
Introduction to Machine Learning and Deep Learning 
2021/10/20 

 1 

Support Vector Machine (SVM) 
 
In this section, we will discuss the support vector machine (SVM), an approach for classification that 
was developed in the computer science community in the 1990s and that has grown in popularity since 
then. Support vector machines are a particularly powerful and flexible class of supervised algorithms 
for both classification and regression.  
 
1. Rationale for Maximum Margin 
 
In support vector machines, the hyperplane that maximizes this margin is the one we will choose 
as the optimal model. In two dimensions, this is the dividing line that maximizes the margin 
between the two sets of points. Notice that a few of the training points just touch the margin. These 
points are the pivotal elements of this fit, and are known as the support vectors, and give the 
algorithm its name. 
 

 
 
Hyperplanes with large margins tend to have better generalization performance than those with small 
margins. Intuitively, if the margin is small, then any slight perturbation in the hyperplane or the 
training instances located at the boundary can have quite an impact on the classification 
performance. Small margin hyperplanes are thus more susceptible to overfitting, as they are barely 
able to separate the classes with a very narrow room to allow perturbations. On the other hand, a 
hyperplane that is farther away from training instances of both classes has sufficient leeway to be 
robust to minor modifications in the data, and thus shows superior generalization performance. 
 
The idea of choosing the maximum margin separating hyperplane also has strong foundations in 
statistical learning theory. It can be shown that the margin of such a hyperplane is inversely related to 
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the VC-dimension of the classifier, which is a commonly used measure of the complexity of a model. 
As will be addressed later in the Occam’s Razor learning principle, a simpler model should be 
preferred over a more complex model if they both show similar training performance. Hence, 
maximizing the margin results in the selection of a separating hyperplane with the lowest model 
complexity, which is expected to show better generalization performance. 
 
2. Theoretical Minimum: Support Vector Machine1 
 
A SVM is a classifier that searches for an optimal separating hyperplane with the largest margin. In 
this section, we define a hyperplane and introduce the concept of a separating hyperplane, margin and 
an optimal separating hyperplane. 
 
What Is Hyperplane? 
 
In a d-dimensional space, a hyperplane is a flat subspace of dimension d − 1. For instance, in two 
dimensions, a hyperplane is a flat one-dimensional subspace—in other words, a line. In three 
dimensions, a hyperplane is a flat two-dimensional subspace—that is, a plane. In d > 3 dimensions, it 
can be hard to visualize a hyperplane, but the notion of a (d − 1)-dimensional flat subspace still applies. 
 
The mathematical definition of a hyperplane is quite simple. In two dimensions, a hyperplane is 
defined by the equation: 
 
(1) 𝑤!𝑥! +𝑤"𝑥" + 𝑏 = 0 
 
for parameters 𝑤!, 𝑤", and 𝑏. When we say the equation “defines” the hyperplane, we mean that any 
point 𝐱 = [𝑥!, 𝑥"]# for which the equation holds is a point on the hyperplane.  
 
Q: Equation (1) is simply the equation of a line, since indeed in two dimensions a hyperplane is a line. 
Convert 𝐱 into 2D Cartesian coordinate and convince yourself it is the equation of a line. 
A: 

𝑤!𝑥 + 𝑤"𝑦 + 𝑏 = 0 so 𝑦 = −$!
$"
𝑥 + 𝑏 

 
We can easily extend the hyperplane to the d-dimensional setting: 
 

𝑤!𝑥! +𝑤"𝑥" +⋯𝑤%𝑥% + 𝑏 = 0  

 
1 Major contents are adapted from dynamic e-chapters of Abu-Mostafa, Y S, Magdon-Ismail, M., Lin, H-T (2012) Learning 
from Data, AMLbook.com. 
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Or  
 
(2) 𝐰#𝐱 + 𝑏 = 0  

 
in which 𝐰 = [𝑤!, 𝑤", … , 𝑤%]# , 𝐱 = [𝑥!, 𝑥", … , 𝑥%]# ; 𝐰, 𝐱 ∈ ℝ%  where ℝ%  is the d-dimensional 
Euclidean space and 𝑏 ∈ ℝ. 
 
