
11 | KERNEL METHODS

Dependencies:

Linear models are great because they are easy to understand
and easy to optimize. They suffer because they can only learn very
simple decision boundaries. Neural networks can learn more com-
plex decision boundaries, but lose the nice convexity properties of
many linear models.

One way of getting a linear model to behave non-linearly is to
transform the input. For instance, by adding feature pairs as addi-
tional inputs. Learning a linear model on such a representation is
convex, but is computationally prohibitive in all but very low dimen-
sional spaces. You might ask: instead of explicitly expanding the fea-
ture space, is it possible to stay with our original data representation
and do all the feature blow up implicitly? Surprisingly, the answer is
often “yes” and the family of techniques that makes this possible are
known as kernel approaches.

11.1 From Feature Combinations to Kernels

In Section 5.4, you learned one method for increasing the expressive
power of linear models: explode the feature space. For instance,
a “quadratic” feature explosion might map a feature vector x =

〈x1, x2, x3, . . . , xD〉 to an expanded version denoted φ(x):

φ(x) = 〈1, 2x1, 2x2, 2x3, . . . , 2xD,

x2
1, x1x2, x1x3, . . . , x1xD,

x2x1, x2
2, x2x3, . . . , x2xD,

x3x1, x3x2, x2
3, . . . , x2xD,

. . . ,

xDx1, xDx2, xDx3, . . . , x2
D〉 (11.1)

(Note that there are repetitions here, but hopefully most learning
algorithms can deal well with redundant features; in particular, the
2x1 terms are due to collapsing some repetitions.)

Learning Objectives:
• Explain how kernels generalize

both feature combinations and basis
functions.

• Contrast dot products with kernel
products.

• Implement kernelized perceptron.

• Derive a kernelized version of
regularized least squares regression.

• Implement a kernelized version of
the perceptron.

• Derive the dual formulation of the
support vector machine.

Many who have had an opportunity of knowing any more about
mathematics confuse it with arithmetic, and consider it an arid
science. In reality, however, it is a science which requires a great
amount of imagination. – Sofia Kovalevskaya

142 a course in machine learning

You could then train a classifier on this expanded feature space.
There are two primary concerns in doing so. The first is computa-
tional: if your learning algorithm scales linearly in the number of fea-
tures, then you’ve just squared the amount of computation you need
to perform; you’ve also squared the amount of memory you’ll need.
The second is statistical: if you go by the heuristic that you should
have about two examples for every feature, then you will now need
quadratically many training examples in order to avoid overfitting.

This chapter is all about dealing with the computational issue. It
will turn out in Chapter 12 that you can also deal with the statistical
issue: for now, you can just hope that regularization will be sufficient
to attenuate overfitting.

The key insight in kernel-based learning is that you can rewrite
many linear models in a way that doesn’t require you to ever ex-
plicitly compute φ(x). To start with, you can think of this purely
as a computational “trick” that enables you to use the power of a
quadratic feature mapping without actually having to compute and
store the mapped vectors. Later, you will see that it’s actually quite a
bit deeper. Most algorithms we discuss involve a product of the form
w · φ(x), after performing the feature mapping. The goal is to rewrite
these algorithms so that they only ever depend on dot products be-
tween two examples, say x and z; namely, they depend on φ(x) · φ(z).
To understand why this is helpful, consider the quadratic expansion
from above, and the dot-product between two vectors. You get:

φ(x) · φ(z) = 1 + x1z1 + x2z2 + · · ·+ xDzD + x2
1z2

1 + · · ·+ x1xDz1zD+

· · ·+ xDx1zDz1 + xDx2zDz2 + · · ·+ x2
Dz2

D (11.2)

= 1 + 2 ∑
d

xdzd + ∑
d

∑
e

xdxezdze (11.3)

= 1 + 2x · z + (x · z)2 (11.4)

= (1 + x · z)2 (11.5)

Thus, you can compute φ(x) · φ(z) in exactly the same amount of
time as you can compute x · z (plus the time it takes to perform an
addition and a multiply, about 0.02 nanoseconds on a circa 2011

processor).
The rest of the practical challenge is to rewrite your algorithms so

that they only depend on dot products between examples and not on
any explicit weight vectors.

