the properties of
characteristic functions. In particular, we have the following result. We leave its proof as ! 441
Exercise 10.

Theorem 6.3: Reproducing Kernel from a Characteristic Function

Let X ∼ µ be an Rp-valued random vector that is symmetric about the origin (that
is, X and −X are identically distributed), and let ψ be its characteristic function:
ψ(t) = E eit(X =

∫
eit(x µ(dx) for t ∈ Rp. Then κ(x, x′) := ψ(x − x′) is a valid repro-

ducing kernel on Rp.

Example 6.6 (Gaussian Kernel) The multivariate normal distribution with mean vec-
tor 0 and covariance matrix b2 Ip is clearly symmetric around the origin. Its characteristic
function is

ψ(t) = exp

(
−

1

2
b2 ‖t‖2

)
, t ∈ Rp.

Taking b2 = 1/σ2, this gives the popular Gaussian kernel Gaussian
kernel

on Rp:

κ(x, x′) = exp

(
−

1

2

‖x − x′‖2

σ2

)
. (6.15)

The parameter σ is sometimes called the bandwidth bandwidth. Note that in the machine learning
literature, the Gaussian kernel is sometimes referred to as “the” radial basis function (rbf)

kernel radial basis

function (rbf)
kernel

.1

From the proof of Theorem 6.2, we see that the RKHS G determined by the Gaussian
kernel κ is the space of pointwise limits of functions of the form

g(x) =
n∑

i=1

αi exp

(
−

1

2

‖x − xi‖2

σ2

)
.

We can think of each point xi having a feature κxi
that is a scaled multivariate Gaussian pdf

centered at xi.

1The term radial basis function is sometimes used more generally to mean kernels of the form κ(x, x′) =
f (‖x − x′‖) for some function f : R→ R.

226 6.4. Construction of Reproducing Kernels

Example 6.7 (Sinc Kernel) The characteristic function of a Uniform[−1, 1] random
variable (which is symmetric around 0) is ψ(t) = sinc(t) := sin(t)/t, so κ(x, x′) = sinc(x−x′)
is a valid kernel.

Inspired by kernel density estimation (Section 4.4), we may be tempted to use the pdf! 131
of a random variable that is symmetric about the origin to construct a reproducing kernel.
However, doing so will not work in general, as the next example illustrates.

Example 6.8 (Uniform pdf Does not Construct a Valid Reproducing Kernel) Take
the function ψ(t) = 1

2
1{|t| " 1}, which is the pdf of X ∼ Uniform[−1, 1]. Unfortunately, the

function κ(x, x′) = ψ(x − x′) is not positive semidefinite, as can be seen for example by
constructing the matrix A = [κ(ti, t j), i, j = 1, 2, 3] for the points t1 = 0, t2 = 0.75, and
t3 = 1.5 as follows:

A =




ψ(0) ψ(−0.75) ψ(−1.5)
ψ(0.75) ψ(0) ψ(−0.75)
ψ(1.5) ψ(0.75) ψ(0)


 =




0.5 0.5 0
0.5 0.5 0.5
0 0.5 0.5


 .

The eigenvalues of A are {1/2 −
√

1/2, 1/2, 1/2 +
√

1/2} ≈ {−0.2071, 0.5, 1.2071} and so
by Theorem A.9, A is not a positive semidefinite matrix, since it has a negative eigenvalue.! 367
Consequently, κ is not a valid reproducing kernel.

One of the reasons why the Gaussian kernel (6.15) is popular is that it enjoys the uni-

versal approximation propertyuniversal
approximation
property

[88]: the space of functions spanned by the Gaussian kernel
is dense in the space of continuous functions with support Z ⊂ Rp. Naturally, this is a
desirable property especially if there is little prior knowledge about the properties of g∗.
However, note that every function g in the RKHS G associated with a Gaussian kernel κ is
infinitely differentiable. Moreover, a Gaussian RKHS does not contain non-zero constant
functions. Indeed, if A ⊂ Z is non-empty and open, then the only function of the form
g(x) = c1{x ∈ A} contained in G is the zero function (c = 0).

Consequently, if it is known that g is differentiable only to a certain order, one may
prefer the Matérn kernelMatérn kernel with parameters ν,σ > 0:

κν(x, x′) =
21−ν

Γ(ν)

(√
2ν ‖x − x′‖/σ

)ν
Kν

(√
2ν ‖x − x′‖/σ

)
, (6.16)

which gives functions that are (weakly) differentiable to order 1ν2 (but not necessarily to
order 3ν4). Here, Kν denotes the modified Bessel function of the second kind; see (4.49).
The particular form of the Matérn kernel appearing in (6.16) ensures that limν→∞ κν(x, x′) =! 163
κ(x, x′), where κ is the Gaussian kernel appearing in (6.15).

We remark that Sobolev spaces are closely related to the Matérn kernel. Up to constants
(which scale the unit ball in the space), in dimension p and for a parameter s > p/2, these
spaces can be identified with ψ(t) = 21−s

Γ(s)
‖t‖s−p/2Kp/2−s(‖t‖), which in turn can be viewed as

the characteristic function corresponding to the (radially symmetric) multivariate Student’s
t distribution with s degrees of freedom: that is, with pdf f (x) ∝ (1 + ‖x‖2)−s.! 162

Chapter 6. Regularization and Kernel Methods 227

6.4.3 Reproducing Kernels Using Orthonormal Features

We have seen in Sections 6.4.1 and 6.4.2 how to construct reproducing kernels from feature
maps and characteristic functions. Another way to construct kernels on a spaceX is to work
directly from the function class L2(X; µ); that is, the set of square-integrable2 functions
on X with respect to µ; see also Definition A.4. For simplicity, in what follows, we will ! 385
consider µ to be the Lebesgue measure, and will simply write L2(X) rather than L2(X; µ).
We will also assume that X ⊆ Rp.