Separating Hyperplane 
 
Consider a binary classification problem in the d-dimensional Euclidean space. The problem consists 
of 𝑁 training examples: (𝐱!, 𝑦!), · · ·, (𝐱& , 𝑦&) where 𝑦' = 𝑓(𝐱') for 𝑛 = 1,⋯ ,𝑁. Again let 
𝐱 ∈ ℝ% where ℝ% is the d-dimensional Euclidean space and by convention let 𝑦 ∈ {−1, 1} denote 
its class label.  
 
We are interested in finding a hyperplane that places instances of both classes on opposite sides of the 
hyperplane, thus resulting in a separation of the two classes. This means that: 
 

𝐰#𝐱' + 𝑏 > 0 if 𝑦' = 1 
𝐰#𝐱' + 𝑏 < 0 if 𝑦' = −1 

 
In other words, the hyperplane ℎ, defined by (𝑏,𝐰), separates the training examples if and only if: 
 
(3) 𝑦'(𝐰#𝐱' + 𝑏) > 0					for			𝑛 = 1,⋯ ,𝑁    separating hyperplane 

 

 
 
The signal 𝑦'(𝐰#𝐱' + 𝑏) is positive for each data point. However, the magnitude of the signal is not 
meaningful since we can make it arbitrarily small or large for the same hyperplane by rescaling 𝐰 
and 𝑏.  
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e-8. Support Vector Machines 8.1. The Optimal Hyperplane

A maximum-margin separating hyperplane has two defining properties.

1. It separates the data.

2. It has the thickest cushion among hyperplanes that separate the data.

To find a separating hyperplane with maximum margin, we first re-examine
the definition of a separating hyperplane and reshape the definition into an
equivalent, more convenient one. Then, we discuss how to compute the margin
of any given separating hyperplane (so that we can find the one with maximum
margin). As we observed in our earlier intuitive discussion, the margin is
obtained by extending the cushion until you hit a data point. That is, the
margin is the distance from the hyperplane to the nearest data point. We
thus need to become familiar with the geometry of hyperplanes; in particular,
how to compute the distance from a data point to the hyperplane.

wtxn + b > 0

wtxn + b < 0

Separating hyperplanes. The hyper-
plane h, defined by (b,w), separates the
data if and only if for n = 1, . . . , N ,

yn(w
txn + b) > 0. (8.1)

The signal yn(wtxn+b) is positive for each
data point. However, the magnitude of the
signal is not meaningful by itself since we
can make it arbitrarily small or large for the
same hyperplane by rescaling the weights
and the bias. This is because (b,w) is the
same hyperplane as (b/ρ,w/ρ) for any ρ >
0. By rescaling the weights, we can control
the size of the signal for our data points. Let us pick a particular value of ρ,

ρ = min
n=1,...,N

yn(w
txn + b),

which is positive because of (8.1). Now, rescale the weights to obtain the same
hyperplane (b/ρ,w/ρ). For these rescaled weights,

min
n=1,...,N

yn

(
w

ρ

t

xn +
b

ρ

)

=
1

ρ
min

n=1,...,N
yn(w

txn + b) =
ρ

ρ
= 1.

Thus, for any separating hyperplane, it is always possible to choose weights
so that all the signals yn(wtxn + b) are of magnitude greater than or equal
to 1, with equality satisfied by at least one (xn, yn). This motivates our new
definition of a separating hyperplane.

Definition 8.1 (Separating Hyperplane). The hyperplane h separates the
data if and only if it can be represented by weights (b,w) that satisfy

min
n=1,...,N

yn(w
txn + b) = 1. (8.2)

c© AM
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Q: Why? 
A:  
From Equation (2), we observe that (𝑏,𝐰) is the same hyperplane as (𝑏/𝜌,𝐰/𝜌) for any 𝜌 > 0.  
 
By rescaling the weights, we can control the magnitude of the signal for our data points. Let us pick a 
particular value of ρ, 
 

𝜌 = min
'(!,⋯,&

𝑦'(𝐰#𝐱' + 𝑏)  

 
which is positive because of Equation (3). Now, rescale the weights to obtain the same hyperplane 
(𝑏/𝜌,𝐰/𝜌). For these rescaled weights, 
 

min
'(!,⋯,&

𝑦' F
𝐰
,

#
𝐱' +

-
,
G = !