11.2 Kernelized Perceptron

Consider the original perceptron algorithm from Chapter 4, re-
peated in Algorithm 11.2 using linear algebra notation and using fea-
ture expansion notation φ(x). In this algorithm, there are two places

kernel methods 143

Algorithm 29 PerceptronTrain(D, MaxIter)
1: w ← 0, b ← 0 // initialize weights and bias
2: for iter = 1 . . . MaxIter do
3: for all (x,y) ∈ D do
4: a ← w · φ(x) + b // compute activation for this example
5: if ya ≤ 0 then
6: w ← w + y φ(x) // update weights
7: b ← b + y // update bias
8: end if
9: end for

10: end for
11: return w, b

If U = {ui}I
i=1 is a set of vectors in RD, then the span of U is the set of vectors that can be written as

linear combinations of uis; namely: span(U) = {∑i aiui : a1 ∈ R, . . . , aI ∈ R}. If all of the uis are
linearly independent, then the dimension of span(U) is I; in particular, if there are D-many linearly
independent vectors then they span RD.

MATH REVIEW | SPANS

Figure 11.1:

where φ(x) is used explicitly. The first is in computing the activation
(line 4) and the second is in updating the weights (line 6). The goal is
to remove the explicit dependence of this algorithm on φ and on the
weight vector.

To do so, you can observe that at any point in the algorithm, the
weight vector w can be written as a linear combination of expanded
training data. In particular, at any point, w = ∑n αnφ(xn) for some
parameters α. Initially, w = 0 so choosing α = 0 yields this. If the
first update occurs on the nth training example, then the resolution
weight vector is simply ynφ(xn), which is equivalent to setting αn =

yn. If the second update occurs on the mth training example, then all
you need to do is update αm ← αm + ym. This is true, even if you
make multiple passes over the data. This observation leads to the
following representer theorem, which states that the weight vector of
the perceptron lies in the span of the training data.

Theorem 12 (Perceptron Representer Theorem). During a run of
the perceptron algorithm, the weight vector w is always in the span of the
(assumed non-empty) training data, φ(x1), . . . , φ(xN).

Proof of Theorem 12. By induction. Base case: the span of any non-
empty set contains the zero vector, which is the initial weight vec-
tor. Inductive case: suppose that the theorem is true before the kth
update, and suppose that the kth update happens on example n.
By the inductive hypothesis, you can write w = ∑i αiφ(xi) before

144 a course in machine learning

Algorithm 30 KernelizedPerceptronTrain(D, MaxIter)
1: α ← 0, b ← 0 // initialize coefficients and bias
2: for iter = 1 . . . MaxIter do
3: for all (xn,yn) ∈ D do
4: a ← ∑m αmφ(xm) · φ(xn) + b // compute activation for this example
5: if yna ≤ 0 then
6: αn ← αn + yn // update coefficients
7: b ← b + y // update bias
8: end if
9: end for

10: end for
11: return α, b

the update. The new weight vector is [∑i αiφ(xi)] + ynφ(xn) =

∑i(αi + yn[i = n])φ(xi), which is still in the span of the training
data.

Now that you know that you can always write w = ∑n αnφ(xn) for
some αis, you can additionall compute the activations (line 4) as:

w · φ(x) + b =

(
∑
n

αnφ(xn)

)
· φ(x) + b definition of w

(11.6)

= ∑
n

αn

[
φ(xn) · φ(x)

]
+ b dot products are linear

(11.7)

This now depends only on dot-products between data points, and
never explicitly requires a weight vector. You can now rewrite the
entire perceptron algorithm so that it never refers explicitly to the
weights and only ever depends on pairwise dot products between
examples. This is shown in Algorithm 11.2.