Let {ξ1, ξ2, . . .} be an orthonormal basis of L2(X) and let c1, c2, . . . be a sequence of
positive numbers. As discussed in Section 6.4.1, the kernel corresponding to a feature map
φ : X→ Rp is κ(x, x′) = φ(x)(φ(x′) =

∑p

i=1 φi(x) φi(x′). Now consider a (possibly infinite)
sequence of feature functions φi = ci ξi, i = 1, 2, . . . and define

κ(x, x′) :=
∑

i!1

φi(x) φi(x′) =
∑

i!1

λi ξi(x) ξi(x′), (6.17)

where λi = c2
i , i = 1, 2, This is well-defined as long as

∑
i!1 λi < ∞, which we assume

from now on. Let H be the linear space of functions of the form f =
∑

i!1 αiξi, where∑
i!1 α

2
i /λi < ∞. As every function f ∈ L2(X) can be represented as f =

∑
i!1〈 f , ξi〉ξi, we

see thatH is a linear subspace of L2(X). OnH define the inner product

〈 f , g〉H :=
∑

i!1

〈 f , ξi〉〈g, ξi〉
λi

.

With this inner product, the squared norm of f =
∑

i!1 αi ξi is ‖ f ‖2H =
∑

i!1 α
2
i /λi < ∞.

We show that H is actually an RKHS with kernel κ by verifying the conditions of Defini-
tion 6.1. First,

κx =
∑

i!1

λi ξi(x) ξi ∈ H ,

as
∑

i λi < ∞ by assumption, and so κ is finite. Second, the reproducing property holds.
Namely, let f =

∑
i!1 αi ξi. Then,

〈κx, f 〉H =
∑

i!1

〈κx, ξi〉〈 f , ξi〉
λi

=
∑

i!1

λi ξi(x) αi

λi

=
∑

i!1

αiξi(x) = f (x).

The discussion above demonstrates that kernels can be constructed via (6.17). In fact,
(under mild conditions) any given reproducing kernel κ can be written in the form (6.17),
where this series representation enjoys desirable convergence properties. This result is
known as Mercer’s theorem, and is given below. We leave the full proof including the
precise conditions to, e.g., [40], but the main idea is that a reproducing kernel κ can be
thought of as a generalization of a positive semidefinite matrix K, and can also be writ-
ten in spectral form (see also Section A.6.5). In particular, by Theorem A.9, we can write ! 367
K = VDV(, where V is a matrix of orthonormal eigenvectors [v+] and D the diagonal
matrix of the (positive) eigenvalues [λ+]; that is,

K(i, j) =
∑

+!1

λ+ v+(i) v+(j).

2A function f : X→ R is said to be square-integrable if
∫

f 2(x) µ(dx) < ∞, where µ is a measure on X.

228 6.4. Construction of Reproducing Kernels

In (6.18) below, x, x′ play the role of i, j, and ξ+ plays the role of v+.

Theorem 6.4: Mercer

Let κ : X × X → R be a reproducing kernel for a compact set X ⊂ Rp. Then
(under mild conditions) there exists a countable sequence of non-negative numbers
{λ+} decreasing to zero and functions {ξ+} orthonormal in L2(X) such that

κ(x, x′) =
∑

+!1

λ+ ξ+(x) ξ+(x′) , for all x, x′ ∈ X, (6.18)

where (6.18) converges absolutely and uniformly on X × X.

Further, if λ+ > 0, then (λ+, ξ+) is an (eigenvalue, eigenfunction) pair for the integral
operator K : L2(X)→ L2(X) defined by [K f](x) :=

∫
X κ(x, y) f (y) dy for x ∈ X.

Theorem 6.4 holds if (i) the kernel κ is continuous on X × X, (ii) the function κ̃(x) :=
κ(x, x) defined for x ∈ X is integrable. Extensions of Theorem 6.4 to more general spaces
X and measures µ hold; see, e.g., [115] or [40].

The key importance of Theorem 6.4 lies in the fact that the series representation (6.18)
converges absolutely and uniformly onX×X. The uniform convergence is a much stronger
condition than pointwise convergence, and means for instance that properties of the se-
quence of partial sums, such as continuity and integrability, are transferred to the limit.

Example 6.9 (Mercer) Suppose X = [−1, 1] and the kernel is κ(x, x′) = 1 + xx′ which
corresponds to the RKHS G of affine functions from X → R. To find the (eigenvalue,
eigenfunction) pairs for the integral operator appearing in Theorem 6.4, we need to find
numbers {λ+} and orthonormal functions {ξ+(x)} that solve

∫ 1

−1

(1 + xx′) ξ+(x′) dx′ = λ+ ξ+(x) , for all x ∈ [−1, 1].

Consider first a constant function ξ1(x) = c. Then, for all x ∈ [−1, 1], we have that 2c = λ1c,

and the normalization condition requires that
∫ 1

−1
c2 dx = 1. Together, these give λ1 = 2 and

c = ±1/
√

2. Next, consider an affine function ξ2(x) = a + bx. Orthogonality requires that

∫ 1

−1

c(a + bx) dx = 0,

which implies a = 0 (since c ! 0). Moreover, the normalization condition then requires

∫ 1

−1

b2x2 dx = 1,

or, equivalently, 2b2/3 = 1, implying b = ±
√

3/2. Finally, the integral equation reads

∫ 1

−1

(1 + xx′) bx′ dx′ = λ2 bx ⇐⇒
2bx

3
= λ2bx,

Chapter 6. Regularization and Kernel Methods 229

implying that λ2 = 2/3. We take the positive solutions (i.e., c > 0 and b > 0), and note that

λ1 ξ1(x) ξ1(x′) + λ2 ξ2(x) ξ2(x′) = 2
1
√

2

1
√

2
+

2

3

√
3
√

2
x

√
3
√

2
x′ = 1 + xx′ = κ(x, x′),

and so we have found the decomposition appearing in (6.18). As an aside, observe that ξ1

and ξ2 are orthonormal versions of the first two Legendre polynomials. The corresponding ! 387
feature map can be explicitly identified as φ1(x) =

√
λ1 ξ1(x) = 1 and φ2(x) =

√
λ2 ξ2(x) =

x.

6.4.4 Kernels from Kernels

The following theorem lists some useful properties for constructing reproducing kernels
from existing reproducing kernels.

Theorem 6.5: Rules for Constructing Kernels from Other Kernels

1. If κ : Rp × Rp → R is a reproducing kernel and φ : X → Rp is a function, then
κ(φ(x),φ(x′)) is a reproducing kernel from X × X→ R.

2. If κ : X × X → R is a reproducing kernel and f : X → R+ is a function, then
f (x)κ(x, x′) f (x′) is also a reproducing kernel from X × X→ R.

