
Introduction to Machine Learning and Deep Learning
2020/10/28

 1

Ensemble Methods: Random Forest

1. Theoretical Motivation

The bagging procedure can be further enhanced by introducing random forests. As we discussed in

bagging, with a set of n independent (or uncorrelated) observations !!, !", ⋯ , !#, each with variance

$", the variance of the mean !̅ of the observations is given by
$!
. In other words, averaging a set

of observations reduces variance.

However, if bootstrapped data are using instead, the observations !!, !", ⋯ , !% will be correlated. In

particular, they are identically distributed (but not independent) with some positive correlation &. It

then holds that:

!̅% = &$" + $" (!'()%

Q: So what?

A: While the second term goes to zero as the number of observations) increase, the first term remains

constant.

This issue is particularly relevant for bagging with decision trees. For example, consider a situation in

which there exists a feature that provides a very good split of the data. What would happen?

A: Such feature will be selected and split for every *(∗%) at the root level and consequently we will

end up with highly correlated predictions.

The major idea of random forests is to perform bagging in combination with a “decorrelation” of

the trees by including only a subset of randomly selected features during the tree construction. This

simple but powerful idea will decorrelate the trees, since the strong features might not be included in

the subset.

Remark: In random forests, + features is chosen as split candidates from the full set of , features.

Typically, we choose + ≈ √,. For example, if we have 13 features in total, each time we will only

use 4 randomly selected from the 13 features and only use 1 from the 4 features to spilt the tree.

Introduction to Machine Learning and Deep Learning
2020/10/28

 2

2. Python Example: Random Forest for Classifying Digits

To demonstrate the capability of random forests, let's consider one piece of the optical character

recognition problem: the identification of hand-written digits. In the wild, this problem involves

both locating and identifying characters in an image. Here we'll take a shortcut and use Scikit-

Learn's set of pre-formatted digits, which is built into the library.

Loading and visualizing the digits data

We'll use Scikit-Learn's data access interface and take a look at this data:

from sklearn.datasets import load_digits
digits = load_digits()
digits.images.shape

The images data is a three-dimensional array: 1,797 samples each consisting of an 8 × 8 grid of pixels.

Let's visualize the first hundred of these:

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()

fig, axes = plt.subplots(10, 10, figsize=(8, 8),
 subplot_kw={'xticks':[], 'yticks':[]},
 gridspec_kw=dict(hspace=0.1, wspace=0.1))

for i, ax in enumerate(axes.flat):
 ax.imshow(digits.images[i], cmap='binary', interpolation='nearest')
 ax.text(0.05, 0.05, str(digits.target[i]),
 transform=ax.transAxes, color='green')

Introduction to Machine Learning and Deep Learning
2020/10/28

 3

In order to work with this data within Scikit-Learn, we need a two-dimensional, [n_samples,

n_features] representation. We can accomplish this by treating each pixel in the image as a feature:

that is, by flattening out the pixel arrays so that we have a length-64 array of pixel values representing

each digit. Additionally, we need the target array, which gives the previously determined label for each

digit. These two quantities are built into the digits dataset under the data and target attributes,

respectively:

X = digits.data
X.shape

y = digits.target
y.shape

We see here that there are 1,797 samples and 64 features.

Introduction to Machine Learning and Deep Learning
2020/10/28

 4

We can quickly classify the digits using a random forest as follows:

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, random_state=0)
model = RandomForestClassifier(n_estimators=1000)
model.fit(Xtrain, ytrain)
ypred = model.predict(Xtest)

We can take a look at the classification report for this classifier:

from sklearn import metrics
print(metrics.classification_report(ytest, ypred))

And for good measure, plot the confusion matrix:

from sklearn.metrics import confusion_matrix

mat = confusion_matrix(ytest, ypred)
cmap = sns.cubehelix_palette(light=1, as_cmap=True)
sns.heatmap(mat.T, square=True, cmap=cmap, annot=True, fmt='d',
cbar=False)
plt.xlabel('true label')
plt.ylabel('predicted label');

Introduction to Machine Learning and Deep Learning
2020/10/28

 5

We find that a simple, untuned random forest results in a very accurate classification of the digits data.

3. Feature Importance

One great quality of Random Forests (and other ensemble tree methods) is that they make it easy to

measure the relative importance of each feature (or attribute). Scikit-Learn measures a feature’s

importance by looking at how much the tree nodes that use that feature to reduce impurity on average

(across all trees in the forest).

Scikit-Learn computes this score automatically for each feature after training, then it scales the

results so that the sum of all importance is equal to 1. You can access the result using the

feature_importances_ variable. For example, the following code trains a

RandomForestClassifier on the iris dataset and outputs each feature’s importance.

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier

Fun Time: If a feature can reduce more impurity, the feature is more important. (1) Yes (2) No

Introduction to Machine Learning and Deep Learning
2020/10/28

 6

iris = load_iris()
rnd_clf = RandomForestClassifier(n_estimators=500, n_jobs=-1)
rnd_clf.fit(iris["data"], iris["target"])
for name, score in zip(iris["feature_names"],
rnd_clf.feature_importances_):
 print(name, score)

We observe that the most important features are the petal length (43.5%) and width (43.1%), while

sepal length and width are rather unimportant in comparison (10.8% and 2.6%, respectively).

Remark: For this simple case, we can also observe the feature importance directly from visualizing

the data. Visualizing the multidimensional relationships among the samples is as easy as calling

sns.pairplot:

%matplotlib inline
import seaborn as sns; sns.set()
sns.pairplot(iris, hue='species', height=1.5);

We can observe that the classification ability of petal_length and pedal_width is better than

sepal_length and sepal_width, same as the conclusion drawn from feature importance of the

Random Forest classifier.

Introduction to Machine Learning and Deep Learning
2020/10/28

 7

Similarly, if you plot each pixel’s importance of a Random Forest classifier on the previous example

of digit images with 8x8 pixels, you get the image represented in the figure below.

import matplotlib
def plot_digit(data):
 image = data.reshape(8, 8)
 plt.imshow(image, cmap = matplotlib.cm.hot,
 interpolation="nearest")
 plt.axis("off")

plot_digit(model.feature_importances_)

cbar = plt.colorbar(ticks=[model.feature_importances_.min(),
model.feature_importances_.max()])
cbar.ax.set_yticklabels(['Not important', 'Very important'])

Remark: Random Forests are very handy to get a quick understanding of what features actually matter,

in particular if you need to perform feature selection.

You can download the source codes RFDigitsRecog.ipynb and RFFeatures.ipynb to reproduce

these two examples from the course website.

