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Boolean Learning Example: Let’s consider a concrete example with a finite number of the hypothesis 
set to further elaborate the main concept on the size of the hypothesis set, the probability structure of 
the data, and the influence of the size of the training set. 
 
Let us consider a Boolean target function (i.e., 𝒴 = {0, 1}) over a four-bit vector representation of 
input space {0000, 0001,… , 0111, 1000, 1001,… , 1111}. 
 
Q: For this example, what is the dimension of the input space 𝒳? 
A: 4 
 
Q: For this example, how big is the entire input space 𝒳? 
A: 2! = 16 
 
Q: For this example, how big is the entire Boolean hypothesis set ℋ? 
A: 2"# = 65,536 
 
How to compute these numbers? 
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In general, the target function 𝑓 is unknown. However, to illustrate the concept and identify the 
learning performance, let us define the target function 𝑓 which just checks if the number of zeros in 
the binary representation exceeds the number of ones. If so, then the function outputs 1 and 0 otherwise  
 

import pandas as pd 
import numpy as np 
from pandas import DataFrame 
df=DataFrame(index=pd.Index(['{0:04b}'.format(i) for i in range(2**4)], 
                            dtype='str', 
                            name='x'),columns=['f']) 

Programming Tip: The string specification above uses Python's advanced string formatting mini-
language. In this case, the specification says to convert the integer into a fixed-width, four-character 
(04b) binary representation. 

 
df.f=np.array(df.index.map(lambda i:i.count('0'))  
               > df.index.map(lambda i:i.count('1')),dtype=int) 
df # show all the input vectors and target values 

 
 
Learning is only feasible in a probabilistic sense. To this end, we assume that the training set represents 
a random sampling (in-sample data) from a greater population (out-of-sample data) that would be 
consistent with the population that 𝑔 would ultimately predict upon.  
 
Remark: In other words, we are assuming a stable probability structure for both the in-sample and 
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out-of-sample data. This is a major assumption and makes learning feasible! 
 
Now, presented with a training set consisting of some input/output pairs, our goal is to find 𝑔 that 
best matches 𝑓 on the training samples in the dataset 𝒟. In other words, minimize errors over the 
training set (𝐸$%(𝑔)) where the subscript indicates in-sample data.  
 
We will now show that we can indeed predict something useful outside 𝒟 using only 𝒟. 
 
Let us assume a very simple probabilistic distribution in which we have the first eight elements from 
the input space 𝒳 are twice as likely as the last eight. The following code is a function that generates 
elements from 𝒳 according to this distribution. 
 

def get_sample(n=1): 
   if n==1: 
      return 
'{0:04b}'.format(np.random.choice(list(range(8))*2+list(range(8,16)))) 
   else: 
      return [get_sample(1) for _ in range(n)] 

 
Programming Tip: The function that returns random samples uses the np.random.choice 
function from Numpy which takes samples (with replacement) from the given iterable. Because we 
want the first eight numbers to be twice as frequent as the rest, we simply repeat them in the iterable 
using range(8)*2. Recall that multiplying a Python list by an integer duplicates the entire list by 
that integer. It does not do element-wise multiplication as with Numpy arrays.  
 
list(range(8))*2+list(range(8,16)) 

 
 
If we wanted the first eight to be 10 times more frequent, then we would use range(8)*10, for 
example. This is a simple but powerful technique that requires very little code. Note that 
np.random.choice also permits an explicit way to specify more complicated distributions.  

 
The next block applies the function definition 𝑓 to the sampled data to generate the training set 
consisting of 5 elements. 
 

np.random.seed(12) # for reproduction 
train=df.loc[get_sample(5),'f'] # 5-element training set 
train.index.unique().shape    # how many unique elements? 

 

Notice that even though there are 5 elements, there is redundancy because these are drawn according 
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to an underlying probability. 
 

df['g']=df.loc[train.index.unique(),'f'] 
df.g 

 
 
Note that there are NaN symbols where the training set had no values. We now do a bold guess: we will 
fill NaN with 0.0 to define our final hypothesis 𝑔.  
 

df.g.fillna(0,inplace=True) #final specification of g 

 
We can now address the performance of 𝑔 with 5 elements of training data. Let's pretend we have 
deployed this and generate 150 test data. 
 

np.random.seed(30) # for reproduction 
test= df.loc[get_sample(150),'f'] 
(df.loc[test.index,'g'] != test).mean() 

  
 
The result shows the error rate of 0.28, given the probability mechanism that is generating the data.  
The following Pandas compares the overlap between the training set and the test set in the context of 
all possible data. The NaN values show the rows where the test data had items absent in the training 
data. Recall that we did a bold guess to set zero for these items. As shown, sometimes this works in its 
favor, and sometimes not. 
 

pd.concat([test.groupby(level=0).mean(),  
           train.groupby(level=0).mean()], 
           axis=1, 
           keys=['test','train']) 

 
Programming Tip: The pd.concat function concatenates the two Series objects in the list. The 
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axis=1 means join the two objects along the columns where each newly created column is named 
according to the given keys. The level=0 in the groupby for each of the Series objects means 
group along the index. Because the index corresponds to the 4-bit elements, this accounts for 
repetition in the elements. The mean aggregation function computes the values of the function for 
each 4-bit element. Because all functions in each respective group have the same value, the mean 
just picks out that value because the average of a list of constants is that constant.  

 
 
Influence of Size of Training Data 
 
We can now play around to see the influence of the size of training data. For example, if we keep 
everything the same and increase the size of training data to 12, we will have another final hypothesis 
𝑔 with a better prediction. 
 

np.random.seed(12) # for reproduction 
train=df.loc[get_sample(12),'f']  
del df['g']    
df['g']=df.loc[train.index.unique(),'f'] 
df.g.fillna(0,inplace=True) #final specification of g 
np.random.seed(12) # for reproduction 
test= df.loc[get_sample(50),'f']  
(df.loc[test.index,'g'] != df.loc[test.index,'f']).mean() # error rate 

 
 
And Pandas 
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pd.concat([test.groupby(level=0).mean(),  
           train.groupby(level=0).mean()], 
          axis=1, 
          keys=['test','train']) 

 

 
 
The above Python code Boolean_Learning.ipynb can be downloaded from Google Colab 
https://colab.research.google.com/drive/1BMmLiTWpkkQjX24uLJJBF2vkcT1OE7UQ?usp=sharing 
 

Important Takeaways from the Learning Example 
 
l Learning is only feasible in a probabilistic way. We don't insist on using any particular probability 

distribution, or even on knowing what distribution is used. However, whatever distribution we 
use for generating the samples, we must also use when we evaluate how well 𝑔 approximates 
the unknown target function 𝑓. 

l The hypothesis 𝑔  is not fixed ahead of time before generating the data, because which 
hypothesis is selected to be 𝑔 depends on the data. 

l We can predict something useful outside the training set 𝒟  using only 𝒟 . The bigger the 
training set, the less likely that there will be real-world data that fall outside of it and the better 𝑔 
will perform. 

 


