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Decision Tree 
 
Conceptually, a decision tree is grown by first splitting all data points into two groups, such that similar 
data points are grouped together, and then further repeating this binary splitting process within each 
group.  
 
As a result, each subsequent leaf node would have fewer but more homogeneous data points. The 
basis of decision trees is that data points following the same path are likely to be similar to each other. 
 
The process of repeatedly splitting data to obtain homogeneous groups is called recursive partitioning. 
It involves just two steps: 
 
• Step 1: Identify the binary question that best splits data points into two groups that are most 

homogeneous. 
• Step 2: Repeat Step 1 for each leaf node, until a stopping criterion is reached. 
 
Step 1 involves best split of two groups and we will visit the best splitting criteria later. Step 2 
involves recursive stopping criteria. There are various possibilities for stopping criteria; these include: 
 
• Stop when data points at each leaf are all of the same predicted category or value. 
• Stop when the leaf contains less than few data points. 
• Stop when further branching does not improve homogeneity beyond a minimum threshold. 
• Stop when overfitting occurs.  
 
1. Theoretical Minimum: How a Decision Tree Picks Its Split 
 
A key step in decision tree is to identify the binary question that best splits data points into two groups 
that are most homogeneous.  
 
The obvious question becomes “What is best?” 
 
The solution comes from “Information Theory” by Claude Shannon1 

 
1 In 1948, Claude Shannon published a paper called A Mathematical Theory of Communication. This paper heralded a 
transformation in our understanding of information. Before Shannon’s paper, information had been viewed as a kind of 
poorly defined miasmic fluid. But after Shannon’s paper, it became apparent that information is a well-defined and, 
above all, measurable quantity. 
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The most commonly used solution is either the “Gini” criteria, or the “Entropy” criteria. The next few 
pages give examples of both equations which are similar, but a little different. However, at the end of 
the day, it usually makes very little difference which one you use, as they tend to give results that are 
only a few percent different. 
 
In Scikit-Learn, the default is the “Gini” criteria, so we’ll start with that. 
 
Gini Criteria 
 
The equation for the Gini impurity is: 
 

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑝!"!   
 
where 𝑝 is the probability of having a given data class in your dataset. The lower the Gini impurity, 
the better. 
 
For instance, let’s say that you have a dataset of 10 Apples, 6 Bananas, and 4 Coconuts. The probability 

for each class is #$
"$

 (Apple), %
"$

 (Banana), &
"$

 (Coconut). 

Q: What is the Gini impurity for this case? 
A: 
𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑝!"! = (1 − 0.5" − 0.3" − 0.2") = 0.62  
 
Remark: The best value that we could have is an impurity of 0. That would occur if we had a branch 
that is 100% one class, since the equation would become 1 – 1. 
 
Now let’s say that the decision tree has two possibilities to split the dataset into two branches: 
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Q: Which one is better?  
A: The answer is to calculate the Gini Impurity for both possible splits, and see which one is lower. 
 
First Possible Split: 
 
For the first possible split, we calculate the Gini Impurity of Branch 1 to be .444 and the Gini Impurity 
of Branch 2 to be .32 

 

There are 15 items in branch 1, and there are 5 items in branch 2. So we can calculate the combined 
Gini impurity of both branches by taking the weighted average of the two branches = 
(15*.444+5*.32)/20 which gives a total value of .413. 
 
You can do the same thing for the Second Possible Split and obtain a total value of .447. So with these 
two alternatives a decision tree would be generated with the first choice. 
 
Entropy Criteria 
 
The equation for entropy is different than the Gini equation, but other than that, the process is pretty 

10 Apples
6 Bananas
4 Coconuts

10 Apples
5 Bananas

1 Bananas
4 Coconuts

10 Apples
6 Bananas
4 Coconuts

10 Apples
6 Bananas
1 Coconuts

3 Coconuts

Second Branch

1 Banana
4 Coconuts

Just from looking at it, it seems like this split is pretty good, since we are
mostly separating out the apples from the coconuts, with only some bananas
in each group keeping them from being a single class.   But even though this
split is pretty good, how do we know if it is better than

Alternative First Branch

10 Apples
6 Bananas
1 Coconut

Alternative Second Branch

3 Coconuts

The answer is to calculate the Gini Impurity for both possible splits, and see
which one is lower.

For the first possible split, we calculate the Gini Impurity of Branch 1 to be
.444 and the Gini Impurity of Branch 2 to be .32
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much the same. The equation for entropy is: 
 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ −𝑝! × log"(𝑝!)!   
 
where 𝑝 is the probability of having a given data class in your dataset. For entropy, just like the Gini 
criteria, the lower the number the better, with the best being an Entropy of zero. 
 
Remark: For this equation, for each probability, we are multiplying that probability by the base 2 
logarithm of that probability. Since each of these probabilities are a decimal between 0 and 1, the base 
2 logarithm will always be negative (or zero), which when multiplied by the negative sign in the 
equation will give a positive number for the total entropy summation. 

