

Classical Machine Learning: Classification and Regression (I)

Learning Objectives

- Learn some techniques to understand your data and prepare your data for ML.
- Learn the basic concepts of a few interesting classifiers.

Understand Your Data

- Machine learning is all about the data.
- If data quality is poor, even the most sophisticated analysis would generate only lackluster (乏善可陳) results.
- A tale (see Know_Your_Data.pdf)

Understand Your Data with Descriptive Statistics

Data_understand.ipynb

- Take a peek at your raw data.
- Review the dimensions of your dataset.
- Review the data types of attributes in your data.
- Summarize the distribution of instances across classes in your dataset.
- Summarize your data using descriptive statistics.
- Understand the relationships in your data using correlations.
- Review the skew of the distributions of each attribute.

Understand Your Data with Visualization

Data_understand.ipynb

- Histograms.
- Density Plots.
- Box and Whisker Plots.

Data **Preparation**

Data_prepare.ipynb

- Rescale data.
- Standardize data.
- Normalize data.
- Binarize data.

Scikit-Learn Recipe

- Load the data.
- Split the dataset into the input feature matrix and output target vector for machine learning.
- Apply a pre-processing transform to the input variables.
- Summarize the data to show the change.

Fun Time

Which learning problems below is likely **NOT** a classification problem?

- 1. Given an image, try to predict whether it is dog or cat.
- 2. Given an applicant information, try to predict whether we should issue a credit card to her/him.
- 3. Given a rainfall, try to predict the water level of a dam.
- 4. Given a X-ray, try to predict whether it is a cancer.

Classification

Classification uses models called classifiers to predict categorical (discrete, unordered) class labels.

Task	Feature set, x (or attribute set)	Class label, y
Spam filtering	Features extracted from email message header	spam or non-spam
	and content	
Tumor identification	Features extracted from MRI scans	malignant or benign
Bridge warning	Features extracted from river velocity and depth	danger or safe

Example of a Decision Tree

Training Data

Model: Decision Tree

Another Example of Decision Tree

categorical continuous

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Decision Tree Induction

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ,SPRINT

General Structure of Hunt's Algorithm

 Let D_t be the set of training records that reach a node t

General Procedure:

- If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
- If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Defaulted = No

(7,3)

(a)

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Defaulted = No (7,3)

(a)

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

(a)

Home Owner Yes No			
Defaulted = No	Defaulted = No		
(3,0)	(4,3)		
(b)			

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

(c)

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Decision Tree: theoretical minimum and example

- The phrase "theoretical minimum" is taken from a very successful book series written by Leonard Susskind, a great physicist at Stanford University.
- "Theoretical minimum" means just the minimum theories and equations you need to know in order to proceed to the next level.
- See Decision_Tree.pdf

Summary

Classification Algorithm Walkthrough: Decision Tree

- Decision tree is simple and useful for interpretation.
- Decision tree uses a greedy algorithm with a best-split attribute to recursively split the tree.
- The "Gini" criteria, or the "Entropy" criteria is the most commonly used index to determine the best split.
- Shallow decision trees are weak learners and are not competitive in terms of prediction accuracy
- Deep decision trees tend to overfit data.
- An ensemble of randomized decision trees such as random forests is a powerful algorithm for classification.
 This will be covered in the sequel.