,
min

'(!,⋯,&
𝑦'(𝐰#𝐱' + 𝑏) =

,
,
= 1  

 
Thus, for any separating hyperplane, it is always possible to choose weights so that all the signals 
𝑦'(𝐰#𝐱' + 𝑏) are of magnitude greater than or equal to 1, with equality satisfied by at least one 
(𝐱', 𝑦'). This motivates our new definition of a separating hyperplane, equivalent to Equation (3): 
 
Definition (Separating Hyperplane). The hyperplane ℎ separates the data if and only if it can be 
represented by weights (𝑏,𝐰) that satisfy 
 

(4) min
'(!,⋯,&

𝑦'(𝐰#𝐱' + 𝑏) = 1          

 
Remark: some terminology: the parameters (𝑏,𝐰) of a separating hyperplane that satisfy (4) are 
called the canonical representation of the hyperplane. 
 
Margin of Separating Hyperplane 
 
To compute the margin of a separating hyperplane, we need to compute the distance from the 
hyperplane to the nearest data point. As a start, let us compute the distance from an arbitrary point 𝐱 
to a separating hyperplane ℎ = (𝑏,𝐰) that satisfies Equation (4). Denote this distance by dist(𝐱, ℎ). 
Referring to the figure below, dist(𝐱, ℎ) is the length of the perpendicular line from 𝐱 to ℎ. 
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Q: Let 𝐱′ be any point on the hyperplane, which means 𝐰#𝐱′ + 𝑏 = 0 (from Equation (1)). Let 𝐮 
be a unit vector that is normal to the hyperplane ℎ. What is dist(𝐱, ℎ) in terms of 𝐱, 𝐱′, and 𝐮? 
A: 
dist(𝐱, ℎ) = |𝐮#(𝐱 − 𝐱.)|. This is the projection of the vector (𝐱 − 𝐱.) onto 𝐮. 
 
From the figure above, we realize any vector lying on the hyperplane can be expressed by (𝐱.. − 𝐱′) 
for some points 𝐱′ and 𝐱′′ on the hyperplane. This leads to 𝐰#𝐱′ + 𝑏 = 0 and 𝐰#𝐱′′ + 𝑏 = 0 or: 
 
(5) 𝐰#(𝐱.. − 𝐱′) = 0  
 
Q: From Equation (5), what a remarkable geometric property we have for w? 
A: 
w is normal to the hyperplane 
 
Setting u = w/∥w∥, the distance from x to h becomes: 
 

dist(𝐱, ℎ) = |𝐮#(𝐱 − 𝐱.)| = /𝐰#𝐱1𝐰#𝐱$/
‖𝐰‖

= /𝐰#𝐱3-/
‖𝐰‖

  

 
We thus lead to an important conclusion: distance of any data points (𝐱', 𝑦') in our training examples 
to the hyperplane is: 
 

dist(𝐱', ℎ) =
/𝐰#𝐱%3-/

‖𝐰‖
= 4%(𝐰#𝐱%3-)

‖𝐰‖
  

 
Fun Time: What is the distance of the data point nearest to the canonical representation of the 
hyperplane (hint: take a look of Equation (4))?  

(1) !
‖𝐰‖

  (2) "
‖𝐰‖

 (3) !
‖𝐰‖"

  (4) cannot be determined. 
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e-8. Support Vector Machines 8.1. The Optimal Hyperplane

The conditions (8.1) and (8.2) are equivalent. Every separating hyperplane
can be accommodated under Definition 8.1. All we did is constrain the way
we algebraically represent such a hyperplane by choosing a (data dependent)
normalization for the weights, to ensure that the magnitude of the signal is
meaningful. Our normalization in (8.2) will be particularly convenient for de-
riving the algorithm to find the maximum-margin separator. The next exercise
gives a concrete example of re-normalizing the weights to satisfy (8.2).

Exercise 8.2

Consider the data below and a ‘hyperplane’ (b,w) that separates the data.

X =





0 0
2 2
2 0



 y =





−1
−1
+1



 w =

[

1.2
−3.2

]

b = −0.5

(a) Compute ρ = min
n=1,...,N

yn(wtxn + b).

