
Introduction to Machine Learning and Deep Learning
2021/10/06

 1

Bias and Variance

1. Theoretical Minimum: Bias and Variance

Bias and variance are two major sources of errors that prevent supervised learning algorithms from
generalizing beyond their training set. Although the mathematical proof is beyond the scope of this
course, it is possible to show that the expected error (or average error) 𝔼𝒟"𝐸"##(𝑔(𝒟))' can be
decomposed into two parts:

(1) 𝔼𝒟"𝐸"##(𝑔(𝒟))' = 𝔼𝐱 +(�̅�(𝐱) − 𝑓(𝐱))
' + 𝔼𝒟 12𝑔(𝒟)(𝐱) − �̅�(𝐱)3

'
45

On the left-hand side, the notation 𝔼𝒟[∙] denotes the expected (average) value, 𝑔(𝒟) is the final
hypothesis on the data 𝒟, 𝐸"##(𝑔(𝒟)) is the error, and 𝔼𝒟"𝐸"##(𝑔(𝒟))' denotes the expected error.

On the right-hand side, 𝔼𝐱 denotes the expected value with respect to x (based on the probability
distribution on the input space 𝒳). The term �̅�(𝐱) gives an 'average function'. One can interpret
�̅�(𝐱) in the following operational way. Generate many data sets 𝒟(, ⋯ , 𝒟) and apply the learning
algorithm to each data set to produce final hypotheses 𝑔(, ⋯ , 𝑔). We can estimate the average function
for any x (based on the probability distribution on the input space 𝒳) by:

�̅�(𝐱) ≈
1
𝐾@𝑔*(𝐱)

)

*+(

The term (�̅�(𝐱) − 𝑓(𝐱))' measures how much the average function that we would learn using

different data sets 𝒟 deviates from the target function 𝑓(𝐱) that generated these data sets. This term
is appropriately called the bias:

bias(𝐱) = (�̅�(𝐱) − 𝑓(𝐱))'

as it measures how much our learning model is biased away from the target function 𝑓(𝐱). This is
because �̅� has the benefit of learning from an unlimited number of data sets, so it is only limited in
its ability to approximate 𝒇 by the limitation in the learning model itself.

The term 𝔼𝒟 12𝑔(𝒟)(𝐱) − �̅�(𝐱)3
'
4 is the variance of 𝑔(𝒟)(𝐱):

Introduction to Machine Learning and Deep Learning
2021/10/06

 2

var(𝐱) = 𝔼𝒟 12𝑔(𝒟)(𝐱) − �̅�(𝐱)3
'
4

which measures the variation in the final hypothesis, depending on the data set.

We thus arrive at the bias-variance decomposition of error:

(2) 𝔼𝒟"𝐸"##(𝑔(𝒟))' = 𝔼𝐱[bias(𝐱) + var(𝐱)] = bias + var

where bias = 𝔼𝐱[bias(𝐱)] and var = 𝔼𝐱[var(𝐱)].

2. Example: Bias and Variance

Let’s construct an example to make the theory concrete. Suppose we have a hypothesis set consisting
of all linear regressions without an intercept term, ℎ(𝑥) = 𝑎𝑥. The input variable 𝑥 is uniformly
distributed in the interval [−1,+1]. The training data 𝒟 consists of only two points {𝑥(, 𝑥'}. The
target function 𝑓(𝑥) = sin	(π𝑥). Thus, the full data set is 𝒟 = {(𝑥(, sin(𝜋𝑥()), (𝑥', sin(𝜋𝑥'))}. The
learning algorithm returns the line fitting these two points as 𝑔(𝒟) (ℋ consists of functions of the
form ℎ(𝑥) = 𝑎𝑥). We are interested in finding the bias and variance.

Q: How to compute the bias and variance?
A: To compute the bias and variance, we need to compute 𝑔(𝒟)(𝑥) and �̅�(𝑥).

𝑔(𝒟)(𝑥):

𝑔(𝒟)(𝑥) can be obtained by generating two points between the interval [−1,+1] randomly and use
LinearRegression from Scikit-Learn to find 𝑔(𝒟) for this dataset. The following code shows
how to construct the training data,

import numpy as np
from scipy import stats
def gen_sindata(n=2):
 x = stats.uniform(-1,2) # define random variable
 v = x.rvs((n,1)) # generate sample
 y = np.sin(np.pi*v) # use sample for sine
 return (v,y)

Using Scikit-learn’s LinearRegression object, we can compute the 𝑎 parameter for a single
hypothesis. Note that we have to set fit_intercept=False keyword to suppress the default
automatic fitting of the intercept.