3. If κ1 and κ2 are reproducing kernels from X×X→ R, then so is their sum κ1 + κ2.

4. If κ1 and κ2 are reproducing kernels from X × X → R, then so is their product
κ1κ2.

5. If κ1 and κ2 are reproducing kernels from X × X → R and Y × Y → R re-
spectively, then κ+((x, y), (x′, y′)) := κ1(x, x′) + κ2(y, y′) and κ×((x, y), (x′, y′)) :=
κ1(x, x′)κ2(y, y′) are reproducing kernels from (X ×Y) × (X ×Y)→ R.

Proof: For Rules 1, 2, and 3 it is easy to verify that the resulting function is finite, sym-
metric, and positive semidefinite, and so is a valid reproducing kernel by Theorem 6.2.
For example, for Rule 1 we have

∑n
i=1

∑n
j=1 αi κ(yi, y j)α j ! 0 for every choice of {αi}ni=1

and {yi}ni=1 ∈ R
p, since κ is a reproducing kernel. In particular, it holds true for yi = φ(xi),

i = 1, . . . , n. Rule 4 is easy to show for kernels κ1, κ2 that admit a representation of the form
(6.17), since

κ1(x, x′) κ2(x, x′) =



∑

i!1

φ(1)
i (x) φ(1)

i (x′)






∑

j!1

φ(2)
j (x) φ(2)

j (x′)




=
∑

i, j!1

φ(1)
i (x) φ(2)

j (x) φ(1)
i (x′) φ(2)

j (x′)

=
∑

k!1

φk(x) φk(x′) =: κ(x, x′),

showing that κ = κ1κ2 also admits a representation of the form (6.17), where the new (pos-
sibly infinite) sequence of features (φk) is identified in a one-to-one way with the sequence
(φ(1)

i φ(2)
j). We leave the proof of rule 5 as an exercise (Exercise 8). #

230 6.5. Representer Theorem

Example 6.10 (Polynomial Kernel) Consider x, x′ ∈ R2 with

κ(x, x′) = (1 + 〈x, x′〉)2,

where 〈x, x′〉 = x(x′. This is an example of a polynomial kernelpolynomial
kernel

. Combining the fact that
sums and products of kernels are again kernels (rules 3 and 4 of Theorem 6.5), we find that,
since 〈x, x′〉 and the constant function 1 are kernels, so are 1+ 〈x, x′〉 and (1+ 〈x, x′〉)2. By
writing

κ(x, x′) = (1 + x1x′1 + x2x′2)2

= 1 + 2x1x′1 + 2x2x′2 + 2x1x2x′1x′2 + (x1x′1)2 + (x2x′2)2,

we see that κ(x, x′) can be written as the inner product in R6 of the two feature vectors φ(x)
and φ(x′), where the feature map φ : R2 → R6 can be explicitly identified as

φ(x) = [1,
√

2x1,
√

2x2,
√

2x1x2, x
2
1, x

2
2](.

Thus, the RKHS determined by κ can be explicitly identified with the space of functions
x)→ φ(x)(β for some β ∈ R6.

In the above example we could explicitly identify the feature map. However, in general
a feature map need not be explicitly available. Using a particular reproducing kernel cor-
responds to using an implicit (possibly infinite dimensional!) feature map that never needs
to be explicitly computed.

6.5 Representer Theorem

Recall the setting discussed at the beginning of this chapter: we are given training data
τ = {(xi, yi)}ni=1 and a loss function that measures the fit to the data, and we wish to find
a function g that minimizes the training loss, with the addition of a regularization term,
as described in Section 6.2. To do this, we assume first that the class G of prediction
functions can be decomposed as the direct sum of an RKHSH , defined by a kernel function
κ : X × X→ R, and another linear space of real-valued functionsH0 on X; that is,

G = H ⊕H0,

meaning that any element g ∈ G can be written as g = h + h0, with h ∈ H and h0 ∈ H0.
In minimizing the training loss we wish to penalize the h term of g but not the h0 term.
Specifically, the aim is to solve the functional optimization problem

min
g∈H⊕H0

1

n

n∑

i=1

Loss(yi, g(xi)) + γ ‖g‖2H . (6.19)

Here, we use a slight abuse of notation: ‖g‖H means ‖h‖H if g = h + h0, as above. In this
way, we can viewH0 as the null space of the functional g)→ ‖g‖H . This null space may be
empty, but typically has a small dimension m; for example it could be the one-dimensional
space of constant functions, as in Example 6.2.! 217

Chapter 6. Regularization and Kernel Methods 231

Example 6.11 (Null Space) Consider again the setting of Example 6.2, for which we
have feature vectors x̃ = [1, x(](and G consists of functions of the form g : x̃)→ β0+ x(β.
Each function g can be decomposed as g = h + h0, where h : x̃)→ x(β, and h0 : x̃)→ β0.

Given g ∈ G, we have ‖g‖H = ‖β‖, and so the null spaceH0 of the functional g)→ ‖g‖H
(that is, the set of all functions g ∈ G for which ‖g‖H = 0) is the set of constant functions
here, which has dimension m = 1.

Regularization favors elements in H0 and penalizes large elements in H . As the reg-
ularization parameter γ varies between zero and infinity, solutions to (6.19) vary from
“complex” (g ∈ H ⊕H0) to “simple” (g ∈ H0).

A key reason why RKHSs are so useful is the following. By choosing H to be an
RKHS in (6.19) this functional optimization problem effectively becomes a parametric

optimization problem. The reason is that any solution to (6.19) can be represented as a
finite-dimensional linear combination of kernel functions, evaluated at the training sample.
This is known as the kernel trick kernel trick.

Theorem 6.6: Representer Theorem

The solution to the penalized optimization problem (6.19) is of the form

g(x) =
n∑

i=1

αi κ(xi, x) +
m∑

j=1

η j q j(x), (6.20)

where {q1, . . . , qm} is a basis ofH0.

Proof: Let F = Span
{
κxi
, i = 1, . . . , n

}
. Clearly, F ⊆ H . Then, the Hilbert space H can

be represented as H = F ⊕ F ⊥, where F ⊥ is the orthogonal complement of F . In other
words, F ⊥ is the class of functions

{ f ⊥ ∈ H : 〈 f ⊥, f 〉H = 0, f ∈ F } ≡ { f ⊥ : 〈 f ⊥, κxi
〉H = 0, ∀i}.