The advantage to this “kernelized” algorithm is that you can per-
form feature expansions like the quadratic feature expansion from
the introduction for “free.” For example, for exactly the same cost as
the quadratic features, you can use a cubic feature map, computed
as ¨φ(x)φ(z) = (1 + x · z)3, which corresponds to three-way inter-
actions between variables. (And, in general, you can do so for any
polynomial degree p at the same computational complexity.)

11.3 Kernelized K-means

For a complete change of pace, consider the K-means algorithm from
Section 3. This algorithm is for clustering where there is no notion of
“training labels.” Instead, you want to partition the data into coher-
ent clusters. For data in RD, it involves randomly initializing K-many

kernel methods 145

cluster means µ(1), . . . , µ(K). The algorithm then alternates between the
following two steps until convergence, with x replaced by φ(x) since
that is the eventual goal:

1. For each example n, set cluster label zn = arg mink
∣∣∣∣φ(xn)− µ(k)

∣∣∣∣2.

2. For each cluster k, update µ(k) = 1
Nk

∑n:zn=k φ(xn), where Nk is the
number of n with zn = k.

The question is whether you can perform these steps without ex-
plicitly computing φ(xn). The representer theorem is more straight-
forward here than in the perceptron. The mean of a set of data is,
almost by definition, in the span of that data (choose the ais all to be
equal to 1/N). Thus, so long as you initialize the means in the span
of the data, you are guaranteed always to have the means in the span
of the data. Given this, you know that you can write each mean as an
expansion of the data; say that µ(k) = ∑n α(k)

n φ(xn) for some parame-
ters α(k)

n (there are N×K-many such parameters).
Given this expansion, in order to execute step (1), you need to

compute norms. This can be done as follows:

zn = arg min
k

∣∣∣∣∣∣φ(xn)− µ(k)
∣∣∣∣∣∣2 definition of zn

(11.8)

= arg min
k

∣∣∣∣∣
∣∣∣∣∣φ(xn)−∑

m
α(k)

m φ(xm)

∣∣∣∣∣
∣∣∣∣∣
2

definition of µ(k)

(11.9)

= arg min
k
||φ(xn)||2 +

∣∣∣∣∣
∣∣∣∣∣∑m α(k)

m φ(xm)

∣∣∣∣∣
∣∣∣∣∣
2

+ φ(xn) ·
[
∑
m

α(k)
m φ(xm)

]
expand quadratic term

(11.10)

= arg min
k

∑
m

∑
m′

α(k)
m α(k)

m′φ(xm) · φ(xm′) + ∑
m

α(k)
m φ(xm) · φ(xn) + const linearity and constant

(11.11)

This computation can replace the assignments in step (1) of K-means.
The mean updates are more direct in step (2):

µ(k) =
1

Nk
∑

n:zn=k
φ(xn) ⇐⇒ α(k)

n =

{
1

Nk
if zn = k

0 otherwise
(11.12)

11.4 What Makes a Kernel

A kernel is just a form of generalized dot product. You can also
think of it as simply shorthand for φ(x) · φ(z), which is commonly
written Kφ(x, z). Or, when φ is clear from context, simply K(x, z).

146 a course in machine learning

This is often refered to as the kernel product between x and z (under
the mapping φ).

In this view, what you’ve seen in the preceding two sections is
that you can rewrite both the perceptron algorithm and the K-means
algorithm so that they only ever depend on kernel products between data
points, and never on the actual datapoints themselves. This is a very pow-
erful notion, as it has enabled the development of a large number of
non-linear algorithms essentially “for free” (by applying the so-called
kernel trick, that you’ve just seen twice).

This raises an interesting question. If you have rewritten these
algorithms so that they only depend on the data through a function
K : X×X → R, can you stick any function K in these algorithms,
or are there some K that are “forbidden?” In one sense, you “could”
use any K, but the real question is: for what types of functions K do
these algorithms retain the properties that we expect them to have
(like convergence, optimality, etc.)?

