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Some Updates...

e Syllabus

11 12/07 Meta-Learning for Visual Analysis (1)

1 12114 Meta-Learning for Visual Analysis (ll); HW #3 due; HW #4-1 out
Self-Supervised Learning for Visual Analysis Final Project Announcement

13 12/21 Vision and Language HW #4-2 (bonus & optional?)

14 12/28 Beyond 2D Vision (3D and Depth)

15 01/04 Guest Lectures (TBD) HW #4 due

16 01/11 Final Week (no class)

17 01/18 Presentation for Final Projects

* Final Challenge/Project
e At least one company is sponsoring the final challenge, still confirming another

* Considering the size of the class, 4 students per group is preferable
* No fewer then 3 and no more than 5
* Inter/intra group evaluation will be conducted
» Start looking for your teammates!



What to Cover Today...

Meta-Learning
* Definition
* Parametric & Non-Parametric based Approaches

Meta-Learning for Few-Shot Learning
* Few-Shot Classification
* Metric Learning vs. Data Hallucination
* Few-Shot Image Segmentation
* Few-Shot Object Detection (probably next lecture)

Meta-Learning for Domain Generalization (probably next lecture)
* From Domain Adaptation to Domain Generalization

Challenges in Few-Shot Learning Tasks (next lecture)

Selected slide credits: C. Finn, S. Levine, & H.-Y. Lee



Meta Learning 702 &

* Meta Learning € Supervised Learning

* For Supervised Learning,

* Given training data D = {X, Y},
learn function/model f so that
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What If Only Limited Amount of Data Available?

* Naive transfer?
* Model finetuning:

e.g., Train a learning model_(e.g., CNN) on large-size data (base classes),

following by finetuning oanmaII-size data (novel classes).

- That is, freeze feature backbone (learned from base classes)
and learn classifier weights for novel classes.

* Possibly poor generalization ®

Training stage

Base class data

(Many

Feature
extractor

Classifier

Fine-tuning stage
Novel class data Fixed

(Few) Feature

extractor Classifier

# of data

big data

small data

/

N

objects of interest,
driving scenarios, etc.



Selected Applications of

Few-Shot Learning in Computer Vision

\/° Few-Shot Image Classification

training data

test set
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Vinyals et al.,

NIPS 2016

 Domain Transfer/Generalization
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\7/ Few-Shot Image Segmentation
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Wang et al., ICCV 2019 6
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Selected Applications of

Few-Shot Learning in Computer Vision

Few-Shot Image Generation
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Reed et al., ICLR 2018

Generation of Novel Viewpoints
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Gordon et al., NIPS Workshop 2018

* Few-Shot Image-to-Image Translation

Source class 5]

Training Deployment

Translation
Few-shot

Unsupervised
Image-to-image
Translation

n
Few-shot
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Image-to-image
ranslation
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image(s)

Source class 8] S|

Liu et al., ICCV 2019

e Generating Talking Heads from Images

Zakharov et al., ICCV 2019 7
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Meta Learning = Learning to Learn- ‘%-rvﬁ"(
* A powerful solution for learning f%few-s # cat—>
o
e Let’s considdeJr the following “2-way 1-shot” learning scheme: 4°%
£ —
(&2
'5/“"5$ T Supporyset Quer‘/ det
s€ / >
A\~ Task i - Test
1&“"’\‘  cat (+)  Dog (-)\ Cat(+)  Dog () "
Meta-Training T~
Taski+1l| [rain 6 Test
Apple (+) Orange (-) Apple (+) Orange (-)
No\/t/ 6
C“Tfj'o?cfs :
- Novel
Meta-Testing Task
Slide credit: H.-Y. Lee
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Supportset Query set

/ ¥
T R Y
Cat(+)  Dog()

. ) R | Gst(+) Dogld
Meta Learning (cont’d) Tt
Taski+1  Train 6 = Test ‘ -g:
* Two Ways to View Meta Learning e ron | BN e 0
| Bike () Car() Bike (+) Car (-)

* Probabilistic View

» Extract prior info from a set of (meta training) tasks,
allowing efficient learning of a new task

* Learning a new task uses this prior and (small) training set
to infer most likely posterior model parameters

* Easy to understand meta learning algorithms

L/ ¢ Mechanistic View

e Alearning model (e.g., DNN) reads in a meta-training dataset,
which consists of many datasets, each for a different task

* Then, the model observes new data points (for a novel task)
and make predictions accordingly

* Easy to implement meta learning algorithms



Some ML Backgrounds (if time permits...)