 

 
If we go back to the scenario where we have a dataset of 10 Apples, 6 Bananas, and 4 Coconuts. The 

probability for each class is #$
"$

 (Apple), %
"$

 (Banana), &
"$

 (Coconut). We can calculate the total 

entropy to be 1.485 as show below:  

 

 Note – if you have more than 2 different classes in a branch you can get an
entropy greater than 1.0.    You will get the maximum entropy if every class
has the same probability.  In this case, if we had 33% of each of the categories
we would have had an entropy of 1.585.   If we had 10 categories, each with a
10% probability, the entropy would be 3.322

Looking again at the possible splits of this branch, we assume that we could
split it in one of two ways (the same ways as in the Gini example) either

First Branch

10 Apples
5 Bananas

Second Branch

1 Banana
4 Coconuts

Or

Alternative First Branch

10 Apples
6 Bananas
1 Coconut

Alternative Second Branch

3 Coconuts

 

If we calculate the entropy for both of those possibilities, for the first possible
split we get
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For first possibility of split, we can calculate the weighted entropy to be .869 (see below) and for 
second possibility, the weighted entropy is 1.038. 
 

 
 
So for this example, just like for the Gini criteria, we see that the first possible split has a lower entropy 
than the second possible split, so the first possibility would be the branching that was generated. 
 
2. Selecting an Attribute Test Condition 
 
At each recursive step in a decision tree, an attribute (feature) must be selected to partition the 
training instances associated with a node into smaller subsets associated with its child nodes. Both 
Gini and Entropy measures can be used to determine the goodness of an attribute test condition. 
 
To determine the goodness of an attribute test condition, we need to compare the degree of impurity 
of the parent node (before splitting) with the weighted degree of impurity of the child nodes (after 
splitting). The larger their difference, the better the test condition. This difference, Δ, also termed as 
the gain in purity of an attribute test condition, can be defined as follows: 
 

10 Apples
6 Bananas
4 Coconuts

10 Apples
5 Bananas

1 Bananas
4 Coconuts

10 Apples
6 Bananas
4 Coconuts

10 Apples
6 Bananas
1 Coconuts

3 Coconuts

 

To find the total entropy between two branches, we are using the weighted
sum of the two branches.  In this case, (15 * .918 + 5 * .722) / 20 = .869

 

For the second possible split we get
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Δ = 𝐼'()*+, − 𝐼-./01)*+ 
 
where 𝐼'()*+,  is the impurity of a node before splitting and 𝐼-./01)*+  is the weighted impurity 
measure after splitting. The higher the gain, the purer are the classes in the child nodes relative to the 
parent node.  
 
The splitting criterion in the decision tree learning algorithm selects the attribute test condition that 
shows the maximum gain.  
 
Remark: Note that maximizing the gain at a given node is equivalent to minimizing the weighted 
impurity measure of its children since 𝐼'()*+, is the same for all candidate attribute test conditions. 
Finally, when entropy is used as the impurity measure, the difference in entropy is commonly known 
as information gain, Δ2345. 
 
To illustrate how this works, consider again the training set shown in the Table 4.1 for the loan borrower 
classification problem. 
 

Table 4.1 A sample data for the loan borrower classification problem. 

 
Consider building a decision tree using only binary splits and the Gini impurity as the measure. Recall 
the equation for the Gini impurity is: 
 

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑝!"!   
 

where 𝑝 is the probability of having a given data class in your dataset. 
 
Q: What is the Gini impurity of the parent node before splitting? (hint: in our data class, we have 3 
borrowers in the training set who defaulted and 7 others who repaid their loan) 
A: Since there are 3 borrowers in the training set who defaulted and 7 others who repaid their loan, the 
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Gini index of the parent node before splitting is 𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑝!"! = (1 − 0.3" − 0.7") = 0.42 
 
Q: If we split the node based on the attribute of Home Owner, what is the weighted Gini impurity of 
the child nodes?  

 

A: 

𝐺𝑖𝑛𝑖 =
3
10 ∗ ?1 − @

3
3A

"

B +
7
10 ∗ ?1 − @

4
7A

"

− @
3
7A

"

B = 0.343 

 
The gain using Home Owner as splitting attribute is 0.420 - 0.343 = 0.077. Similarly, we can apply a 
binary split on the Marital Status attribute. However, since Marital Status is a nominal 
attribute with three outcomes, there are three possible ways to group the attribute values into a binary 
split.  
 