One way to answer this question is to say that K(·, ·) is a valid
kernel if it corresponds to the inner product between two vectors.
That is, K is valid if there exists a function φ such that K(x, z) =

φ(x) · φ(z). This is a direct definition and it should be clear that if K
satisfies this, then the algorithms go through as expected (because
this is how we derived them).

You’ve already seen the general class of polynomial kernels,
which have the form:

K(poly)
d (x, z) =

(
1 + x · z

)d
(11.13)

where d is a hyperparameter of the kernel. These kernels correspond
to polynomial feature expansions.

There is an alternative characterization of a valid kernel function
that is more mathematical. It states that K : X×X → R is a kernel if
K is positive semi-definite (or, in shorthand, psd). This property is
also sometimes called Mercer’s condition. In this context, this means
the for all functions f that are square integrable (i.e.,

∫
f (x)2dx < ∞),

other than the zero function, the following property holds:∫∫
f (x)K(x, z) f (z)dxdz > 0 (11.14)

This likely seems like it came out of nowhere. Unfortunately, the
connection is well beyond the scope of this book, but is covered well
is external sources. For now, simply take it as a given that this is an
equivalent requirement. (For those so inclined, the appendix of this
book gives a proof, but it requires a bit of knowledge of function
spaces to understand.)

The question is: why is this alternative characterization useful? It
is useful because it gives you an alternative way to construct kernel

kernel methods 147

functions. For instance, using it you can easily prove the following,
which would be difficult from the definition of kernels as inner prod-
ucts after feature mappings.

Theorem 13 (Kernel Addition). If K1 and K2 are kernels, the K defined
by K(x, z) = K1(x, z) + K2(x, z) is also a kernel.

Proof of Theorem 13. You need to verify the positive semi-definite
property on K. You can do this as follows:∫∫

f (x)K(x, z) f (z)dxdz =
∫∫

f (x) [K1(x, z) + K2(x, z)] f (z)dxdz definition of K

(11.15)

=
∫∫

f (x)K1(x, z) f (z)dxdz

+
∫∫

f (x)K2(x, z) f (z)dxdz distributive rule

(11.16)

> 0 + 0 K1 and K2 are psd

(11.17)

More generally, any positive linear combination of kernels is still a
kernel. Specifically, if K1, . . . , KM are all kernels, and α1, . . . , αM ≥ 0,
then K(x, z) = ∑m αmKm(x, z) is also a kernel.

You can also use this property to show that the following Gaus-
sian kernel (also called the RBF kernel) is also psd:

K(RBF)
γ (x, z) = exp

[
−γ ||x− z||2

]
(11.18)

Here γ is a hyperparameter that controls the width of this Gaussian-
like bumps. To gain an intuition for what the RBF kernel is doing,
consider what prediction looks like in the perceptron:

f (x) = ∑
n

αnK(xn, x) + b (11.19)

= ∑
n

αn exp
[
−γ ||xn − z||2

]
(11.20)

In this computation, each training example is getting to “vote” on the
label of the test point x. The amount of “vote” that the nth training
example gets is proportional to the negative exponential of the dis-
tance between the test point and itself. This is very much like an RBF
neural network, in which there is a Gaussian “bump” at each training
example, with variance 1/(2γ), and where the αns act as the weights
connecting these RBF bumps to the output.

Showing that this kernel is positive definite is a bit of an exercise
in analysis (particularly, integration by parts), but otherwise not
difficult. Again, the proof is provided in the appendix.

148 a course in machine learning

So far, you have seen two bsaic classes of kernels: polynomial
kernels (K(x, z) = (1 + x · z)d), which includes the linear kernel
(K(x, z) = x · z) and RBF kernels (K(x, z) = exp[−γ ||x− z||2]). The
former have a direct connection to feature expansion; the latter to
RBF networks. You also know how to combine kernels to get new
kernels by addition. In fact, you can do more than that: the product
of two kernels is also a kernel.