AN EC
e (Standard) Supervised Learning \ﬂ jﬁ/
i “cat”
argmaxlogp( D={(z1,91)s - (Tk,Ur)}

¢

model para/m;ters training data [ label
input (e.g., image)

= arg max 10/g'P(D|¢) +log p(¢)

data likelihood regularizer (e.g., weight decay)
= arg max > logp(yilzs, ¢) + log p(¢)
i Bc©

* We know the biggest problem is that...
e Can’t always collect a large amount of labeled data D in advance.

10



* Now, for the Meta Learning scheme...

supervised learning:

arg max log p(¢|D) ?

NeX

®) can we incorporate additional data?

» arg mgx log p(d—')L@, Dmeta—train)

Dmeta—train

)

Few-shot data domain of interest

e
D={(z1,y1),---» (Tr,yx)}

(oX 005 Qv
D1r1rleta—train — {Dla SR 7Dn

™o | <

o Elc|E|L
oS (@ R —

o i= B QIR IE:
Ao X o
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] Obiject label: Obiject ID:
What Meta Learning Solves: “cat” “person”

v )

arg quSlX log p(¢|_2?7 Dmeta—train)

Dmeta—train — {Dla R 7Dn}

¢ LIRS
D = {(xlayl)v"'a(wk‘vyk‘)} NP
VI6|Y|T|o
. w
® what if we don’t want to keep Dieta-train around forever? P ?QE :

® learn meta-parameters 0. p(0|Dmeta-train)
\-/—"—__\.

whatever we need to know about Deta-train t0 solve new tasks

» logp( |D Dmeta—tram 1Og/ |D 9 9|Dmeta—tram)d9

L I~ logp |D o> logp 9*|Dmeta—tra1n) ‘\
BOSQ

12




What Meta Learning Solves:

4 - Object  pany A
ﬁ label: i Object ID:
|/ ﬂcatn S, ‘ personn
X
arg mgx log p(¢|D, Dmeta-train) \Dmeta-train ={D,... )
D = {(:Clvyl)v R (xkvyk‘)} |l r;e | A
NEINEE
V|68|V|T|a
a|rx(Nliole
» logp(gb“)’ Dmeta—train) — log/ p(¢|Dv 9)p(9|Dmeta—train)d9 PIEISIY
©
~ logp(¢|D7 9*) + logp(g*‘pmeta—train)//
» argmax log p(@|D, Dmeta-train) ~ arg max log p(¢|D, 6%)
What meta learning cares is the learning of ® from D (and implicitly from D, ... 1.:)
What makes meta learning challenging is the learning of optimal ©* from D_ ... ¢/ain

[ 0* = arg méax logp(9|Dmeta,-train) ]
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A Quick Example

§-=} Person ID:

OOQase S &A “Brad Pitt”
m)| Meta training: |6* = arg maxlog p(6|D in) —

: = arg ; gp Lmeta—traln‘ Dinetatrain = {Dl, . ’Dn}
P Meta testing: 9" = ergmpxlog p9ID: 67 D = {(@1,1): - o )}

(_P l-Gr;ekg l

Mo R x|V

V|68|VY|T|a

) ) ) ) al|rx|Niole

Di ={(z1,y1)s -5 (@hs Y) } T

meta-training yts —[1,0,0]?
— [0, 1, 0]?
I 9* [0/ OI 1]?
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A Quick Example (cont’d)

o . . * .
=) Meta training: 0* = arg IIIQaX log P(Q‘Dmeta—tram) Deta-train = {P1,---,Dn}

= | Meta testing:| ¢* = arg mgxlogp(ﬁbm,ﬁ*) D={(z1,11),..., (@K )}

Greek
meta-testing GTCTRTSTT
0* MR x|V
r i \‘ y"s ~—— testlabel |D|B|Y|T|o
! 1,000 |[¥|m/Nole

. A = PIER]Y

($17y1) ($2,y2) (33'3,y3) xts \
w’p a % é \1 testinput |

The condition/mechanism of meta-training and meta-testing mus

In other words, meta learning is to learn the mechanism, not to fit the data/labels.

1

15



Meta-Learning Terminology

meta-learning: 6 = arg max log p(0|Dmeta-train)

Di = {(=1,91), - (2h, b))}

TaskT{ o o
query (set) """ | i — (il ), (v}

| IS
adin 2

\

meta-training

Base classes

meta-testing

D = {(531,341), vy (xkvyk)}

Novel classes

Y .
5-way 1-shot I—>

v" Remarks

- Meta learning: learn a N-way K-shot learning mechanism, not fitting data/labels
- The conditions (i., N-way K-shot) of meta-training and meta-testing must match.
- Additional remarks on N & K for affecting the learning performance?