It follows, by the reproducing kernel property, that for all f ⊥ ∈ F ⊥:

f ⊥(xi) = 〈 f ⊥, κxi
〉H = 0, i = 1, . . . , n.

Now, take any g ∈ H ⊕ H0, and write it as g = f + f ⊥ + h0, with f ∈ F , f ⊥ ∈ F ⊥, and
h0 ∈ H0. By the definition of the null spaceH0, we have ‖g‖2H = ‖ f + f ⊥‖2H . Moreover, by
Pythagoras’ theorem, the latter is equal to ‖ f ‖2H + ‖ f

⊥‖2H . It follows that

1

n

n∑

i=1

Loss(yi, g(xi)) + γ‖g‖2H =
1

n

n∑

i=1

Loss(yi, f (xi) + h0(xi)) + γ
(
‖ f ‖2H + ‖ f

⊥‖2H
)

!
1

n

n∑

i=1

Loss(yi, f (xi) + h0(xi)) + γ ‖ f ‖2H .

Since we can obtain equality by taking f ⊥ = 0, this implies that the minimizer of the pen-
alized optimization problem (6.19) lies in the subspace F ⊕H0 of G = H ⊕H0, and hence
is of the form (6.20). #

232 6.5. Representer Theorem

Substituting the representation (6.20) of g into (6.19) gives the finite-dimensional op-
timization problem:

min
α∈Rn, η∈Rm

1

n

n∑

i=1

Loss(yi, (Kα +Qη)i) + γα
(Kα, (6.21)

where

• K is the n × n (Gram) matrix with entries [κ(xi, x j), i = 1, . . . , n, j = 1, . . . , n].

• Q is the n × m matrix with entries [qj(xi), i = 1, . . . , n, j = 1, . . . ,m].

In particular, for the squared-error loss we have

min
α∈Rn, η∈Rm

1

n

∥∥∥ y − (Kα +Qη)
∥∥∥2
+ γα(Kα. (6.22)

This is a convex optimization problem, and its solution is found by differentiating (6.22)
with respect to α and η and equating to zero, leading to the following system of (n + m)
linear equations: [

KK(+ n γK KQ

Q(K(Q(Q

] [
α
η

]
=

[
K(

Q(

]
y. (6.23)

As long as Q is of full column rank, the minimizing function is unique.

Example 6.12 (Ridge Regression (cont.)) We return to Example 6.2 and identify that
H is the RKHS with linear kernel function κ(x, x′) = x(x′ andC = H0 is the linear space of
constant functions. In this case,H0 is spanned by the function q1 ≡ 1. Moreover, K = XX(

and Q = 1.
If we appeal to the representer theorem directly, then the problem in (6.6) becomes, as

a result of (6.21):

min
α,η0

1

n

∥∥∥ y − η0 1 − XX(α
∥∥∥2
+ γ ‖X(α‖2.

This is a convex optimization problem, and so the solution follows by taking derivatives
and setting them to zero. This gives the equations

XX(
(
(XX(+ n γ In)α + η0 1 − y

)
= 0,

and
n η0 = 1((y − XX(α).

Note that these are equivalent to (6.8) and (6.9) (once again assuming that n ! p and X has
full rank p). Equivalently, the solution is found by solving (6.23):

[
XX(XX(+ n γXX(XX(1

1(XX(n

] [
α
η0

]
=

[
XX(

1(

]
y.

This is a system of (n+ 1) linear equations, and is typically of much larger dimension than
the (p + 1) linear equations given by (6.8) and (6.9). As such, one may question the prac-
ticality of reformulating the problem in this way. However, the benefit of this formulation
is that the problem can be expressed entirely through the Gram matrix K, without having
to explicitly compute the feature vectors — in turn permitting the (implicit) use of infinite
dimensional feature spaces.

Chapter 6. Regularization and Kernel Methods 233

Example 6.13 (Estimating the Peaks Function) Figure 6.4 shows the surface plot of
the peaks function:

f (x1, x2) = 3(1 − x1)2e−x2
1−(x2+1)2

− 10
(

x1

5
− x3

1 − x5
2

)
e−x2

1−x2
2 −

1

3
e−(x1+1)2−x2

2 . (6.24)

The goal is to learn the function y = f (x) based on a small set of training data (pairs of
(x, y) values). The red dots in the figure represent data τ = {(xi, yi)}20

i=1, where yi = f (xi) and
the {xi} have been chosen in a quasi-random quasi-randomway, using Hammersley points (with bases 2
and 3) on the square [−3, 3]2. Quasi-random point sets have better space-filling properties
than either a regular grid of points or a set of pseudo-random points. We refer to [71] for
details. Note that there is no observation noise in this particular problem.

-5

2-2

0

00

5

-22

Figure 6.4: Peaks function sampled at 20 Hammersley points.

The purpose of this example is to illustrate how, using the small data set of size n = 20,
the entire peaks function can be approximated well using kernel methods. In particular, we
use the Gaussian kernel (6.15) on R2, and denote by H the unique RKHS corresponding
to this kernel. We omit the regularization term in (6.19), and thus our objective is to find
the solution to

min
g∈H

1

n

n∑

i=1

(yi − g(xi))
2.

By the representer theorem, the optimal function is of the form

g(x) =
n∑

i=1

αi exp

(
−

1

2

‖x − xi‖2

σ2

)
,

where α := [α1, . . . ,αn](is, by (6.23), the solution to the set of linear equations KK(α =
Ky.

Note that we are performing regression over the class of functions H with an implicit
feature space. Due to the representer theorem, the solution to this problem coincides with
the solution to the linear regression problem for which the i-th feature (for i = 1, . . . , n) is
chosen to be the vector [κ(x1, xi), . . . , κ(xn, xi)]

(.
The following code performs these calculations and gives the contour plots of g and

the peaks functions, shown in Figure 6.5. We see that the two are quite close. Code for the
generation of Hammersley points is available from the book’s GitHub site as genham.py.