As far as a “library of kernels” goes, there are many. Polynomial
and RBF are by far the most popular. A commonly used, but techni-
cally invalid kernel, is the hyperbolic-tangent kernel, which mimics
the behavior of a two-layer neural network. It is defined as:

K(tanh) = tanh(1 + x · z) Warning: not psd (11.21)

A final example, which is not very common, but is nonetheless
interesting, is the all-subsets kernel. Suppose that your D features
are all binary: all take values 0 or 1. Let A ⊆ {1, 2, . . . D} be a subset
of features, and let fA(x) =

∧
d∈A xd be the conjunction of all the

features in A. Let φ(x) be a feature vector over all such As, so that
there are 2D features in the vector φ. You can compute the kernel
associated with this feature mapping as:

K(subs)(x, z) = ∏
d

(
1 + xdzd

)
(11.22)

Verifying the relationship between this kernel and the all-subsets
feature mapping is left as an exercise (but closely resembles the ex-
pansion for the quadratic kernel).

11.5 Support Vector Machines

Kernelization predated support vector machines, but SVMs are def-
initely the model that popularized the idea. Recall the definition of
the soft-margin SVM from Chapter 8.7 and in particular the opti-
mization problem (8.38), which attempts to balance a large margin
(small ||w||2) with a small loss (small ξns, where ξn is the slack on
the nth training example). This problem is repeated below:

min
w,b,ξ

1
2
||w||2 + C ∑

n
ξn (11.23)

subj. to yn (w · xn + b) ≥ 1− ξn (∀n)

ξn ≥ 0 (∀n)

Previously, you optimized this by explicitly computing the slack
variables ξn, given a solution to the decision boundary, w and b.
However, you are now an expert with using Lagrange multipliers

kernel methods 149

to optimize constrained problems! The overall goal is going to be to
rewrite the SVM optimization problem in a way that it no longer ex-
plicitly depends on the weights w and only depends on the examples
xn through kernel products.

There are 2N constraints in this optimization, one for each slack
constraint and one for the requirement that the slacks are non-
negative. Unlike the last time, these constraints are now inequalities,
which require a slightly different solution. First, you rewrite all the
inequalities so that they read as something ≥ 0 and then add cor-
responding Lagrange multipliers. The main difference is that the
Lagrange multipliers are now constrained to be non-negative, and
their sign in the augmented objective function matters.

The second set of constraints is already in the proper form; the
first set can be rewritten as yn (w · xn + b)− 1 + ξn ≥ 0. You’re now
ready to construct the Lagrangian, using multipliers αn for the first
set of constraints and βn for the second set.

L(w, b, ξ, α, β) =
1
2
||w||2 + C ∑

n
ξn −∑

n
βnξn (11.24)

−∑
n

αn [yn (w · xn + b)− 1 + ξn] (11.25)

The new optimization problem is:

min
w,b,ξ

max
α≥0

max
β≥0
L(w, b, ξ, α, β) (11.26)

The intuition is exactly the same as before. If you are able to find a
solution that satisfies the constraints (e.g., the purple term is prop-
erly non-negative), then the βns cannot do anything to “hurt” the
solution. On the other hand, if the purple term is negative, then the
corresponding βn can go to +∞, breaking the solution.

You can solve this problem by taking gradients. This is a bit te-
dious, but and important step to realize how everything fits together.
Since your goal is to remove the dependence on w, the first step is to
take a gradient with respect to w, set it equal to zero, and solve for w
in terms of the other variables.

∇wL = w−∑
n

αnynxn = 0 ⇐⇒ w = ∑
n

αnynxn (11.27)

At this point, you should immediately recognize a similarity to the
kernelized perceptron: the optimal weight vector takes exactly the
same form in both algorithms.