Meta testing: adaptation: ¢* = arg mgx log p(¢|D, 0%)

16



A Closely Related Yet Different Task: e —
. [ Taski+1 Train - Test ‘ _;
Multi-Task Learning oo B
Testing Task b 7*\(’?’ -';E—n_ Test J:::{z =

* Meta Learning
m Meta training: 0* = arg max log p(0|Deta-train) Dineta-train = {D1, - .

= Meta testing: ¢* = arg mgxlogp(cb_lg, 0") D={(z1,y1),- - (K, Yx) }

* Multi-Task Learning
* Learn model with parameter ©* that simultaneously solves multiple tasks
{D1,.... Dy}

* . l
0" = arg max Z log p(@ Face ID Age Expression

i=1 - VS g
* Can be viewed as a special case where Q%) (@) Q%‘)

o; =0 (i.e., fo(D;) =0)
Y § \i?

* What about Transfer Learning?
\ . earnin
D A'- DS l 2’5 S‘ 3 3 g(/‘aV?(t OJ'f,‘ s( e ;Igﬂrithrg‘l’i |

DT‘iX-{  §J &

Tom Cruise 57 Smile



What to Cover Today...

* Meta-Learning
* Definition
* Parametric & Non-Parametric based Approaches



Training Tasks 1

Approaches

Task i+l  Train

* Two Ways to View Meta Learning Tesing Tosk Trin
* Probabilistic View (e.g., optimization-based)

» Extract prior info from a set of (meta training) tasks,
allowing efficient learning of a new task (i.e., meta-testing)

* Learning a new task uses this prior and (small) training set
to infer most likely posterior model parameters

— Easy to understand meta learning algorithms

| o

Supportset Query set

Test

_ Cat(+) Dog() Cat(+) Dog(-)

| 6 Test ‘ -
— -
Apple (+) Orange (-) Apple (+) Orange (-)

- .
gg % | Test g @ E
Bike (+)  Car() Bike (+)  Car(-)
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Approach #1: Optimization-Based Approach

* Model-Agnostic Meta-Learning (MAML)*
e Key idea:

* Train over many tasks (with a small amount of data & few gradient steps),
so that the learned model parameter would generalize to novel tasks

* Learning to initialize/fine-tune
* Meta-Learner ® % O,:

* Learn a parameter initialization ©,of model
that transfers/generalizes to novel tasks well.

* Thatis, learn model ©, which can be fine-tuned by novel tasks efficiently/effectively.

- Support set  Query set
Task i Train

- A
) 5 =y 6-*
Testing Task Train | @ Test (O optimize model parameter 6 so that
it can quickly adapt to new tasks

*Finn, Abbeel, Levine, ICML 2017 20

— meta-learning
---- |earning/adaptation

Qi’+1 LTHl(fg.’ )

i+1

Training Tasks ]

*
o 0i1




MAML

Loss Function: @

L(¢) = z l"(@") [™(6™): loss of task n on the query set of task n 0

n=1 g 6™: model learned from twn (?
N

Network
Structure — ‘2 Update —>  Update E
A T ¥
7o 7o g
A
Learning Algorithm T
Compute Compute
—  ——
Gradient Gradient

Focus on the learning of
the initialization parameter (@

Support/Query
Sets of Task 2

Support/Query

Sets of Task 1
21



MAML doesn’t care
how model 6° performs on each task.

e |llustration of MAML

It only cares how model 6™ performs for task n

N
i 0
0\ __ nran when starting from a properly learned 6.
L(07) = z (") In other words, a good 6° matters!
n=1

[* (Loss of
task 1)

—_—

[ (Loss of

task 2)
—

Small [%(6%)

02 Parameter

*

Small 11(61) A@/

Slide credit: H.-Y. Lee 22



* Comparison: o Determine the best 8° for all existing tasks
Model Pre-Training or

Multi-Task Learning However, no guarantee that 9'is preferable
N for learning good 9™ for task n.
L(QO) — z l"(@o) Again, a good 6° really matters!
n=1
[* (Loss of

task 1)

[ (Loss of

12(0%)
7 §
. task 2)

Model

d(; Parameter

Slide credit: H.-Y. Lee 23



MAML

e Remarks

* Train a good initialized parameter set @ (i.e., 8°) for quick adaptation/generalization

* Meta-training:

W
L) = ) (@

n=1

B P < d—nVyLl(p)

* Meta-testing (for adaptation):

H(’
O=p—eVyl(p)
qbw??q’cm\«

Note that one or multiple updates
can be performed during meta-testing.