234 6.5. Representer Theorem

peakskernel.py

from genham import hammersley

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from matplotlib import cm

from numpy.linalg import norm

import numpy as np

def peaks(x,y):

z = (3*(1-x)**2 * np.exp(-(x**2) - (y+1)**2)

- 10*(x/5 - x**3 - y**5) * np.exp(-x**2 - y**2)

- 1/3 * np.exp(-(x+1)**2 - y**2))

return(z)

n = 20

x = -3 + 6*hammersley([2,3],n)

z = peaks(x[:,0],x[:,1])

xx, yy = np.mgrid[-3:3:150j,-3:3:150j]

zz = peaks(xx,yy)

plt.contour(xx,yy,zz,levels=50)

fig=plt.figure()

ax = fig.add_subplot(111,projection='3d')

ax.plot_surface(xx,yy,zz,rstride=1,cstride=1,color='c',alpha=0.3,

linewidth=0)

ax.scatter(x[:,0],x[:,1],z,color='k',s=20)

plt.show()

sig2 = 0.3 # kernel parameter

def k(x,u):

return(np.exp(-0.5*norm(x- u)**2/sig2))

K = np.zeros((n,n))

for i in range(n):

for j in range(n):

K[i,j] = k(x[i,:],x[j])

alpha = np.linalg.solve(K@K.T, K@z)

N, = xx.flatten().shape

Kx = np.zeros((n,N))

for i in range(n):

for j in range(N):

Kx[i,j] = k(x[i,:],np.array([xx.flatten()[j],yy.flatten()[j

]]))

g = Kx.T @ alpha

dim = np.sqrt(N).astype(int)

yhat = g.reshape(dim,dim)

plt.contour(xx,yy,yhat,levels=50)

Chapter 6. Regularization and Kernel Methods 235

-2 0 2
-3

-2

-1

0

1

2

3

-2 0 2

Figure 6.5: Contour plots for the prediction function g (left) and the peaks function given
in (6.24) (right).

6.6 Smoothing Cubic Splines

A striking application of kernel methods is to fitting “well-behaved” functions to data.
Key examples of “well-behaved” functions are those that do not have large second-
order derivatives. Consider functions g : [0, 1]→ R that are twice differentiable and define

‖g′′‖2 :=
∫ 1

0
(g′′)2 dx as a measure of the size of the second derivative.

Example 6.14 (Behavior of ‖g′′‖2) Intuitively, the larger ‖g′′‖2 is, the more “wiggly”
the function g will be. As an explicit example, consider g(x) = sin(ωx) for x ∈ [0, 1], where
ω is a free parameter. We can explicitly compute g′′(x) = −ω2 sin(ωx), and consequently

‖g′′‖2 =
∫ 1

0

ω4 sin2(ωx) dx =
ω4

2
(1 − sinc(2ω)) .

As |ω|→ ∞, the frequency of g increases and we have ‖g′′‖2 → ∞.

Now, in the context of data fitting, consider the following penalized least-squares op-
timization problem on [0, 1]:

min
g∈G

1

n

n∑

i=1

(yi − g(xi))
2 + γ ‖g′′‖2, (6.25)

where we will specify G in what follows. In order to apply the kernel machinery, we want
to write this in the form (6.19), for some RKHSH and null spaceH0. Clearly, the norm on
H should be of the form ‖g‖H = ‖g′′‖ and should be well-defined (i.e., finite and ensuring
g and g′ are absolutely continuous). This suggests that we take

H = {g ∈ L2[0, 1] : ‖g′′‖ < ∞, g, g′ absolutely continuous, g(0) = g′(0) = 0},

with inner product

〈 f , g〉H :=

∫ 1

0

f ′′(x) g′′(x) dx.

236 6.6. Smoothing Cubic Splines

One rationale for imposing the boundary conditions g(0) = g′(0) = 0 is as follows: when
expanding g about the point x = 0, Taylor’s theorem (with integral remainder term) states
that

g(x) = g(0) + g′(0) x +

∫ x

0

g′′(s) (x − s) ds.

Imposing the condition that g(0) = g′(0) = 0 for functions in H will ensure that G =
H ⊕H0 where the null spaceH0 contains only linear functions, as we will see.

To see that thisH is in fact an RKHS, we derive its reproducing kernel. Using integra-
tion by parts (or directly from the Taylor expansion above), write

g(x) =

∫ x

0

g′(s) ds =

∫ x

0

g′′(s) (x − s) ds =

∫ 1

0

g′′(s) (x − s)+ ds.

If κ is a kernel, then by the reproducing property it must hold that

g(x) = 〈g, κx〉H =
∫ 1

0

g′′(s) κ′′x (s) ds,

so that κ must satisfy ∂2

∂s2 κ(x, s) = (x − s)+, where y+ := max{y, 0}. Therefore, noting that
κ(x, u) = 〈κx, κu〉H , we have (see Exercise 15)

κ(x, u) =

∫ 1

0

∂2κ(x, s)

∂s2

∂2κ(u, s)

∂s2
ds =

max{x, u}min{x, u}2

2
−

min{x, u}3

6
.

The last expression is a cubic function with quadratic and cubic terms that misses the
constant and linear monomials. This is not surprising considering the Taylor’s theorem
interpretation of a function g ∈ H . If we now take H0 as the space of functions of the
following form (having zero second derivative):

h0 = η1 + η2 x, x ∈ [0, 1],

then (6.25) is exactly of the form (6.19).
As a consequence of the representer Theorem 6.6, the optimal solution to (6.25) is a

linear combination of piecewise cubic functions:

g(x) = η1 + η2 x +

n∑

i=1

αi κ(xi, x). (6.26)

Such a function is called a cubic splinecubic spline with n knots (with one knot at each data point xi)
— so called, because the piecewise cubic function between knots is required to be “tied
together” at the knots. The parameters α, η are determined from (6.21) for instance by
solving (6.23) with matrices K = [κ(xi, x j)]

n
i, j=1 and Q with i-th row of the form [1, xi] for

i = 1, . . . , n.

Example 6.15 (Smoothing Spline) Figure 6.6 shows various cubic smoothing splines
for the data (0.05, 0.4), (0.2, 0.2), (0.5, 0.6), (0.75, 0.7), (1, 1). In the figure, we use the re-
parameterization r = 1/(1 + n γ) for the smoothing parameter. Thus r ∈ [0, 1], where r = 0
means an infinite penalty for curvature (leading to the ordinary linear regression solution)

Chapter 6. Regularization and Kernel Methods 237

and r = 1 does not penalize curvature at all and leads to a perfect fit via the so-called nat-

ural spline. Of course the latter will generally lead to overfitting. For r from 0 up to 0.8 the
solutions will be close to the simple linear regression line, while only for r very close to 1,
the shape of the curve changes significantly.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 6.6: Various cubic smoothing splines for smoothing parameter r = 1/(1 + n γ) ∈
{0.8, 0.99, 0.999, 0.999999}. For r = 1, the natural spline through the data points is ob-
tained; for r = 0, the simple linear regression line is found.