(b) Compute the weights 1
ρ (b,w) and show that they satisfy (8.2).

(c) Plot both hyperplanes to show that they are the same separator.

dist(x, h)

x′
x′′

w

x
Margin of a hyperplane. To compute
the margin of a separating hyperplane, we
need to compute the distance from the hy-
perplane to the nearest data point. As a
start, let us compute the distance from an
arbitrary point x to a separating hyper-
plane h = (b,w) that satisfies (8.2). De-
note this distance by dist(x, h). Referring
to the figure on the right, dist(x, h) is the
length of the perpendicular from x to h.
Let x′ be any point on the hyperplane,
which means wtx′+ b = 0. Let u be a unit
vector that is normal to the hyperplane h.
Then, dist(x, h) = |ut(x−x′)|, the projection of the vector (x−x′) onto u. We
now argue that w is normal to the hyperplane, and so we can take u = w/‖w‖.
Indeed, any vector lying on the hyperplane can be expressed by (x′′ − x′) for
some x′,x′′ on the hyperplane, as shown. Then, using wtx = −b for points
on the hyperplane,

wt(x′′ − x′) = wtx′′ −wtx′ = −b+ b = 0.

Therefore, w is orthogonal to every vector in the hyperplane, hence it is the
normal vector as claimed. Setting u = w/‖w‖, the distance from x to h is

dist(x, h) = |ut(x− x′)| = |wtx−wtx′|
‖w‖ =

|wtx+ b|
‖w‖ ,

c© AM
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Remark: This simple expression for the distance of the nearest data point to the hyperplane is the 
entire reason why we chose to normalize (𝑏,𝐰) as we did in (4). For any separating hyperplane 
satisfying (4), the margin is 1/‖𝐰‖. If you hold on a little longer, you are about to reap the full benefit, 
namely a simple algorithm for finding the optimal hyperplane. 
 
Maximum Margin of Separating Hyperplane 
 
The maximum-margin separating hyperplane (𝑏∗, 𝐰∗)  is the one that satisfies the separation 
condition (4) with minimum weight-norm (since the margin is the inverse of the weight-norm). Instead 

of minimizing the weight-norm, we can equivalently minimize !
"
𝐰8𝐰, which is analytically more 

friendly. Therefore, to find this optimal hyperplane, we need to solve the following optimization 
problem. 
 

(6) minimize
-,𝐰

: 							!
"
𝐰8𝐰          

 subject	to:    min
'(!,⋯,&

𝑦'(𝐰#𝐱' + 𝑏) = 1 

 
The constraint ensures that the hyperplane separates the data as per (4). Observe that the bias b does 
not appear in the quantity being minimized, but it is involved in the constraint. To make the 

optimization problem easier to solve, we can replace the single constraint min
'(!,⋯,&

𝑦'(𝐰#𝐱' + 𝑏) = 1 

with N ‘looser’ constraints 𝑦'(𝐰#𝐱' + 𝑏) ≥ 1 for 𝑛 = 1,⋯ ,𝑁 and solve the optimization problem: 
 

(7) minimize
-,𝐰

: 									!
"
𝐰8𝐰          

 subject	to:    𝑦'(𝐰#𝐱' + 𝑏) ≥ 1      (𝑛 = 1,⋯ ,𝑁) 
 
The constraint in (6) implies the constraints in (7), which means that the constraints in (7) are looser. 
Fortunately, at the optimal solution, the constraints in (7) become equivalent to the constraint in (6).  
 
Example: We will use a toy example to solve (7). In two dimensions, a hyperplane is specified by the 
parameters (𝑏, 𝑤!, 𝑤"). Let us consider a data set that was the basis for the figure below. There are 
many possibilities of hyperplanes to separate the data points. Our task is to use (7) to find the optimal 
separating hyperplane with the largest margin.  
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The data matrix and target values, together with the separability constraints from (7) are summarized 
below. The inequality on a particular row is the separability constraint for the corresponding data point 
in that row. 