The weighted average Gini index of the children for each candidate binary split is shown below. Based 
on these results, Home Owner and the last binary split using Marital Status are clearly the best 
candidates, since they both produce the lowest weighted average Gini impurity or produce the highest 
gain after splitting.  
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3. Sckit-Learn Example 
 
Consider the following two-dimensional data, which has one of four class labels: 
 

%matplotlib inline 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns; sns.set() 
from sklearn.datasets import make_blobs 
 
X, y = make_blobs(n_samples=300, centers=4, 
                  random_state=0, cluster_std=1.0) 
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='rainbow'); 

 

 
 
A simple decision tree built on this data will iteratively split the data along one or the other axis 
according to some quantitative criterion. Let us visualize the first four levels of a decision tree classifier 
for this data: 
 

 
 
Below are the python codes to accomplish the task (including a utility function 
visualize_classifier to help us visualize the output of the classifier:): 
 

def visualize_classifier(model, X, y, ax=None, cmap='rainbow'): 
    ax = ax or plt.gca() 
     
    # Plot the training points 
    ax.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=cmap, 



Introduction to Machine Learning and Deep Learning 
2021/10/13 

 9 

               clim=(y.min(), y.max()), zorder=3) 
    ax.axis('tight') 
    ax.axis('off') 
    xlim = ax.get_xlim() 
    ylim = ax.get_ylim() 
     
    # fit the estimator 
    model.fit(X, y) 
    xx, yy = np.meshgrid(np.linspace(*xlim, num=200), 
                         np.linspace(*ylim, num=200)) 
    Z = model.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape) 
    # Create a color plot with the results 
    n_classes = len(np.unique(y)) 
    contours = ax.contourf(xx, yy, Z, alpha=0.3, 
                           levels=np.arange(n_classes + 1) - 0.5, 
                           cmap=cmap, clim=(y.min(), y.max()), 
                           zorder=1) 
    ax.set(xlim=xlim, ylim=ylim) 
 
from sklearn.tree import DecisionTreeClassifier 
 
fig, ax = plt.subplots(1, 4, figsize=(16, 3)) 
fig.subplots_adjust(left=0.02, right=0.98, wspace=0.1) 
 
for axi, depth in zip(ax, range(1, 5)): 
    model = DecisionTreeClassifier(max_depth=depth) 
    visualize_classifier(model, X, y, ax=axi) 
    axi.set_title('depth = {0}'.format(depth)) 

 
Remark: Notice that as the depth increases, we tend to get very strangely shaped classification regions; 
for example, at a depth of four, there is a tall and skinny purple region between the yellow and blue 
regions. It's clear that this is less a result of the intrinsic data distribution, and more a result of the 
particular sampling or noise properties of the data. That is, this decision tree, even at only four levels 
deep, is clearly over-fitting our data. 
 
Q: What is the problem of overfitting? 
A: Even if a model fits well over the training data, it can still show poor generalization performance, 
a phenomenon known as model overfitting. 
 
You can download the above Python codes Decision_tree-tutorial.ipynb from the course 
website. 
 
4. Decision Tree and Over-fitting 
 
The over-fitting turns out to be a general property of decision trees: it is very easy to go too deep 
in the tree, and thus to fit details of the particular data rather than the overall properties of the 
distributions they are drawn from. This will lead to good fit over the training data, but poor 
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generalization performance. 
 
Over-fitting Example: Let us consider a dataset with 600 sample points. Spilt the data into 80% training 
and 20% testing sizes and report the training and testing scores from decision tree classifier vs. the 
depth of the tree. 
 

%matplotlib inline 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns; sns.set() 
from sklearn.datasets import make_blobs 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.model_selection import train_test_split 
 
X, y = make_blobs(n_samples=600, centers=4, 
                  random_state=0, cluster_std = 3.0) 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 
0.2, random_state=42) 
otrn = [] 
otst = [] 
tree_depth = 51 
for depth in range(1, tree_depth): 
    tree = DecisionTreeClassifier(max_depth=depth) 
    tree.fit(X_train, y_train) 
    otrn.append(1-tree.score(X_train, y_train)) 
    otst.append(1-tree.score(X_test, y_test)) 
 
divisors = range(1, tree_depth) 
fig,ax=plt.subplots() 
fig.set_size_inches((10,6)) 
_=ax.plot(divisors,otrn,'--s',label='train',color='k') 
_=ax.plot(divisors,otst,'-o',label='test',color='gray') 
_=ax.fill_between(divisors,otrn,otst,color='gray',alpha=.3) 
_=ax.legend(loc=0) 
_=ax.set_xlabel('Depth of tree',fontsize=14) 
_=ax.set_ylabel('Error',fontsize=14) 
_=ax.axis(xmin=0,xmax=50) 
fig.tight_layout() 
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As the depth increases, we clearly observe a very good fit over the training data, but poor generalization 
performance. You can download the above Python codes DT_overfit.ipynb from the course 
website. 
 
5. Decision Tree Classifier: Summary 
 
• A decision tree makes predictions by asking a sequence of binary questions. 
• The data sample is split repeatedly to obtain homogeneous groups in a process called recursive 

partitioning, until a stopping criterion is reached. At each recursive step in a decision tree, an 
attribute must be selected to partition the training instances associated with a node into smaller 
subsets associated with its child nodes. The “Gini” criteria, or the “Entropy” criteria from 
Information Theory is the most commonly used solution to determine the best split. 

• While easy to use and understand, decision trees are prone to overfitting, which leads to 
inconsistent results. To minimize this, we could use an ensemble of randomized decision trees 
such as random forests. This will be covered in the sequel. 

 
 


