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Bias and Variance 
 
1. Theoretical Minimum: Bias and Variance 
 
Bias and variance are two major sources of errors that prevent supervised learning algorithms from 
generalizing beyond their training set. Although the mathematical proof is beyond the scope of this 
course, it is possible to show that the expected error (or average error) 𝔼𝒟"𝐸"##(𝑔(𝒟))'  can be 
decomposed into two parts: 

(1) 𝔼𝒟"𝐸"##(𝑔(𝒟))' = 𝔼𝐱 +(�̅�(𝐱) − 𝑓(𝐱))
' + 𝔼𝒟 12𝑔(𝒟)(𝐱) − �̅�(𝐱)3

'
45 

 
On the left-hand side, the notation 𝔼𝒟[∙] denotes the expected (average) value, 𝑔(𝒟) is the final 
hypothesis on the data 𝒟, 𝐸"##(𝑔(𝒟)) is the error, and 𝔼𝒟"𝐸"##(𝑔(𝒟))' denotes the expected error.  
 
On the right-hand side, 𝔼𝐱 denotes the expected value with respect to x (based on the probability 
distribution on the input space 𝒳). The term �̅�(𝐱) gives an 'average function'. One can interpret 
�̅�(𝐱) in the following operational way. Generate many data sets 𝒟(, ⋯ , 𝒟) and apply the learning 
algorithm to each data set to produce final hypotheses 𝑔(, ⋯ , 𝑔). We can estimate the average function 
for any x (based on the probability distribution on the input space 𝒳) by: 
 

�̅�(𝐱) ≈
1
𝐾@𝑔*(𝐱)

)

*+(

 

The term (�̅�(𝐱) − 𝑓(𝐱))'  measures how much the average function that we would learn using 

different data sets 𝒟 deviates from the target function 𝑓(𝐱) that generated these data sets. This term 
is appropriately called the bias: 
 

bias(𝐱) = (�̅�(𝐱) − 𝑓(𝐱))' 

 
as it measures how much our learning model is biased away from the target function 𝑓(𝐱). This is 
because �̅� has the benefit of learning from an unlimited number of data sets, so it is only limited in 
its ability to approximate 𝒇 by the limitation in the learning model itself.  
 

The term 𝔼𝒟 12𝑔(𝒟)(𝐱) − �̅�(𝐱)3
'
4 is the variance of 𝑔(𝒟)(𝐱): 

 



Introduction to Machine Learning and Deep Learning 
2021/10/06 

 2 

var(𝐱) = 𝔼𝒟 12𝑔(𝒟)(𝐱) − �̅�(𝐱)3
'
4 

 
which measures the variation in the final hypothesis, depending on the data set.  
 
We thus arrive at the bias-variance decomposition of error: 
 
(2) 𝔼𝒟"𝐸"##(𝑔(𝒟))' = 𝔼𝐱[bias(𝐱) + var(𝐱)] = bias + var 
 
where bias = 𝔼𝐱[bias(𝐱)] and var = 𝔼𝐱[var(𝐱)]. 
 
2. Example: Bias and Variance 
 
Let’s construct an example to make the theory concrete. Suppose we have a hypothesis set consisting 
of all linear regressions without an intercept term, ℎ(𝑥) = 𝑎𝑥. The input variable 𝑥 is uniformly 
distributed in the interval [−1,+1]. The training data 𝒟 consists of only two points {𝑥(, 𝑥'}. The 
target function 𝑓(𝑥) = sin	(π𝑥). Thus, the full data set is 𝒟 = {(𝑥(, sin(𝜋𝑥()), (𝑥', sin(𝜋𝑥'))}. The 
learning algorithm returns the line fitting these two points as 𝑔(𝒟) (ℋ consists of functions of the 
form ℎ(𝑥) = 𝑎𝑥). We are interested in finding the bias and variance.  
 
Q: How to compute the bias and variance? 
A: To compute the bias and variance, we need to compute 𝑔(𝒟)(𝑥) and �̅�(𝑥).  
 
𝑔(𝒟)(𝑥):  
 
𝑔(𝒟)(𝑥) can be obtained by generating two points between the interval [−1,+1] randomly and use 
LinearRegression from Scikit-Learn to find 𝑔(𝒟) for this dataset. The following code shows 
how to construct the training data, 
 

import numpy as np 
from scipy import stats 
def gen_sindata(n=2): 
    x = stats.uniform(-1,2) # define random variable 
    v = x.rvs((n,1)) # generate sample 
    y = np.sin(np.pi*v) # use sample for sine 
    return (v,y) 

 
Using Scikit-learn’s LinearRegression object, we can compute the 𝑎 parameter for a single 
hypothesis. Note that we have to set fit_intercept=False keyword to suppress the default 
automatic fitting of the intercept. 
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from sklearn.linear_model import LinearRegression 
lr = LinearRegression(fit_intercept=False) 
X, y = gen_sindata(2) 
lr.fit(X,y) 

 
And plot 𝑔(𝒟) for this training data (your plot might be different from mine as the two points are 
generated randomly): 
 