 
Q: What happens when we combine (i) and (iii)? 
A: 
𝑤! ≥ 1  
Q: What happens when we combine (ii) and (iii)? 
𝑤" ≤ −1  
 

This means that !
"
(𝑤!" +𝑤"") ≥ 1 with the equality !

"
(𝑤!" +𝑤"") = 1	when 𝑤! = 1 and 𝑤" = −1. 

We can then substitute these values into (i) – (iv) and verify that (𝑏∗ = −1,𝑤!∗ = 1,𝑤"∗ = −1) 

satisfies all four constraints, minimizes !
"
(𝑤!" +𝑤""), and therefore gives the optimal hyperplane. The 

optimal hyperplane is shown in the following figure.  

 
Q: What is our final hypothesis 𝑔(𝐱)?  
A:  
𝑔(𝐱) = sign(𝑥! − 𝑥" − 1)  
 
Q: How to solve the maximum margin? 
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e-8. Support Vector Machines 8.1. The Optimal Hyperplane

As you can see, many lines separate the data and the Perceptron Learning
Algorithm (PLA) finds one of them. Do we care about which one PLA finds?
All separators have Ein = 0, so the VC analysis in Chapter 2 gives the same
Eout-bound for every separator. Well, the VC bound may say one thing, but
surely our intuition says that the rightmost separator is preferred .

Let’s try to pin down an argument that supports our intuition. In practice,
there are measurement errors – noise. Place identical shaded regions around
each data point, with the radius of the region being the amount of possible
measurement error. The true data point can lie anywhere within this ‘region
of uncertainty’ on account of the measurement error. A separator is ‘safe’ with
respect to the measurement error if it classifies the true data points correctly.
That is, no matter where in its region of uncertainty the true data point lies, it
is still on the correct side of the separator. The figure below shows the largest
measurement errors which are safe for each separator.

A separator that can tolerate more measurement error is safer. The right-
most separator tolerates the largest error, whereas for the leftmost separator,
even a small error in some data points could result in a misclassification. In
Chapter 4, we saw that noise (for example measurement error) is the main
cause of overfitting. Regularization helps us combat noise and avoid overfit-
ting. In our example, the rightmost separator is more robust to noise without
compromising Ein; it is better ‘regularized’. Our intuition is well justified.

We can also quantify noise tolerance from the viewpoint of the separator.
Place a cushion on each side of the separator. We call such a separator with a
cushion fat, and we say that it separates the data if no data point lies within
its cushion. Here is the largest cushion we can place around each of our three
candidate separators.

c© AM
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e-8. Support Vector Machines 8.1. The Optimal Hyperplane

minn yn(wtxn + b) = 1 with N ‘looser’ constraints yn(wtxn + b) ≥ 1 for
n = 1, . . . , N and solve the optimization problem:

minimize:
b,w

1
2w

tw (8.4)

subject to: yn(w
txn + b) ≥ 1 (n = 1, · · · , N).

The constraint in (8.3) implies the constraints in (8.4), which means that
the constraints in (8.4) are looser. Fortunately, at the optimal solution, the
constraints in (8.4) become equivalent to the constraint in (8.3) as long as
there are both positive and negative examples in the data. After solving (8.4),
we will show that the constraint of (8.3) is automatically satisfied. This means
that we will also have solved (8.3).

To do that, we will use a proof by contradiction. Suppose that the solution
(b∗,w∗) of (8.4) has

ρ∗ = min
n

yn(w
∗txn + b∗) > 1,

and therefore is not a solution to (8.3). Consider the rescaled hyperplane
(b,w) = 1

ρ∗ (b∗,w∗), which satisfies the constraints in (8.4) by construction.

For (b,w), we have that ‖w‖ = 1
ρ∗ ‖w∗‖ < ‖w∗‖ (unless w∗ = 0), which

means that w∗ cannot be optimal for (8.4) unless w∗ = 0. It is not possible
to have w∗ = 0 since this would not correctly classify both the positive and
negative examples in the data.

We will refer to this fattest separating hyperplane as the optimal hyper-
plane. To get the optimal hyperplane, all we have to do is solve the optimiza-
tion problem in (8.4).