You can now take this new expression for w and plug it back in to
the expression for L, thus removing w from consideration. To avoid
subscript overloading, you should replace the n in the expression for

150 a course in machine learning

w with, say, m. This yields:

L(b, ξ, α, β) =
1
2

∣∣∣∣∣
∣∣∣∣∣∑m αmymxm

∣∣∣∣∣
∣∣∣∣∣
2

+ C ∑
n

ξn −∑
n

βnξn (11.28)

−∑
n

αn

[
yn

([
∑
m

αmymxm

]
· xn + b

)
− 1 + ξn

]
(11.29)

At this point, it’s convenient to rewrite these terms; be sure you un-
derstand where the following comes from:

L(b, ξ, α, β) =
1
2 ∑

n
∑
m

αnαmynymxn · xm + ∑
n
(C− βn)ξn (11.30)

−∑
n

∑
m

αnαmynymxn · xm −∑
n

αn (ynb− 1 + ξn)

(11.31)

= −1
2 ∑

n
∑
m

αnαmynymxn · xm + ∑
n
(C− βn)ξn (11.32)

−b ∑
n

αnyn −∑
n

αn(ξn − 1) (11.33)

Things are starting to look good: you’ve successfully removed the de-
pendence on w, and everything is now written in terms of dot prod-
ucts between input vectors! This might still be a difficult problem to
solve, so you need to continue and attempt to remove the remaining
variables b and ξ.

The derivative with respect to b is:

∂L
∂b

= −∑
n

αnyn = 0 (11.34)

This doesn’t allow you to substitute b with something (as you did
with w), but it does mean that the fourth term (b ∑n αnyn) goes to
zero at the optimum.

The last of the original variables is ξn; the derivatives in this case
look like:

∂L
∂ξn

= C− βn − αn ⇐⇒ C− βn = αn (11.35)

Again, this doesn’t allow you to substitute, but it does mean that you
can rewrite the second term, which as ∑n(C− βn)ξn as ∑n αnξn. This
then cancels with (most of) the final term. However, you need to be
careful to remember something. When we optimize, both αn and βn

are constrained to be non-negative. What this means is that since we
are dropping β from the optimization, we need to ensure that αn ≤ C,
otherwise the corresponding β will need to be negative, which is not

kernel methods 151

allowed. You finally wind up with the following, where xn · xm has
been replaced by K(xn, xm):

L(α) = ∑
n

αn −
1
2 ∑

n
∑
m

αnαmynymK(xn, xm) (11.36)

If you are comfortable with matrix notation, this has a very compact
form. Let 1 denote the N-dimensional vector of all 1s, let y denote
the vector of labels and let G be the N×N matrix, where Gn,m =

ynymK(xn, xm), then this has the following form:

L(α) = α>1− 1
2

α>Gα (11.37)

The resulting optimization problem is to maximize L(α) as a function
of α, subject to the constraint that the αns are all non-negative and
less than C (because of the constraint added when removing the β

variables). Thus, your problem is:

min
α

−L(α) = 1
2 ∑

n
∑
m

αnαmynymK(xn, xm)−∑
n

αn (11.38)

subj. to 0 ≤ αn ≤ C (∀n)

One way to solve this problem is gradient descent on α. The only
complication is making sure that the αs satisfy the constraints. In
this case, you can use a projected gradient algorithm: after each
gradient update, you adjust your parameters to satisfy the constraints
by projecting them into the feasible region. In this case, the projection
is trivial: if, after a gradient step, any αn < 0, simply set it to 0; if any
αn > C, set it to C.

11.6 Understanding Support Vector Machines

The prior discussion involved quite a bit of math to derive a repre-
sentation of the support vector machine in terms of the Lagrange
variables. This mapping is actually sufficiently standard that every-
thing in it has a name. The original problem variables (w, b, ξ) are
called the primal variables; the Lagrange variables are called the
dual variables. The optimization problem that results after removing
all of the primal variables is called the dual problem.

A succinct way of saying what you’ve done is: you found that after
converting the SVM into its dual, it is possible to kernelize.