The following code first computes the matrices K and Q, and then solves the linear
system (6.23). Finally, the smoothing curve is determined via (6.26), for selected points,
and then plotted. Note that the code plots only a single curve corresponding to the specified
value of p.

smoothspline.py

import matplotlib.pyplot as plt

import numpy as np

x = np.array([[0.05, 0.2, 0.5, 0.75, 1.]]).T

y = np.array([[0.4, 0.2, 0.6, 0.7, 1.]]).T

n = x.shape[0]

r = 0.999

ngamma = (1-r)/r

k = lambda x1, x2 : (1/2)* np.max((x1,x2)) * np.min((x1,x2)) ** 2 \

- ((1/6)* np.min((x1,x2))**3)

K = np.zeros((n,n))

for i in range(n):

for j in range(n):

K[i,j] = k(x[i], x[j])

Q = np.hstack((np.ones((n,1)), x))

m1 = np.hstack((K @ K.T + (ngamma * K), K @ Q))

m2 = np.hstack((Q.T @ K.T, Q.T @ Q))

238 6.7. Gaussian Process Regression

M = np.vstack((m1,m2))

c = np.vstack((K, Q.T)) @ y

ad = np.linalg.solve(M,c)

plot the curve

xx = np.arange(0,1+0.01,0.01).reshape(-1,1)

g = np.zeros_like(xx)

Qx = np.hstack((np.ones_like(xx), xx))

g = np.zeros_like(xx)

N = np.shape(xx)[0]

Kx = np.zeros((n,N))

for i in range(n):

for j in range(N):

Kx[i,j] = k(x[i], xx[j])

g = g + np.hstack((Kx.T, Qx)) @ ad

plt.ylim((0,1.15))

plt.plot(xx, g, label = 'r = {}'.format(r), linewidth = 2)

plt.plot(x,y, 'b.', markersize=15)

plt.xlabel('x')

plt.ylabel('y')

plt.legend()

6.7 Gaussian Process Regression

Another application of the kernel machinery is to Gaussian process regression. A Gaussian

processGaussian
process

(GP) on a space X is a stochastic process {Zx, x ∈ X} where, for any choice of
indices x1, . . . , xn, the vector [Zx1

, . . .Zxn
](has a multivariate Gaussian distribution. As

such, the distribution of a GP is completely specified by its mean and covariance functions
µ : X→ R and κ : X × X → R, respectively. The covariance function is a finite positive
semidefinite function, and hence, in view of Theorem 6.2, can be viewed as a reproducing
kernel on X.

As for ordinary regression, the objective of GP regression is to learn a regression func-! 168
tion g that predicts a response y = g(x) for each feature vector x. This is done in a Bayesian
fashion, by establishing (1) a prior pdf for g and (2) the likelihood of the data, for a given
g. From these two we then derive, via Bayes’ formula, the posterior distribution of g given
the data. We refer to Section 2.9 for the general Bayesian framework.! 47

A simple Bayesian model for GP regression is as follows. First, the prior distribution of
g is taken to be the distribution of a GP with some known mean function µ and covariance
function (that is, kernel) κ. Most often µ is taken to be a constant, and for simplicity of
exposition, we take it to be 0. The Gaussian kernel (6.15) is often used for the covariance
function. For radial basis function kernels (including the Gaussian kernel), points that are
closer will be more highly correlated or “similar” [97], independent of translations in space.

Chapter 6. Regularization and Kernel Methods 239

Second, similar to standard regression, we view the observed feature vectors x1, . . . , xn

as fixed and the responses y1, . . . , yn as outcomes of random variables Y1, . . . ,Yn. Specific-
ally, given g, we model the {Yi} as

Yi = g(xi) + εi , i = 1, . . . , n, (6.27)

where {εi}
iid∼ N(0,σ2). To simplify the analysis, let us assume that σ2 is known, so no prior

needs to be specified for σ2. Let g = [g(x1), . . . , g(xn)](be the (unknown) vector of re-
gression values. Placing a GP prior on the function g is equivalent to placing a multivariate
Gaussian prior on the vector g:

g ∼ N(0,K), (6.28)

where the covariance matrix K of g is a Gram matrix (implicitly associated with a feature
map through the kernel κ), given by:

K =




κ(x1, x1) κ(x1, x2) . . . κ(x1, xn)
κ(x2, x1) κ(x2, x2) . . . κ(x2, xn)
...

...
. . .

...

κ(xn, x1) κ(xn, x2) . . . κ(xn, xn)



. (6.29)

The likelihood of our data given g, denoted p(y | g), is obtained directly from the model
(6.27):

(Y | g) ∼ N(g,σ2In). (6.30)

Solving this Bayesian problem involves deriving the posterior distribution of (g |Y). To
do so, we first note that since Y has covariance matrix K + σ2In (which can be seen from
(6.27)), the joint distribution of Y and g is again normal, with mean 0 and covariance
matrix:

Ky,g =

[
K + σ2In K

K K

]
. (6.31)

The posterior can then be found by conditioning on Y = y, via Theorem C.8, giving ! 436

(g | y) ∼ N
(
K((K + σ2In)−1y, K −K((K + σ2In)−1K

)
.

This only gives information about g at the observed points x1, . . . , xn. It is more interesting
to consider the posterior predictive distribution of g̃ := g(̃x) for a new input x̃. We can find
the corresponding posterior predictive pdf p(̃g | y) by integrating out the joint posterior pdf
p(̃g, g | y), which is equivalent to taking the expectation of p(̃g | g) when g is distributed
according to the posterior pdf p(g | y); that is,

p(̃g | y) =

∫
p(̃g | g) p(g | y) dg.

