
Classical Machine Learning: Classification and 
Regression (I)

Learning Objectives

• Learn some techniques to understand your data and 
prepare your data for ML.

• Learn the basic concepts of a few interesting classifiers.
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Techniques to Understand Your Data



Understand 
Your Data

• Machine learning is all about the 
data. 

• If data quality is poor, even the 
most sophisticated analysis would 
generate only lackluster (乏善可陳) 
results. 

• A tale (see Know_Your_Data.pdf)



Understand 
Your Data with 
Descriptive 
Statistics

• Take a peek at your raw data.
• Review the dimensions of your 

dataset.
• Review the data types of 

attributes in your data.
• Summarize the distribution of 

instances across classes in your 
dataset.

• Summarize your data using 
descriptive statistics.

• Understand the relationships in 
your data using correlations.

• Review the skew of the 
distributions of each attribute. 

Data_understand.ipynb



Understand 
Your Data with 
Visualization

• Histograms.
• Density Plots.
• Box and Whisker Plots. 

Data_understand.ipynb
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Prepare your data for machine learning 



Data 
Preparation

• Rescale data.
• Standardize data. 
• Normalize data. 
• Binarize data. 

Scikit-Learn Recipe
• Load the data.
• Split the dataset into the input 

feature matrix and output target 
vector for machine learning. 

• Apply a pre-processing transform 
to the input variables.

• Summarize the data to show the 
change.

Data_prepare.ipynb
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Classification algorithm walkthrough



Fun Time
Which learning problems below is likely 
NOT a classification problem?

1. Given an image, try to predict whether 
it is dog or cat.

2. Given an applicant information, try to 
predict whether we should issue a 
credit card to her/him.

3. Given a rainfall, try to predict the 
water level of a dam. 

4. Given a X-ray, try to predict whether it 
is a cancer. 

sli.do #073374
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Classification

Classification uses models called classifiers to predict categorical 
(discrete, unordered) class labels. 



C-S David Chen, Department of Civil Engineering, National Taiwan University

Classification Algorithm Walkthrough: Decision Tree



Example of a Decision Tree

ID Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Splitting Attributes

Training Data Model:  Decision Tree
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Another Example of Decision Tree

categoric
al

categoric
al

contin
uous

class
MarSt

Home 
Owner

Income

YESNO

NO

NO

Yes No

Married
Single, 

Divorced

< 80K > 80K

There could be more than one tree that 
fits the same data!

ID Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

09/21/2020 Introduction to Data Mining, 2nd Edition 13



Decision Tree Induction

! Many Algorithms:
– Hunt’s Algorithm (one of the earliest)
– CART
– ID3, C4.5
– SLIQ,SPRINT
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General Structure of Hunt’s Algorithm

! Let Dt be the set of training 
records that reach a node t

! General Procedure:
– If Dt contains records that 

belong the same class yt, 
then t is a leaf node 
labeled as yt

– If Dt contains records that 
belong to more than one 
class, use an attribute test 
to split the data into smaller 
subsets. Recursively apply 
the procedure to each 
subset.

Dt

?

ID Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Hunt’s Algorithm
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Hunt’s Algorithm
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Hunt’s Algorithm
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Decision Tree: 
theoretical 
minimum and 
example

• The phrase “theoretical minimum” is 
taken from a very successful book series 
written by Leonard Susskind, a great 
physicist at Stanford University.

• “Theoretical minimum” means just the 
minimum theories and equations you 
need to know in order to proceed to the 
next level. 

• See Decision_Tree.pdf



Summary

Classification 
Algorithm 
Walkthrough: 
Decision Tree

• Decision tree is simple and useful for 
interpretation. 

• Decision tree uses a greedy algorithm 
with a best-split attribute to recursively 
split the tree.

• The “Gini” criteria, or the “Entropy” 
criteria is the most commonly used 
index to determine the best split.

• Shallow decision trees are weak 
learners and are not competitive in 
terms of prediction accuracy 

• Deep decision trees tend to overfit data. 
• An ensemble of randomized decision 

trees such as random forests is a 
powerful algorithm for classification. 
This will be covered in the sequel.