%matplotlib inline 
import matplotlib.pyplot as plt 
xi= np.linspace(-1,1,50) 
yi= np.sin(np.pi*xi) 
y_pred = lr.predict(xi.reshape(-1,1)) 
 
plt.plot(xi, yi,'--k',label='target') 
plt.plot(X, y, 'o') 
plt.plot(xi, y_pred, c='k', label='best fit') 
plt.legend(loc='best') 
plt.title('$a=%3.3g$'%(lr.coef_),fontsize=16) 

 
 
�̅�(𝑥): 
 
In this case, �̅�(𝑥) = 𝑎R𝑥. We can obtain 𝑎R using simulation: we just loop over the process, collect the 
outputs, and the average them as in the following: 
 

a_out=[] # output container 
for i in range(100000): #100000 loops 
    X, y = gen_sindata(2) 
    lr.fit(X,y) 
    y_pred = lr.predict(xi.reshape(-1,1)) 
    a_out.append(lr.coef_[0,0]) 
a_bar = np.mean(a_out) # approx 1.43 

 
Bias and Variance 
 
Q: What are the mathematical expressions of bias(𝐱) and var(𝐱) for this example? 
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A:  

bias(𝐱) = (�̅�(𝐱) − 𝑓(𝐱))' 

var(𝐱) = 𝔼𝒟 12𝑔(𝒟)(𝐱) − �̅�(𝐱)3
'
4	 

In this example, 𝐱 is a one-dimensional tensor (scalar) 𝑥 
 

bias(𝑥) = (�̅�(𝑥) − 𝑓(𝑥))' = (𝑎R𝑥 − sin(π𝑥))' 

var(𝑥) = 𝔼𝒟 12𝑔(𝒟)(𝑥) − �̅�(𝑥)3
'
4 = 𝔼𝒟[((𝑎 − 𝑎R)𝑥)'] = 𝑥'𝔼𝒟[(𝑎 − 𝑎R)'] = var(𝑎)𝑥'	 

 
We can then plot these results: 
 

a_var = np.var(a_out) # approx 0.71 
xi= np.linspace(-1,1,50) 
yi= np.sin(np.pi*xi) 
 
plt.plot(xi,(a_bar*xi-yi)**2,'--k',label='bias(x)') 
plt.plot(xi,(a_var)*(xi)**2,':k',label='var(x)') 
plt.plot(xi,((a_bar*xi-yi)**2 + a_var*(xi)**2),'-k',lw = 4,  

label='Error(x)') 
plt.legend(loc='best') 
plt.xlabel('x', fontsize=18) 
plt.ylabel('Error',fontsize=16) 
plt.title('$a_{bar}=%3.3g$, $a_{var}=%3.3g$'%(a_bar,a_var),fontsize=16) 

 

 

Q: What have you observed? 
A:  
1. Notice that there is zero bias and zero variance when 𝑥 = 0. This is because the learning method 

cannot help but get that correct because all the hypotheses happen to match the value of the target 
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function at that point!  
2. The errors are worse at the end points. Those points have the most leverage against the 

hypothesized models and result in the worst errors. Notice that reducing the edge-errors depends 
on getting exactly those points near the edges as training data. The sensitivity to a particular data 
set is reflected in this behavior. 

 
Finally, we can compute the expected out-of-sample error and its bias and var components by 
generating a test set and averaging x on this new set: 
 

𝔼𝒟"𝐸"##(𝑔(𝒟))' = 𝔼𝐱[bias(𝐱) + var(𝐱)] = bias + var 
 

bias = 𝔼,[bias(𝑥)] = 𝔼,[(𝑎R𝑥 − sin(π𝑥))'] 
var = 𝔼,[var(𝑥)] = 𝔼,[var(𝑎)𝑥'] 

 
# compute bias and variance 
cnt = 100000 
bias = 0 
var = 0 
x = np.random.uniform(-1, 2, size = cnt) 
for i in range(cnt): 
    bias += (a_bar*x[i] - np.sin(np.pi*x[i]))**2 
    var += a_var * x[i] * x[i] 
bias = bias / cnt # approx 2.84 
var = var / cnt # approx 0.71 

 
The bias is 2.84 and the variance is 0.71. The total generalization error is 3.55 for ℎ(𝑥) = 𝑎𝑥. 
 
Food for thought  
1. bias captures the concept that, even if all possible data were presented to the learning method, it 

would still differ from the target function by this amount. On the other hand, variance shows the 
variation in the final hypothesis, depending on the training data set, notwithstanding the target 
function. Thus, the tension between approximation and generalization is captured by these two 
terms. 

2. Unfortunately, the bias and variance cannot be computed in practice, since they depend on the 
target function and the input probability distribution (both unknown). Thus, the bias-variance 
decomposition is a conceptual tool which is helpful when it comes to developing a model. 

3. There are two typical strategies to improve the generalization error. The first is to try to lower the 
variance without significantly increasing the bias, and the second is to lower the bias without 
significantly increasing the variance. Reducing the bias without increasing the variance 
requires some prior information regarding the target function 𝑓(𝐱) to steer the selection of in the 
direction of 𝑓(𝐱), and this task is largely application-specific. On the other hand, reducing the 
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variance without compromising the bias can be done through general techniques that we will 
learn later in the course. 

 
You can download the above Python codes Bias_variance.ipynb from the course website. 
 
 


