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Introducing Scikit-Learn 
 
There are several Python libraries which provide solid implementations of a range of machine learning 
algorithms. One of the best known is Scikit-Learn, a package that provides efficient versions of a 
large number of common algorithms. Scikit-Learn is characterized by a clean, uniform, and 
streamlined API, as well as by very useful and complete online documentation. A benefit of this 
uniformity is that once you understand the basic use and syntax of Scikit-Learn for one type 
of model, switching to a new model or algorithm is very straightforward. 
 
This section provides an overview of the Scikit-Learn API; a solid understanding of these API 
elements will form the foundation for understanding the deeper practical discussion of machine 
learning algorithms and approaches in the following chapters. 
 
We will start by covering data representation in Scikit-Learn, and followed by covering the 
Estimator (algorithm) API. 
 
1. Data Representation in Scikit-Learn 
 
Machine learning is about creating models from data: for that reason, we'll start by discussing how 
data can be represented in order to be understood by the computer. The best way to think about data 
within Scikit-Learn is in terms of tables of data. 
 
Data as table 
 
A basic table is a two-dimensional grid of data, in which the rows represent individual elements of the 
dataset, and the columns represent quantities related to each of these elements. For example, consider 
the Iris dataset as we mentioned before. We can download this dataset in the form of a Pandas 
DataFrame using the Seaborn library1: 
 

import seaborn as sns 
iris = sns.load_dataset('iris') 
iris.head() 

 
1 Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing 
attractive and informative statistical graphics. See https://seaborn.pydata.org  
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Here each row of the data refers to a single observed flower, and the number of rows is the total number 
of flowers in the dataset. In general, we will refer to the rows of the matrix as samples, and the number 
of rows as n_samples. In the Iris set, we have n_samples=150. 
 
Likewise, each column of the data refers to a particular quantitative piece of information that describes 
each sample. In general, we will refer to the columns of the matrix as features, and the number of 
columns as n_features. 
 
Features matrix 
 
This table layout makes clear that the information can be thought of as a two-dimensional numerical 
array or matrix, which we will call the features matrix. By convention, this features matrix is often 
stored in a variable named X. The features matrix is assumed to be two-dimensional, with shape 
[n_samples, n_features], and is most often contained in a NumPy array or a Pandas DataFrame. 
 
Target array 
 
In addition to the feature matrix X, we also generally work with a label or target array, which by 
convention we will usually call y.  
 
The target array is usually one dimensional, with length n_samples, and is generally contained in a 
NumPy array or Pandas Series. The target array may have continuous numerical values, or discrete 
classes/labels. While some Scikit-Learn estimators do handle multiple target values in the form of 
a two-dimensional, [n_samples, n_targets] target array, we will primarily be working with the 
common case of a one-dimensional target array. 
 
The target array is the quantity we want to predict from the data. For example, in the preceding data 
we may wish to construct a model that can predict the species of flower based on the other 
measurements; in this case, the species column is the target array. 
 



Introduction to Machine Learning and Deep Learning 
2021/09/29 

 3 

With this target array in mind, we can use Seaborn to conveniently visualize the data. Visualizing the 
multidimensional relationships among the samples is as easy as calling sns.pairplot: 
 

%matplotlib inline 
import seaborn as sns; sns.set() 
sns.pairplot(iris, hue='species', size=1.5); 

 
 
For use in Scikit-Learn, we will extract the features matrix and target array from the DataFrame, 
which we can do using some of the Pandas DataFrame operations: 
 

X_iris = iris.drop('species', axis=1) 
X_iris.shape 

 
The parameter axis=1 indicates to drop columns of the labels. 
 
Q: what is the output X_iris.shape? 
A:  

(150, 4) 
 

y_iris = iris['species'] 
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To summarize, the expected layout of features and target values is visualized in the following diagram: 

 
With this data properly formatted, we can move on to consider the estimator API of Scikit-Learn. 
 
2. Scikit-Learn's Estimator (Algorithm) API 
 
The Scikit-Learn API is designed with the following guiding principles in mind: 
 
l Consistency: All objects share a common interface drawn from a limited set of methods, with 

consistent documentation. 
 
l Inspection: All specified parameter values are exposed as public attributes. 
 
l Limited object hierarchy: Only algorithms are represented by Python classes; datasets are 

represented in standard formats (NumPy arrays, Pandas DataFrames) and parameter names use 
standard Python strings. 

 
l Composition: Many machine learning tasks can be expressed as sequences of more fundamental 

algorithms, and Scikit-Learn makes use of this wherever possible. 
 
l Sensible defaults: When models require user-specified parameters, the library defines an 

appropriate default value. 
 
