
Introduction to Machine Learning and Deep Learning 
2021/10/27 

 1 

Ensemble Methods: Gradient Boosting  
 

Another very popular Boosting algorithm is Gradient Boosting. Just like AdaBoost, Gradient 

Boosting works by sequentially adding predictors to an ensemble, each one correcting its 

predecessor. However, instead of tweaking the instance weights at every iteration like AdaBoost does, 

this method tries to fit the new predictor to the residual errors (or more general gradient) made by the 

previous predictor. 

 

A Simple Example: boosting from the perspective of fitting to residual error 

 

You are given a training data ! = {(%! , '!)}!"#
$  and the task is to fit a model *# = *% + ℎ# from *% 

to minimize the residual errors. The simple solution is: 

 

*%(%#) + ℎ#(%#) = '#  

*%(%&) + ℎ#(%&) = '&  

⋯  

*%(%$) + ℎ#(%$) = '$  

 

Or, equivalently, you wish 

 

ℎ#(%#) = '# − *%(%#)  

ℎ#(%&) = '& − *%(%&)  

⋯  

ℎ#(%$) = '$ − *%(%$)  

 

We may not find a regression tree to fit these residuals perfectly but we can certainly achieve the goal 

approximately. How?  

 

A: We can fit a regression tree ℎ# to the data ! = {(%! , '! − *%(%!))}!"#
$ . 

 

*# = *% + ℎ#  

 

 

 

 

 

 

Fun Time: In general, will *# perform better than *%? (1) Yes (2) No 
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Remark: The '! − *%(%!) are called residuals. These are the parts that existing model *% cannot do 

well. The role of ℎ# is to compensate the shortcoming of existing model *%. If the new model *# =

*% + ℎ# is still not satisfactory, we can add another regression tree. 

 

Formally, the idea is to start with a simple model (weak learner) *%  for the training data ! =

{(%! , '!)}!"#
$  and then to improve or “boost” this learner to a learner *# ∶= *% + ℎ# . Here, the 

function (or hypothesis) ℎ# is found by minimizing the training loss for *% + ℎ# over all functions 

(or hypotheses) ℎ in some class of functions (or hypothesis set) ℋ. For example, ℋ could be the 

set of functions that can be obtained via a decision tree of maximal depth 2. Given a loss function 1(∙

), the function ℎ# is thus obtained as the solution to the optimization problem: 

 

ℎ# = argmin
'∈ℋ

1
:
;1('! , *%(%!) + ℎ(%!))

$

!"#
 

 

This process can be repeated for *#  to obtain *& = *# + ℎ& , and so on, yielding the boosted 

prediction function 

 

** = *% +;ℎ+

*

+"#
 

Or 

** = *% + <;ℎ+

*

+"#
 

0 < < < 1 to reduce overfitting. 

 

A Simple Example (Take Two): boosting from the perspective of gradient decent 

 

Let us again consider a very simple regression setting using the half of the square-error loss 1(', '?) =

#
& (' − '?)

& in which ' is the ground truth and '? is the predicted value. We can now explicitly write 

down the loss function for ℎ#: 

 

1 =;
1
2
('! − A*%(%!) + ℎ(%!)B

&
$

!"#
=;

1
2
(ℎ(%!) − ('! − (*%(%!)))&

$

!"#
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By minimizing the loss, we look to tune the fitting parameters of ℎ so that: 

 

ℎ#(%!) ≈ ('! − *%(%!)) 

 

Remark: As we have observed, the function ℎ+ is just simply to approximate our original output '! 

minus the contribution of the previous model *+,#. This quantity is called residual error or residual: 

 

D!
+ ∶= '! − *+,#(%!). 

 

And the dataset for ℎ+ to fit is !+ = {(%! , D!
+)}!"#

$ . 

 

Now back to the link with gradient: we note that the negative gradient of the half of square error 

loss at (F − 1) boosting is: 

 

−
G1
GH
I
-".!"#(0$)

= −
G
GH
(
1
2
('! − H)&)I

-".!"#(0$)
= ('! − *+,#(%!)) 

 

This is the residual J2
3
. We thus conclude for regression with the half of the square loss: 

 

residual ⇔ negative gradient 

fit ℎ+ to residual ⇔ fit ℎ+ to negative gradient 

update *+,# based on residual ⇔ update *+,# based on negative gradient 

 

So we are actually updating our model using gradient descent! In fact, one of the major advances in 

gradient boosting was the recognition that one can use a similar gradient descent method (more on this 

in the later Chapter) for any differentiable loss function. The resulting algorithm is called gradient 

boosting. 