Example 8.2. The best way to get a handle on what is going on is to carefully
work through an example to see how solving the optimization problem in (8.4)
results in the optimal hyperplane (b∗,w∗). In two dimensions, a hyperplane
is specified by the parameters (b, w1, w2). Let us consider the toy data set
that was the basis for the figures on page 8-2. The data matrix and target
values, together with the separability constraints from (8.4) are summarized
below. The inequality on a particular row is the separability constraint for the
corresponding data point in that row.

X =







0 0
2 2
2 0
3 0







y =







−1
−1
+1
+1







−b ≥ 1 (i)
−(2w1 + 2w2 + b) ≥ 1 (ii)

2w1 + b ≥ 1 (iii)
3w1 + b ≥ 1 (iv)

Combining (i) and (iii) gives
w1 ≥ 1.

Combining (ii) and (iii) gives
w2 ≤ −1.

c© AM
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e-8. Support Vector Machines 8.1. The Optimal Hyperplane

This means that 1
2 (w

2
1 + w2

2) ≥ 1 with equality when w1 = 1 and w2 = −1.
One can easily verify that

(b∗ = −1, w∗
1 = 1, w∗

2 = −1)

satisfies all four constraints, minimizes 1
2 (w

2
1 + w2

2), and therefore gives the
optimal hyperplane. The optimal hyperplane is shown in the following figure.

Optimal Hyperplane

g(x) = sign(x1 − x2 − 1)

margin:
1

‖w∗‖ =
1√
2
≈ 0.707.

Data points (i), (ii) and (iii) are boxed be-
cause their separation constraints are ex-
actly met: yn(w∗txn + b∗) = 1.

x 1
−
x 2
−
1
=
0

0.707

For data points which meet their constraints exactly, dist(xn, g) =
1

‖w∗‖ . These
data points sit on the boundary of the cushion and play an important role.
They are called support vectors. In a sense, the support vectors are ‘support-
ing’ the cushion and preventing it from expanding further. !

Exercise 8.3

For separable data that contain both positive and negative examples, and
a separating hyperplane h, define the positive-side margin ρ+(h) to be
the distance between h and the nearest data point of class +1. Similarly,
define the negative-side margin ρ−(h) to be the distance between h and the
nearest data point of class −1. Argue that if h is the optimal hyperplane,
then ρ+(h) = ρ−(h). That is, the thickness of the cushion on either side
of the optimal h is equal.

We make an important observation that will be useful later. In Example 8.2,
what happens to the optimal hyperplane if we removed data point (iv), the
non-support vector? Nothing! The hyperplane remains a separator with the
same margin. Even though we removed a data point, a larger margin cannot
be achieved since all the support vectors that previously prevented the margin
from expanding are still in the data. So the hyperplane remains optimal. In-
deed, to compute the optimal hyperplane, only the support vectors are needed;
the other data could be thrown away.

Quadratic Programming (QP). For bigger data sets, manually solving
the optimization problem in (8.4) as we did in Example 8.2 is no longer feasible.

c© AM
L Abu-Mostafa, Magdon-Ismail, Lin: Jan-2015 e-Chap:8–8
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A: 

The maximum margin is !
‖𝐰∗‖ =

!
√"
= 0.707 

Remark: Data points (i), (ii) and (iii) are boxed because their separation constraints are exactly met: 
𝑦'(𝐰#𝐱' + 𝑏) = 1.  
 
Quadratic Programming (QP): For bigger data sets, manually solving the optimization problem in 
(7) as we did in Example is no longer feasible. Fortunately, Equation (7) belongs to a well-studied 
family of optimization problems known as quadratic programming (QP). Whenever you minimize 
a (convex) quadratic function, subject to linear inequality constraints, you can use quadratic 
programming. Quadratic programming is such a well-studied area that excellent, publicly available 
solvers exist for many numerical computing platforms. 
 
3. Beyond linear boundaries: Kernel SVM 
 
Where SVM becomes extremely powerful is when it is combined with nonlinear kernels. To motivate 
the need for kernels, let's look at some data that is not linearly separable: 
 

from sklearn.datasets.samples_generator import make_circles 
X, y = make_circles(100, factor=.1, noise=.1) 
 
clf = SVC(kernel='linear').fit(X, y) 
 
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn') 

 

 
 
It is clear that no linear discrimination will ever be able to separate this data. But we can think about 
how we might project the data into a higher dimension such that a linear separator would be sufficient.  
 