To do so more easily than direct evaluation via the above integral representation of p(̃g | y),
we can begin with the joint distribution of [y(, g̃](, which is multivariate normal with mean
0 and covariance matrix

K̃ =

[
K + σ2In κ

κ(κ(̃x, x̃)

]
, (6.32)

240 6.7. Gaussian Process Regression

where κ = [κ(̃x, x1), . . . , κ(̃x, xn)](. It now follows, again by using Theorem C.8, that (̃g | y)
has a normal distribution with mean and variance given respectively by

µ(̃x) = κ((K + σ2In)−1y (6.33)

and
σ2(̃x) = κ(̃x, x̃) − κ((K + σ2In)−1κ. (6.34)

These are sometimes called the predictivepredictive mean and variance. It is important to note that

we are predicting the expected response EỸ = g(̃x) here, and not the actual response Ỹ .

Example 6.16 (GP Regression) Suppose the regression function is

g(x) = 2 sin(2πx), x ∈ [0, 1].

We use GP regression to estimate g, using a Gaussian kernel of the form (6.15) with band-
width parameter 0.2. The explanatory variables x1, . . . , x30 were drawn uniformly on the
interval [0, 1], and the responses were obtained from (6.27), with noise level σ = 0.5. Fig-
ure 6.7 shows 10 samples from the prior distribution for g as well as the data points and
the true sinusoidal regression function g.

0 0.2 0.4 0.6 0.8 1
x

-3

-2

-1

0

1

2

3

y

0 0.2 0.4 0.6 0.8 1
x

-3

-2

-1

0

1

2

3

y

Figure 6.7: Left: samples drawn from the GP prior distribution. Right: the true regression
function with the data points.

Again assuming that the variance σ2, is known, the predictive distribution as determ-
ined by (6.33) and (6.34) is shown in Figure 6.8 for bandwidth 0.2 (left) and 0.02 (right).
Clearly, decreasing the bandwidth leads to the covariance between points x and x′ decreas-
ing at a faster rate with respect to the squared distance ‖x − x′‖2, leading to a predictive
mean that is less smooth.

In the above exposition, we have taken the mean function for the prior distribution
of g to be identically zero. If instead we have a general mean function m and write
m = [m(x1), . . . ,m(xn)](then the predictive variance (6.34) remains unchanged, and the
predictive mean (6.33) is modified to read

µ(̃x) = m(̃x) + κ((K + σ2In)−1 (y − m) . (6.35)

Chapter 6. Regularization and Kernel Methods 241

0 0.2 0.4 0.6 0.8 1
x

-3

-2

-1

0

1

2

3

y

g(x)

Predictive Mean

0 0.2 0.4 0.6 0.8 1
x

-3

-2

-1

0

1

2

3

y

g(x)

Predictive Mean

Figure 6.8: GP regression of synthetic data set with bandwidth 0.2 (left) and 0.02 (right).
The black dots represent the data and the blue curve is the latent function g(x) = 2 sin(2πx).
The red curve is the mean of the GP predictive distribution given by (6.33), and the shaded
region is the 95% confidence band, corresponding to the predictive variance given in (6.34).

Typically, the variance σ2 appearing in (6.27) is not known, and the kernel κ itself
depends on several parameters — for instance a Gaussian kernel (6.15) with an unknown
bandwidth parameter. In the Bayesian framework, one typically specifies a hierarchical
model by introducing a prior p(θ) for the vector θ of such hyperparameters hyperparamet-

ers
. Now, the

GP prior (g | θ) (equivalently, specifying p(g | θ)) and the model for the likelihood of the
data given Y|g, θ, namely p(y | g, θ), are both dependent on θ. The posterior distribution of
(g | y, θ) is as before.

One approach to setting the hyperparameter θ is to determine its posterior p(θ | y) and
obtain a point estimate, for instance via its maximum a posteriori estimate. However, this
can be a computationally demanding exercise. What is frequently done in practice is to
consider instead the marginal likelihood p(y | θ) and maximize this with respect to θ. This
procedure is called empirical Bayes empirical Bayes.

Considering again the mean function m to be identically zero, from (6.31), we have
that (Y | θ) is multivariate normal with mean 0 and covariance matrix Ky = K + σ2In,
immediately giving an expression for the marginal log-likelihood:

ln p(y | θ) = −
n

2
ln(2π) −

1

2
ln | det(Ky)| −

1

2
y(K−1

y y. (6.36)

We notice that only the second and third terms in (6.36) depend on θ. Considering a partial
derivative of (6.36) with respect to a single element θ of the hyperparameter vector θ yields

∂

∂θ
ln p(y | θ) = −

1

2
tr

(
K−1

y

[
∂

∂θ
Ky

])
+

1

2
y(K−1

y

[
∂

∂θ
Ky

]
K−1

y y, (6.37)

where
[
∂
∂θ

Ky

]
is the element-wise derivative of matrix Ky with respect to θ. If these partial

derivatives can be computed for each hyperparameter θ, gradient information could be used
when maximizing (6.36).

242 6.8. Kernel PCA

Example 6.17 (GP Regression (cont.)) Continuing Example 6.16, we plot in Fig-
ure 6.9 the marginal log-likelihood as a function of the noise level σ and bandwidth para-
meter.

10-2 10-1 100
10-1

100

Figure 6.9: Contours of the marginal log-likelihood for the GP regression example. The
maximum is denoted by a cross.

The maximum is attained for a bandwidth parameter around 0.20 and σ ≈ 0.44, which
is very close to the left panel of Figure 6.8 for the case where σ was assumed to be known
(and equal to 0.5). We note here that the marginal log-likelihood is extremely flat, perhaps
owing to the small number of points.

6.8 Kernel PCA

In its basic form, kernel PCA (principal component analysis) can be thought of as PCA in
feature space. The main motivation for PCA introduced in Section 4.8 was as a dimension-! 153
ality reduction technique. There, the analysis rested on an SVD of the matrix Σ̂ = 1

n
X(X,

where the data in X was first centered via x′i, j = xi, j − x j where xi =
1
n

∑n
i=1 xi, j.

What we shall do is to first re-cast the problem in terms of the Gram matrix K = XX(=

[〈xi, x j〉] (note the different order of X and X(), and subsequently replace the inner product
〈x, x′〉 with κ(x, x′) for a general reproducing kernel κ. To make the link, let us start with
an SVD of X(:

X(= UDV(. (6.38)

The dimensions of X(, U, D, and V are d × n, d × d, d × n, and n× n, respectively. Then an
SVD of X(X is

X(X = (UDV()(UDV()(= U(DD()U(

and an SVD of K is
K = (UDV()((UDV() = V(D(D)V(.