In practice, these principles make Scikit-Learn very easy to use, once the basic principles are 
understood. Every machine learning algorithm in Scikit-Learn is implemented via the Estimator 
API, which provides a consistent interface for a wide range of machine learning applications. 
 
Basics of the API 
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Most commonly, the steps in using the Scikit-Learn estimator API are as follows (we will step 
through a handful of detailed examples later). 
 
1. Choose a class of model by importing the appropriate estimator class from Scikit-Learn. 
2. Choose model hyperparameters2 by instantiating this class with desired values. 
3. Arrange data into a features matrix and target vector following the discussion above. 
4. Fit the model to your data by calling the fit() method of the model instance. 
5. Apply the Model to new data: 

l For supervised learning, often we predict labels for unknown data using the predict() 
method. 

l For unsupervised learning, we often transform or infer properties of the data using the 
transform() or predict() method. 

 
We will now step through two simple examples of applying supervised learning methods. 
 
Supervised learning example: Simple linear regression 
 
As an example of this process, let's consider a simple linear regression—that is, the common case of 
fitting a line to (x,y) data. We will use the following simple data for our regression example: 

 
import matplotlib.pyplot as plt 
import numpy as np 
 
rng = np.random.RandomState(42) 
x = 10 * rng.rand(50) 
y = 2 * x - 1 + rng.randn(50) #normal distribution 
plt.scatter(x, y); 

 
With this data in place, we can use the recipe outlined earlier. Let's walk through the process: 
 

 
2 In machine learning, hyperparameters refer to parameters that must be set before the model is fit to data. 
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1. Choose a class of model 
 
In Scikit-Learn, every class of model is represented by a Python class. So, for example, if we 
would like to compute a simple linear regression model, we can import the linear regression class: 

 
from sklearn.linear_model import LinearRegression 

 
2. Choose model hyperparameters 

 
An important point is that a class of model is not the same as an instance of a model.  
 
Once we have decided on our model class, there are still some options open to us. Depending on 
the model class we are working with, we might need to answer one or more questions like the 
following: 

 
l Would we like to fit for the offset (i.e., intercept)? 
l Would we like the model to be normalized? 
l Would we like to preprocess our features to add model flexibility? 
l What degree of regularization would we like to use in our model? 
l How many model components would we like to use? 
 

These are examples of the important choices that must be made once the model class is selected. 
These choices are often represented as hyperparameters (the parameters that must be set before 
the model is fit to data). In Scikit-Learn, hyperparameters are chosen by passing values at 
model instantiation. We will explore how you can quantitatively motivate the choice of 
hyperparameters in sequel. 

 
For our linear regression example, we can instantiate the LinearRegression class and specify 
that we would like to fit the intercept using the fit_intercept hyperparameter: 

 
model = LinearRegression(fit_intercept=True) 
model 

 
Keep in mind that when the model is instantiated, the only action is the storing of these 
hyperparameter values. In particular, we have not yet applied the model to any data: the Scikit-
Learn API makes very clear the distinction between choice of model and application of model 
to data. 

 
3. Arrange data into a feature matrix and target vector 
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Previously we detailed the Scikit-Learn data representation, which requires a two-dimensional 
features matrix and a one-dimensional target array. Here our target variable y is already in the 
correct form (a length-n_samples array), but we need to massage the data x to make it a matrix 
of size [n_samples, n_features]. In this case, this amounts to a simple reshaping of the one-
dimensional array: 
 
X = x[:, np.newaxis] 
X.shape #output (50,1) 

 
The newaxis object is used in all slicing operations to create an axis of length one. 

 
4. Fit the model to your data 

 
Now it is time to apply our model to data. This can be done with the fit() method of the model:  

 
model.fit(X, y) 
 
This fit() command causes a number of model-dependent internal computations to take place, 
and the results of these computations are stored in model-specific attributes that the user can 
explore. In Scikit-Learn, by convention all model parameters that were learned during the 
fit() process have trailing underscores; for example in this linear model, we have the following: 

 
model.coef_ 
model.intercept_ 

 
These two parameters represent the slope and intercept of the simple linear fit to the data. 
Comparing to the data definition, we see that they are very close to the input slope of 2 and intercept 
of -1. 
 