Q: Any potential basis function we can use to project the data so a linear separator would be sufficient? 
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A: 
One simple projection we could use would be to compute a radial basis function centered on the 
middle clump. A radial basis function is a real-valued function whose value depends only on the 
distance from the origin. For example, the RBF in Scikit-Learn uses the form 𝑒1:‖;1;.‖ where 
𝛾 > 0. 
 
In Scikit-Learn, we can apply kernelized SVM simply by changing our linear kernel to an RBF 
(radial basis function) kernel: 
 

clf = SVC(kernel='rbf', C=1E6) 
clf.fit(X, y) 

 

 
 

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn') 
plot_svc_decision_function(clf) 

 

 
 
Using this kernelized support vector machine, we learn a suitable nonlinear decision boundary. This 
kernel transformation strategy is used often in machine learning to turn fast linear methods into fast 
nonlinear methods, especially for models in which the kernel trick can be used. 
 
4. Softening Margins 
 
Our discussion thus far has centered around very clean datasets, in which a perfect decision boundary 
exists. But what if your data has some amount of overlap? For example, you may have data like this: 
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To handle this case, the SVM implementation has a bit of a fudge-factor2 which "softens" the margin: 
that is, it allows some of the points to creep into the margin if that allows a better fit. The hardness of 
the margin is controlled by a tuning parameter, most often known as C. For very large C, the margin 
is hard, and points cannot lie in it. For smaller C, the margin is softer, and can grow to encompass 
some points. 
 
The plot shown below gives a visual picture of how a changing C parameter affects the final fit, via 
the softening of the margin: 
 

X, y = make_blobs(n_samples=100, centers=2, 
                  random_state=0, cluster_std=0.8) 
 
fig, ax = plt.subplots(1, 2, figsize=(16, 6)) 
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1) 
 
for axi, C in zip(ax, [10.0, 0.1]): 
    model = SVC(kernel='linear', C=C).fit(X, y) 
    axi.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn') 
    plot_svc_decision_function(model, axi) 
    axi.scatter(model.support_vectors_[:, 0], 
                model.support_vectors_[:, 1], 
                s=300, lw=1, facecolors='none'); 
    axi.set_title('C = {0:.1f}'.format(C), size=14) 

 

 
2 A fudge-factor is an ad hoc quantity or element introduced into a calculation, formula or model in order to make it fit 
observations or expectations. Examples include Einstein's Cosmological Constant, dark energy, the initial proposals of 
dark matter and inflation. 
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The optimal value of the C parameter will depend on your dataset, and should be tuned using cross-
validation.  
 
You can download the above Python codes SVM_tutorial.ipynb from the course website. 
 
5. Summary: Support Vector Machine 
 
We have seen a brief introduction to the principles behind support vector machines. These methods are 
a powerful classification method for a number of reasons: 
 
• Their dependence on relatively few support vectors means that they are very compact models, 

and take up very little memory. 
• Once the model is trained, the prediction phase is very fast. 
• Because they are affected only by points near the margin, they work well with high-dimensional 

data—even data with more dimensions than samples, which is a challenging regime for other 
algorithms. 

• Their integration with kernel methods makes them very versatile, able to adapt to many types of 
data. 

 
However, SVMs have several disadvantages as well: 
 
• The scaling with the number of samples 𝑁  is 𝑂(𝑁<)  at worst, or 𝑂(𝑁")  for efficient 

implementations. For large number of training samples, this computational cost can be prohibitive. 
• The results are strongly dependent on a suitable choice for the softening parameter C. This must 

be carefully chosen via cross-validation, which can be expensive as datasets grow in size. 
• The results do not have a direct probabilistic interpretation. This can be estimated via an internal 

cross-validation (see the probability parameter of SVC), but this extra estimation is costly. 
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With those traits in mind, we generally only turn to SVMs once other simpler, faster, and less tuning-
intensive methods have been shown to be insufficient for our needs. Nevertheless, if you have the CPU 
cycles to commit to training and cross-validating an SVM on your data, the method can lead to 
excellent results. 


