CIE 5133 機器學習與深度學習導論線上課程 #### 開始之前 (10.27.2021) - 請將你的麥克風靜音 - 請找個安全、舒適的空間 - 聽講時有任何問題請到 slido #073374 留言 - HW2 will be due today and TAs are ready to help! - Midterm competition starts today!! 30% - Happy Learning!!! ## Classical Machine Learning: Classification and Regression (II) #### **Learning Objectives** - Learn the basic concepts of a few interesting base classifiers. - Learn the basic concepts of ensemble classifiers. Classification algorithm walkthrough: Summary and Recap 10.13.2021 - The "Gini" criteria, or the "Entropy" criteria is the most commonly used index to determine the best split. - Deep decision tree tends to overfit data (be alert to depth!). ## Classification Algorithm Walkthrough: Support Vector Machine (SVM) • Find a linear hyperplane (decision boundary) that will separate the data One Possible Solution Another possible solution Other possible solutions - Which one is better? B1 or B2? - How do you define better? Find hyperplane maximizes the margin => B1 is better than B2 # Support Vector Machine: theoretical minimum and example - The phrase "theoretical minimum" is taken from a very successful book series written by Leonard Susskind, a great physicist at Stanford University. - "Theoretical minimum" means just the minimum theories and equations you need to know in order to proceed to the next level. - See Support_Vector_Machine.pdf #### **Summary** Classification Algorithm Walkthrough: Support Vector Machine (SVM) - SVM classification is based on relatively few support vectors and is robust to noise. - SVM can handle irrelevant and redundant data better than many other techniques. - The integration with kernel methods makes SVM very versatile, able to adapt to many types of data. # Classification algorithm shortlist Base_classifiers.ipynb - Linear Machine Learning Algorithms - Logistic Regression - Linear Discriminant Analysis - Nonlinear Machine Learning Algorithms - k-Nearest Neighbors - Naïve Bayes - Classification and Regression Trees - (CART or just decision trees) - Support Vector Machine C&RT CART decision tree Classification algorithm shortlist Fun Time: After cross validation, if a simple, linear machine learning model gives the same performance as a complex, nonlinear model, which model should we use? (1) Simple model (2) Complex model 073374 ## Learning Principle: Occam's Razor ## Occam's Razor: The simplest model that fits the data is also the most plausible (合理). - Occam's razor in machine learning means simpler model has a better chance of being right. However, if a complex explanation of the data performs better, we will take it. - The argument that simpler has a better chance of being right goes as follows. With complex hypotheses, there would be enough of them to fit the data set regardless of what the labels are, even if these are completely random. Therefore, fitting the data does not mean much. - If, instead, we have a simple model with few hypotheses and we still found one that perfectly fits. This is surprising, and therefore it means some thing. ## Classification Algorithm Walkthrough: Ensemble Classifiers #### **Ensemble Methods** Construct a set of base classifiers learned from the training data Predict class label of test records by combining the predictions made by multiple classifiers (e.g., by taking majority vote) #### **General Approach of Ensemble Learning** Why do ensemble **Training Data** methods work? See Ensemble Rationale.pdf 70.5 Step 1: **Build Multiple** Classifiers Step 2: Using majority vote or Combine weighted majority vote Classifier Resposes (weighted according to their accuracy or relevance) #### **Base Classifiers for Ensemble Learning** • Ensemble Methods work best with unstable base classifiers - Classifiers that are sensitive to minor perturbations in training set, due to high model complexity - Ensemble methods try to reduce the variance of complex models (with low bias) by aggregating responses of multiple base classifiers - Examples: Unpruned decision trees, ANNs, ... ## Classification Algorithm Walkthrough: Ensemble Classifiers - Bagging #### Bagging (Bootstrap AGGregatING) Bootstrap sampling: sampling with replacement inference about a population from sample data (sample → population) can be modelled by resampling the sample data and performing inference about a sample from resampled data (resampled → sample). Consider 1-dimensional data set: #### **Original Data:** | → | X | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 8.0 | 0.9 | 1 | |----------|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|---| | a | у | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | - Classifier is a decision stump (decision tree of size 1) - Decision rule: $x \le k$ versus x > k - Split point k is chosen based on entropy - Classifier is a decision stump (decision tree of size 1) - Decision rule: $x \le k$ versus x > k - Split point k is chosen based on entropy **Fun Time:** what is the best accuracy that a decision tree (a decision stump) can reach for this simple 1d example? (1) 50% (2) 60% (3) 70% (4) 80% | Baggin | g Roun | nd 1: | | | | | | | | | | |--------------------------------|---------------------------|----------|-----|-----|-----|-----------|-----------|-----------|-----|-----|---| | X | 0.1 | 0.2 | 0.2 | 0.3 | 0.4 | 0.4 | 0.5 | 0.6 | 0.9 | 0.9 | $x \le 0.35 \Rightarrow y = 1$ | | У | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | $x > 0.35 \Rightarrow y = -1$ | | Baggin | g Roun | nd 2: | | | | | | | | | | | X | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.5 | 0.9 | 1 | 1 | 1 | x <= 0.7 → y = | | У | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | $x > 0.7 \implies y = 1$ | | Baggin
x
y | g Rour
0.1
1 | 0.2
1 | 0.3 | 0.4 | 0.4 | 0.5
-1 | 0.7
-1 | 0.7
-1 | 0.8 | 0.9 | $x \le 0.35 \Rightarrow y = 1$
$x > 0.35 \Rightarrow y = -1$ | | Baggin | g Roun | nd 4: | | | | | | | | | | | X | 0.1 | 0.1 | 0.2 | 0.4 | 0.4 | 0.5 | 0.5 | 0.7 | 8.0 | 0.9 | $x <= 0.3 \rightarrow y = 1$ | | У | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | $x > 0.3 \implies y = -1$ | | Bagging Round 5: | | | | | | | | | | | | | X | 0.1 | 0.1 | 0.2 | 0.5 | 0.6 | 0.6 | 0.6 | 1 | 1 | 1 | $x \le 0.35 \Rightarrow y = 1$
$x > 0.35 \Rightarrow y = -1$ | | У | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | X > 0.33 -y y = -1 | | Baggir | ng Rour | nd 6: | | | | | | l | | | | | |-------------------|------------------|-------|-----|-----|-----|-----|-----|-----|-----|-----|---|--| | X | 0.2 | 0.4 | 0.5 | 0.6 | 0.7 | 0.7 | 0.7 | 8.0 | 0.9 | 1 | $x \le 0.75 \Rightarrow y = -1$ | | | У | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | $x > 0.75 \implies y = 1$ | | | Bagging Round 7: | | | | | | | | | | | | | | X | 0.1 | 0.4 | 0.4 | 0.6 | 0.7 | 8.0 | 0.9 | 0.9 | 0.9 | 1 | $x \le 0.75 \Rightarrow y = -1$ | | | У | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | $x > 0.75 \rightarrow y = 1$ | | | Baggir | Bagging Round 8: | | | | | | | | | | | | | X | 0.1 | 0.2 | 0.5 | 0.5 | 0.5 | 0.7 | 0.7 | 8.0 | 0.9 | 1 | $x \le 0.75 \Rightarrow y = -1$
$x > 0.75 \Rightarrow y = 1$ | | | У | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | x > 0.75 y y = 1 | | | Baggir | ng Rour | nd 9: | | | | | | | | | | | | X | 0.1 | 0.3 | 0.4 | 0.4 | 0.6 | 0.7 | 0.7 | 8.0 | 1 | 1 | $x \le 0.75 \Rightarrow y = -1$ | | | у | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | $x > 0.75 \implies y = 1$ | | | Bagging Round 10: | | | | | | | | | | | | | | X | 0.1 | 0.1 | 0.1 | 0.1 | 0.3 | 0.3 | 8.0 | 8.0 | 0.9 | 0.9 | $x <= 0.05 \Rightarrow y = 1$
$x > 0.05 \Rightarrow y = 1$ | | | У | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | X > 0.05 7 y - 1 | | | | | | | | | | | | | | | | Summary of Trained Decision Stumps: | Round | Split Point | Left Class | Right Class | |-------|--------------------|------------|-------------| | 1 | 0.35 | 1 | -1 | | 2 | 0.7 | 1 | 1 | | 3 | 0.35 | 1 | -1 | | 4 | 0.3 | 1 | -1 | | 5 | 0.35 | 1 | -1 | | 6 | 0.75 | -1 | 1 | | 7 | 0.75 | -1 | 1 | | 8 | 0.75 | -1 | 1 | | 9 | 0.75 | -1 | 1 | | 10 | 0.05 | 1 | 1 | Use majority vote (sign of sum of predictions) to determine class of ensemble classifier | X=0.35_ | Round | x=0.1 | x=0.2 | x=0.3 | x=0.4 | x=0.5 | x=0.6 | x=0.7 | x=0.8 | x=0.9 | x=1.0 | |-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | 7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | | x=0.7 >> | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 3 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | | ſ | 4 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | | | 5 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | | | 6 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | | | 7 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | | | 8 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | | | 9 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | | | 10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Sum | 2 | 2 | 2 | -6 | -6 | -6 | -6 | 2 | 2 | 2 | | Predicted Class | Sign | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | **Original Data:** | X | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 8.0 | 0.9 | 1 | |---|-----|-----|-----|-----|-----|-----|-----|-----|-----|---| | У | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | #### **Fun Time** ### Bagging is mainly meant to reduce the error from: - 1. bias - 2. variance #### Bagging: theoretical minimum and example - The phrase "theoretical minimum" is taken from a very successful book series written by Leonard Susskind, a great physicist at Stanford University. - "Theoretical minimum" means just the minimum theories and equations you need to know in order to proceed to the next level. - See Ensemble_Bagging.pdf ## Classification Algorithm Walkthrough: Ensemble Classifiers – Random Forest #### **Random Forest Algorithm** Construct an ensemble of decision trees by manipulating training set as well as features - Use bootstrap sample to train every decision tree (similar to Bagging) - Use the following tree induction algorithm: - At every internal node of <u>decision tree</u>, randomly sample p attributes (p < \underline{d}) for selecting split criterion - Repeat this procedure until all leaves are pure (unpruned tree) 6-5 decision tree 7 decision tree 7 un correlated #### **Random Forest Algorithm** - Construct an ensemble of decision trees by manipulating training set as well as features - Use bootstrap sample to train every decision tree (similar to Bagging) - ✓ Use p attributes (p < d) to split tree</p> #### Random Forest: theoretical minimum and python example - The phrase "theoretical minimum" is taken from a very successful book series written by Leonard Susskind, a great physicist at Stanford University. - "Theoretical minimum" means just the minimum theories and equations you need to know in order to proceed to the next level. - See Ensemble_Random_Forest.pdf #### Feature Importance: Extra Bonus of Random Forest - Random forest measures a feature's importance by looking at how much the tree nodes that use that feature to reduce impurity on average (across all trees in the forest). - The feature that can reduce more impurity, the more important. #### Feature Importance: Extra Bonus of Random Forest Automation in Construction 118 (2020) 103274 Contents lists available at ScienceDirect #### **Automation in Construction** journal homepage: www.elsevier.com/locate/autcon Machine learning-based seismic capability evaluation for school buildings Nai-Wen Chi^a, Jyun-Ping Wang^b, Jia-Hsing Liao^c, Wei-Choung Cheng^d, Chuin-Shan Chen^{b,*} Fun Time: what is the most important feature for seismic capability for old school buildings in Taiwan? - ✓1. Total floor area of the building - ✓2. Spectral acceleration demand - ✓3. Tensile strength of steel - ✓4. Amount of walls in Y direction - ✓5. The built year #### **Summary: Characteristics of Random Forest** - Base classifiers are unpruned trees and hence are unstable classifiers - Base classifiers are decorrelated (due to randomization in training set as well as features) - Random forests reduce variance of unstable classifiers without negatively impacting the bias - Selection of hyper-parameter p - Small value ensures lack of correlation - High value promotes strong base classifiers - Common default choices: \sqrt{d} , $\log_2(d+1)$