5. Predict labels for unknown data 
 
Once the model is trained, the main task of supervised machine learning is to evaluate it based on 
what it says about new data that was not part of the training set. In Scikit-Learn, this can be 
done using the predict() method. For the sake of this example, our "new data" will be a grid of 
x values, and we will ask what y values the model predicts: 

 
xfit = np.linspace(-1, 11) 

 
As before, we need to reshape these x values into a [n_samples, n_features] features matrix, 
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after which we can feed it to the model: 
 

Xfit = xfit[:, np.newaxis] 
yfit = model.predict(Xfit) 

 
Finally, let's visualize the results by plotting first the raw data, and then this model fit: 

 
plt.scatter(x, y) 
plt.plot(xfit, yfit); 

 

 
 
Recipe Recap and Summary: import/instantiate/fit/predict 
 
The process of doing machine learning using Scikit-Learn consists of the following four steps: 
 
1. Choose a class of model by importing the appropriate estimator class from Scikit-Learn.  

 
from sklearn.linear_model import LinearRegression 
 

2. Choose model hyperparameters by instantiating this class with desired values. For example 
 
model = LinearRegression(fit_intercept=True) 
 

3. Fit the model to your data by calling the fit() method of the model instance. 
 

model.fit(X, y) 
 

4. Apply the Model to new data: 
- For supervised learning, we often predict labels for unknown data using the predict() method. 
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yfit = model.predict(Xfit) 
 
Remark: Hyperparameters vs. Parameters 
1. A hyperparameter is a property of a learning algorithm, usually (but not always) having a numerical 

value. That value influences the way the algorithm works. Hyperparameters aren’t learned by the 
algorithm itself from data. They have to be set by you before running the algorithm. 

2. Parameters are variables that define the model learned by the learning algorithm. Parameters are 
directly modified by the learning algorithm based on the training data. The goal of learning is to 
find such values of parameters that make the model optimal in a certain sense. 

 
Supervised learning example: Simple classification 
 
Let's take a look at another example of this import/instantiate/fit/predict recipe, using the Iris dataset 
we discussed earlier. Our question will be this: given a model trained on a portion of the Iris data, 
how well can we predict the remaining labels? 
 
For this task, we will use a support vector machine classifier (SVC). We would like to evaluate the 
model on data it has not seen before. 
 
(Why evaluate the model on data it has not seen before? Conceptual Analogy) Before the final exam, 
I may hand out some practice problems and solutions to the class. Although these problems are not the 
exact ones that will appear on the exam, studying them will help you do better. They are the 'training 
set' in your learning. 
 
If my goal is to help you do better in the exam, why not give out the exam problems themselves? Well, 
nice try J.  
 
Q: Why not? 
A: Doing well in the exam is not the goal. The goal is for you to learn the course material. The 
exam is merely a way to gauge how well you have learned the material. If the exam problems are 
known ahead of time, your performance on them will no longer accurately gauge how well you have 
learned. The same distinction between training and testing happens in learning from data. 
 
We will split the data into a training set and a testing set. This could be done by hand, but it is more 
convenient to use the train_test_split utility function from Scikit-Learn:  
 

from sklearn.datasets import load_iris  
iris = load_iris() 
X_iris, y_iris = iris.data, iris.target 
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from sklearn.model_selection import train_test_split 
Xtrain, Xtest, ytrain, ytest = train_test_split(X_iris, y_iris, 
random_state=1) 

 

With the data arranged, we can follow our import/instantiate/fit/predict recipe to predict the labels: 
 

from sklearn.svm import SVC # 1. choose "Support vector classifier" 
model = SVC(kernel='rbf', gamma=0.01, C=10) # 2. instantiate model 
model.fit(Xtrain, ytrain)                       # 3. fit model to data 
y_model = model.predict(Xtest)                 # 4. predict on new data 

 
Finally, we can use the accuracy_score utility to see the fraction of predicted labels that match 
their true value: 
 

from sklearn.metrics import accuracy_score 
accuracy_score(ytest, y_model) 

 
0.97368421052631582 

 
The accuracy_score function computes the accuracy. If !"!  is the predicted value of the #"# 
sample and !!  is the corresponding true value, then the fraction of correct predictions over $ 
samples is defined as: 

accuracy(!! , !"!) =
1
$	01(!"! = !!)

$

%&'
 

The 1(!"! = !!) is an indicator function; it is 1.0 if !"! = !! and 0.0 if !"! ≠ !!. 
 
With an accuracy topping 97%, we see that this classification algorithm is effective for this dataset. 
 
3. Summary 
 
In this section we have covered the essential features of the Scikit-Learn data representation, and 
the estimator API. Regardless of the type of estimator, the same import/instantiate/fit/predict process 
holds. Armed with this information about the estimator API, you can explore the Scikit-Learn 
documentation and begin trying out various models on your data. See http://scikit-learn.org/stable. 
 
 