Let λ1 ! · · · ! λr > 0 denote the non-zero eigenvalues of X(X (or, equivalently, of K) and
denote the corresponding r × r diagonal matrix by Λ. Without loss of generality we can

Chapter 6. Regularization and Kernel Methods 243

assume that the eigenvector of X(X corresponding to λk is the k-th column of U and that
the k-th column of V is an eigenvector of K. Similar to Section 4.8, let Uk and Vk contain ! 153
the first k columns of U and V, respectively, and letΛk be the corresponding k×k submatrix
of Λ, k = 1, . . . , r.

By the SVD (6.38), we have X(Vk = UDV(Vk = UkΛ
1/2
k

. Next, consider the projection
of a point x onto the k-dimensional linear space spanned by the columns of Uk — the first
k principal components. We saw in Section 4.8 that this projection simply is the linear
mapping x)→ U(k x. Using the fact that Uk = X(VkΛ

−1/2, we find that x is projected to a
point z given by

z = Λ−1/2
k

V(k Xx = Λ−1/2
k

V(k κx,

where we have (suggestively) defined κx := [〈x1, x〉, . . . , 〈xn, x〉](. The important point
is that z is completely determined by the vector of inner products κx and the k principal
eigenvalues and (right) eigenvectors of the Gram matrix K. Note that each component zm

of z is of the form

zm =

n∑

i=1

αm,i κ(xi, x), m = 1, . . . , k. (6.39)

The preceding discussion assumed centering of the columns of X. Consider now an
uncentered data matrix X̃. Then the centered data can be written as X = X̃ − 1

n
EnX̃, where

En is the n × n matrix of ones. Consequently,

XX(= X̃X̃
(
−

1

n
EnX̃X̃

(
−

1

n
X̃X̃

(
En +

1

n2
EnX̃X̃

(
En,

or, more compactly, XX(= H X̃X̃
(

H, where H = In− 1
n
1n1(n , In is the n×n identity matrix,

and 1n is the n × 1 vector of ones.

To generalize to the kernel setting, we replace X̃X̃
(

by K = [κ(xi, x j), i, j = 1, . . . , n]
and set κx = [κ(x1, x), . . . , κ(xn, x)](, so thatΛk is the diagonal matrix of the k largest eigen-
values of HKH and Vk is the corresponding matrix of eigenvectors. Note that the “usual”
PCA is recovered when we use the linear kernel κ(x, y) = x(y. However, instead of having
only kernels that are explicitly inner products of feature vectors, we are now permitted to
implicitly use infinite feature maps (functions) by using kernels.

Example 6.18 (Kernel PCA) We simulated 200 points, x1, . . . , x200, from the uniform
distribution on the set B1 ∪ (B4 ∩ Bc

3), where Br := {(x, y) ∈ R2 : x2 + y2
" r2} (disk with

radius r). We apply kernel PCA with Gaussian kernel κ(x, x′) = exp
(
−‖x − x′‖2

)
and

compute the functions zm(x),m = 1, . . . , 9 in (6.39). Their density plots are shown in Fig-
ure 6.10. The data points are superimposed in each plot. From this we see that the principal
components identify the radial structure present in the data. Finally, Figure 6.11 shows
the projections [z1(xi), z2(xi)]

(, i = 1, . . . , 200 of the original data points onto the first two
principal components. We see that the projected points can be separated by a straight line,
whereas this is not possible for the original data; see also, Example 7.6 for a related prob- ! 272
lem.

244 6.8. Kernel PCA

Figure 6.10: First nine eigenfunctions using a Gaussian kernel for the two-dimensional
data set formed by the red and cyan points.

-0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 6.11: Projection of the data onto the first two principal components. Observe that
already the projections of the inner and outer points are well separated.

Chapter 6. Regularization and Kernel Methods 245

Further Reading

For a good overview of the ridge regression and the lasso, we refer the reader to [36, 56].
For overviews of the theory of RKHS we refer to [3, 115, 126], and for in-depth background
on splines and their connection to RKHSs we refer to [123]. For further details on GP
regression we refer to [97] and for kernel PCA in particular we refer to [12, 92]. Finally,
many facts about kernels and their corresponding RKHSs can be found in [115].

Exercises

1. Let G be an RKHS with reproducing kernel κ. Show that κ is a positive semidefinite
function.

2. Show that a reproducing kernel, if it exists, is unique.

3. Let G be a Hilbert space of functions g : X→ R. Recall that the evaluation func-

tional is the map δx : g)→ g(x) for a given x ∈ X. Show that evaluation functionals
are linear operators.

4. Let G0 be the pre-RKHS G0 constructed in the proof of Theorem 6.2. Thus, g ∈ G0

is of the form g =
∑n

i=1 αi κxi
and

〈g, κx〉G0
=

n∑

i=1

αi 〈κxi
, κx〉G0

=

n∑

i=1

αi κ(xi, x) = g(x).

Therefore, we may write the evaluation functional of g ∈ G0 at x as δxg := 〈g, κx〉G0
.

Show that δx is bounded on G0 for every x; that is, |δx f | < γ ‖ f ‖G0
, for some γ < ∞.

5. Continuing Exercise 4, let (fn) be a Cauchy sequence in G0 such that | fn(x)|→ 0 for
all x. Show that ‖ fn‖G0

→ 0.

6. Continuing Exercises 5 and 4, to show that the inner product (6.14) is well defined,
a number of facts have to be checked.

(a) Verify that the limit converges.

(b) Verify that the limit is independent of the Cauchy sequences used.

(c) Verify that the properties of an inner product are satisfied. The only non-trivial
property to verify is that 〈 f , f 〉G = 0 if and only if f = 0.

7. Exercises 4–6 show that G defined in the proof of Theorem 6.2 is an inner product
space. It remains to prove that G is an RKHS. This requires us to prove that the inner
product space G is complete (and thus Hilbert), and that its evaluation functionals
are bounded and hence continuous (see Theorem A.16). This is done in a number of ! 389
steps.

(a) Show that G0 is dense in G in the sense that every f ∈ G is a limit point (with
respect to the norm on G) of a Cauchy sequence (fn) in G0.