Introduction to Machine Learning and Deep Learning
2021/10/06

 3

from sklearn.linear_model import LinearRegression
lr = LinearRegression(fit_intercept=False)
X, y = gen_sindata(2)
lr.fit(X,y)

And plot 𝑔(𝒟) for this training data (your plot might be different from mine as the two points are
generated randomly):

%matplotlib inline
import matplotlib.pyplot as plt
xi= np.linspace(-1,1,50)
yi= np.sin(np.pi*xi)
y_pred = lr.predict(xi.reshape(-1,1))

plt.plot(xi, yi,'--k',label='target')
plt.plot(X, y, 'o')
plt.plot(xi, y_pred, c='k', label='best fit')
plt.legend(loc='best')
plt.title('$a=%3.3g$'%(lr.coef_),fontsize=16)

�̅�(𝑥):

In this case, �̅�(𝑥) = 𝑎R𝑥. We can obtain 𝑎R using simulation: we just loop over the process, collect the
outputs, and the average them as in the following:

a_out=[] # output container
for i in range(100000): #100000 loops
 X, y = gen_sindata(2)
 lr.fit(X,y)
 y_pred = lr.predict(xi.reshape(-1,1))
 a_out.append(lr.coef_[0,0])
a_bar = np.mean(a_out) # approx 1.43

Bias and Variance

Q: What are the mathematical expressions of bias(𝐱) and var(𝐱) for this example?

Introduction to Machine Learning and Deep Learning
2021/10/06

 4

A:

bias(𝐱) = (�̅�(𝐱) − 𝑓(𝐱))'

var(𝐱) = 𝔼𝒟 12𝑔(𝒟)(𝐱) − �̅�(𝐱)3
'
4	

In this example, 𝐱 is a one-dimensional tensor (scalar) 𝑥

bias(𝑥) = (�̅�(𝑥) − 𝑓(𝑥))' = (𝑎R𝑥 − sin(π𝑥))'

var(𝑥) = 𝔼𝒟 12𝑔(𝒟)(𝑥) − �̅�(𝑥)3
'
4 = 𝔼𝒟[((𝑎 − 𝑎R)𝑥)'] = 𝑥'𝔼𝒟[(𝑎 − 𝑎R)'] = var(𝑎)𝑥'	

We can then plot these results:

a_var = np.var(a_out) # approx 0.71
xi= np.linspace(-1,1,50)
yi= np.sin(np.pi*xi)

plt.plot(xi,(a_bar*xi-yi)**2,'--k',label='bias(x)')
plt.plot(xi,(a_var)*(xi)**2,':k',label='var(x)')
plt.plot(xi,((a_bar*xi-yi)**2 + a_var*(xi)**2),'-k',lw = 4,

label='Error(x)')
plt.legend(loc='best')
plt.xlabel('x', fontsize=18)
plt.ylabel('Error',fontsize=16)
plt.title('$a_{bar}=%3.3g$, $a_{var}=%3.3g$'%(a_bar,a_var),fontsize=16)

Q: What have you observed?
A:
1. Notice that there is zero bias and zero variance when 𝑥 = 0. This is because the learning method

cannot help but get that correct because all the hypotheses happen to match the value of the target

Introduction to Machine Learning and Deep Learning
2021/10/06

 5

function at that point!
2. The errors are worse at the end points. Those points have the most leverage against the

hypothesized models and result in the worst errors. Notice that reducing the edge-errors depends
on getting exactly those points near the edges as training data. The sensitivity to a particular data
set is reflected in this behavior.

Finally, we can compute the expected out-of-sample error and its bias and var components by
generating a test set and averaging x on this new set:

𝔼𝒟"𝐸"##(𝑔(𝒟))' = 𝔼𝐱[bias(𝐱) + var(𝐱)] = bias + var

bias = 𝔼,[bias(𝑥)] = 𝔼,[(𝑎R𝑥 − sin(π𝑥))']
var = 𝔼,[var(𝑥)] = 𝔼,[var(𝑎)𝑥']

compute bias and variance
cnt = 100000
bias = 0
var = 0
x = np.random.uniform(-1, 2, size = cnt)
for i in range(cnt):
 bias += (a_bar*x[i] - np.sin(np.pi*x[i]))**2
 var += a_var * x[i] * x[i]
bias = bias / cnt # approx 2.84
var = var / cnt # approx 0.71

The bias is 2.84 and the variance is 0.71. The total generalization error is 3.55 for ℎ(𝑥) = 𝑎𝑥.

Food for thought
1. bias captures the concept that, even if all possible data were presented to the learning method, it

would still differ from the target function by this amount. On the other hand, variance shows the
variation in the final hypothesis, depending on the training data set, notwithstanding the target
function. Thus, the tension between approximation and generalization is captured by these two
terms.

2. Unfortunately, the bias and variance cannot be computed in practice, since they depend on the
target function and the input probability distribution (both unknown). Thus, the bias-variance
decomposition is a conceptual tool which is helpful when it comes to developing a model.

3. There are two typical strategies to improve the generalization error. The first is to try to lower the
variance without significantly increasing the bias, and the second is to lower the bias without
significantly increasing the variance. Reducing the bias without increasing the variance
requires some prior information regarding the target function 𝑓(𝐱) to steer the selection of in the
direction of 𝑓(𝐱), and this task is largely application-specific. On the other hand, reducing the

Introduction to Machine Learning and Deep Learning
2021/10/06

 6

variance without compromising the bias can be done through general techniques that we will
learn later in the course.

You can download the above Python codes Bias_variance.ipynb from the course website.