To understand SVMs, a first step is to peek into the dual formula-
tion, Eq (11.38). The objective has two terms: the first depends on the
data, and the second depends only on the dual variables. The first
thing to notice is that, because of the second term, the αs “want” to

152 a course in machine learning

get as large as possible. The constraint ensures that they cannot ex-
ceed C, which means that the general tendency is for the αs to grow
as close to C as possible.

To further understand the dual optimization problem, it is useful
to think of the kernel as being a measure of similarity between two
data points. This analogy is most clear in the case of RBF kernels,
but even in the case of linear kernels, if your examples all have unit
norm, then their dot product is still a measure of similarity. Since you
can write the prediction function as f (x̂) = sign(∑n αnynK(xn, x̂)), it
is natural to think of αn as the “importance” of training example n,
where αn = 0 means that it is not used at all at test time.

Consider two data points that have the same label; namely, yn =

ym. This means that ynym = +1 and the objective function has a term
that looks like αnαmK(xn, xm). Since the goal is to make this term
small, then one of two things has to happen: either K has to be small,
or αnαm has to be small. If K is already small, then this doesn’t affect
the setting of the corresponding αs. But if K is large, then this strongly
encourages at least one of αn or αm to go to zero. So if you have two
data points that are very similar and have the same label, at least one
of the corresponding αs will be small. This makes intuitive sense: if
you have two data points that are basically the same (both in the x
and y sense) then you only need to “keep” one of them around.

Suppose that you have two data points with different labels:
ynym = −1. Again, if K(xn, xm) is small, nothing happens. But if
it is large, then the corresponding αs are encouraged to be as large as
possible. In other words, if you have two similar examples with dif-
ferent labels, you are strongly encouraged to keep the corresponding
αs as large as C.

An alternative way of understanding the SVM dual problem is
geometrically. Remember that the whole point of introducing the
variable αn was to ensure that the nth training example was correctly
classified, modulo slack. More formally, the goal of αn is to ensure
that yn(w · xn + b) − 1 + ξn ≥ 0. Suppose that this constraint it
not satisfied. There is an important result in optimization theory,
called the Karush-Kuhn-Tucker conditions (or KKT conditions, for
short) that states that at the optimum, the product of the Lagrange
multiplier for a constraint, and the value of that constraint, will equal
zero. In this case, this says that at the optimum, you have:

αn

[
yn (w · xn + b)− 1 + ξn

]
= 0 (11.39)

In order for this to be true, it means that (at least) one of the follow-
ing must be true:

αn = 0 or yn (w · xn + b)− 1 + ξn = 0 (11.40)

kernel methods 153

A reasonable question to ask is: under what circumstances will αn

be non-zero? From the KKT conditions, you can discern that αn can
be non-zero only when the constraint holds exactly; namely, that
yn (w · xn + b) − 1 + ξn = 0. When does that constraint hold ex-
actly? It holds exactly only for those points precisely on the margin of
the hyperplane.

In other words, the only training examples for which αn 6= 0
are those that lie precisely 1 unit away from the maximum margin
decision boundary! (Or those that are “moved” there by the corre-
sponding slack.) These points are called the support vectors because
they “support” the decision boundary. In general, the number of sup-
port vectors is far smaller than the number of training examples, and
therefore you naturally end up with a solution that only uses a subset
of the training data.

From the first discussion, you know that the points that wind up
being support vectors are exactly those that are “confusable” in the
sense that you have to examples that are nearby, but have different la-
bels. This is a completely in line with the previous discussion. If you
have a decision boundary, it will pass between these “confusable”
points, and therefore they will end up being part of the set of support
vectors.

11.7 Further Reading

TODO further reading

	Kernel Methods
	From Feature Combinations to Kernels
	Kernelized Perceptron
	Kernelized K-means
	What Makes a Kernel
	Support Vector Machines
	Understanding Support Vector Machines
	Further Reading