 

Remark: The benefit of formulating this algorithm using gradients is that it allows us to consider other 

loss functions and derive the corresponding algorithms in the same way. 

 

Python Example: we now compare performance of decision tree, random forest and gradient boosting 

for a regression problem. We use the R2 metric (coefficient of determination) for comparison. In 

regression, the R2 is a statistical measure of how well the regression predictions approximate the real 

data points. An R2 of 1 indicates that the regression predictions perfectly fit the data. 

 

Let us first generate a few data with related by polynomial and sine transforms with make_friedman1 

from sklearn. 
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# create regression problem 
n_points = 1000 # points 
x, y =  make_friedman1(n_samples=n_points, n_features=15,  
                       noise=1.0, random_state=100) 
 
# split to train/test set 
x_train, x_test, y_train, y_test = \ 
        train_test_split(x, y, test_size=0.33, random_state=100) 

 

We will first use a deep decision tree (with nodes are expanded until all leaves are pure or until all 

leaves contain less than min_samples_split samples): 

 
# decision tree 
from sklearn.tree import DecisionTreeRegressor 
 
# training 
regTree = DecisionTreeRegressor(random_state=100) 
regTree.fit(x_train,y_train) 
 
# test 
yhatdt = regTree.predict(x_test) 
print("Decision Tree R^2 score = ", r2_score(y_test, yhatdt)) 

Decision	 Tree	 R^2	 score	 =	 	 0.5777939315921408	
 

We continue with the random forest with B = 500 trees and a subset feature size L = 8: 

 
# random forest 
from sklearn.ensemble import RandomForestRegressor 
 
# training 
rf = RandomForestRegressor(n_estimators=500, max_features=8, 
random_state=100) 
rf.fit(x_train,y_train) 
 
# test 
yhatrf = rf.predict(x_test) 
print("Random Forest R^2 score = ", r2_score(y_test, yhatrf)) 

Random	 Forest	 R^2	 score	 =	 	 0.8106675872067525	
 

Remark (The Optimal Number of Subset Features L): Recall in random forests, L  features is 

chosen as split candidates from the full set of N features. The default values for L are N/3 and QN 

for regression and classification setting, respectively. However, the standard practice is to treat L as 

a hyperparameter that requires tuning, depending on the specific problem at hand. 

 

Finally, let us use the gradient boosting estimator implemented in sklearn. We use < = 0.1 and 

perform B = 100 boosting rounds. As a prediction function ℎ+ for b = 1, . . . , B we use small decision 
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trees of depth at most 3. Note that such individual trees do not usually give good performance; that is, 

they are weak prediction functions. 

 
# boosting sklearn 
from sklearn.ensemble import GradientBoostingRegressor 
 
# training 
breg = GradientBoostingRegressor(learning_rate=0.1,  
            n_estimators=100, max_depth =3, random_state=100) 
breg.fit(x_train,y_train) 
 
# test 
yhatb = breg.predict(x_test) 
print("Gradient Boosting R^2 score = ",r2_score(y_test, yhatb)) 

Gradient	 Boosting	 R^2	 score	 =	 	 0.8992706169055638	
 

We can see that the resulting boosting prediction function gives the R2 score equal to 0.899, which is 

better than R2 scores of simple decision tree (0.5754), and the random forest (0.8106). 

 

You can download the above python code Ensemble_compare_01.ipynb from the course website. 

 

Remarks:  

1. Gradient boosting is also known as gradient tree boosting, stochastic gradient boosting (an 

extension), and gradient boosting machines, or GBM for short.  

2. Ensembles for gradient boosting are often constructed from shallow decision tree models. Trees 

are added one at a time to the ensemble and fit to correct the prediction errors made by prior models.  

3. Models are fit using any arbitrary differentiable loss function and gradient descent optimization 

algorithm. This gives the technique its name, “gradient boosting,” as the loss gradient is minimized 

as the model is fit, much like a neural network. 

4. Gradient boosting is an effective machine learning algorithm and is often the main, or one of the 

main, algorithms used to win machine learning competitions (like Kaggle) on tabular and similar 

structured datasets.  

5. A popular implementation of gradient boosting is the version provided with the scikit-learn library. 

Additional third-party libraries are available that provide computationally efficient alternate 

implementations of the algorithm that often achieve better results in practice. Examples include 

the XGBoost (eXtreme Gradient Boosting) library, the LightGBM (Light Gradient Boosting 

Machine) library, and the CatBoost (Categorical Features+Gradient Boosting) library. 

6. To include the third-party library into your Anaconda environment is very simple. For example, to 

include the XGBoost library, you simply do the following via the command window: 

 
conda install -c conda-forge xgboost 

 