Support set Query set

-

Task i Train i/ @‘ Test !
Cat(+) Dog() catly)  Dogl)
Training Tasks ]

= ] a3 —

3 =

Taski+1  Train ‘ Test ‘ )
— -l

 Apple (+) Orange (4

e })_Omwent)  Apple (+) Orange ()
=1 =y
Testing Task Train WQ . Test ﬂ "’@ T
(Bhke(s)  Carb) CBke()  Carl)
6
Network = t
+—
Structure |nit d)-i_’ Uchjate
g
Learning T
Algorithm Compute
(Function F) Gracilent
Only focus on ' -
initialization parameter Training
) ~ Data 24



Meta-Training in MAML

Training Tasks ]

g’.initial model parameters

: model parameters updated via the support set

L@ =) @

n=1

—

0=¢9—c-Tllp)

N
ERATOED WAL
n=1

01
do

I~
D
|

[u—

S
D)
~—~

Testing Task

S
D
~

g»

(1)

=

(2)

(3)

(4)

(5)
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91(0)
¢4
. |o1(8)
7,1 (0) = 50,
az'("év)
a1(h) Zal(é) 26, / e
g’ aQDL aé] a(pi
First-order approximation:
If i # j, then:
~ dl(p) 00; dl(p)
0. — (p — & - J — —c. ~
SR 09 09, 0;09;

>

(5)

If i = j, then:
00
0o,

=1—¢

0l(g)

dp;jdg;
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@: initial model parameters
6: model parameters updated via the support set

01(6)] [0L()]
24 a0
. |aL(8)]| |oué) )
Ul (0) = 30, |7 8aD | = 7e! (6)
ol(0)| |aLé)
L 0¢; | 6,) |
0
VLges 7
>,, N N
Prra O ATOESNAUCOES WAL CY
n=1 n=1

3 |0 -0 =n-Tpllp) =0 —1-VsL(O)

Finn, Abbeel, Levine, “Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks,” ICML 2017 27



Recap: MAML

 Remarks
* Train a good initialized parameter set @ (i.e., 8°) for quick adaptation/generalization

* Meta-training: Supportset Queryset

N [ Tm{’:, ¥, Test
TOENAC Y L

Training Tasks ]

n=1 ' 5 =
Taski+1  Train 6 = Test ‘ ‘.;

¢ —¢p—nV ¢L(q§) | ‘f?ﬂt!i“!_!thi  Apple(+) Orange ()

Testing Task : 5 E i E
 Meta-testing (for adaptation): D frein -fg Sam Test 1) @
RO e  Bike(+)  car()

0=p—eVyl(eh) )

Network :d)-i_’ Tedaie
t

Structure |nit

Note that one or multiple updates g

can be performed during meta-testing. Learning 1
Algorithm |, Compute
(Function F) Gradient

Only focus on ' _ l -
initialization parameter Training

) . Data 28



Approaches

* Two Ways to View Meta Learning

* Mechanistic View (e.g., metric-learning based)

Training Tasks

Testing Task

| o

. 3
Taski+1  Train | 6 Test ‘ -
— -

Supportset Query set

Test
Cat(+) Dog(-)

_ Cat(+) Dog()

-
i

Apple (+) Orange (-) Apple (+) Orange (-)
-,
Train oy S Test Wi
fof NP | ﬁ 9

Bike (+) Car(-) Bike (+) Car(-)

V' * Meta training: A learning model (e.g., DNN) reads in a meta-dataset
which consists of many datasets, each for a different task

/' * Meta-testing: the model observes new data points (for a novel task)

and make prediction accordingly

— Easy to implement meta learning algorithms

29



Approach #2: Non-Parametric Approach

e Can models learn to compare?

* E.g., Siamese Network
* Learn a network to determine whether a pair of images are of the same category.

Input Hidden Distance Output
layer layer layer layer

Koch et al., Siamese Neural Networks for One-Shot Image Recognition, ICML WS 2015 30



Learn to Compare (cont’d)

« Siamese Network (cont’d)

* Meta-training/testing: learn to match (i.e., 2-way image matching)

* Question: output label of the following example is 1 or 0?
(i.e., same ID or not)

SEPTEMBER 3

Input Hidden Distance Output
layer

31



Learn to Compare (cont’d)

* Siamese Network (cont’d)

* Meta-training/testing: learn to match (i.e., 2-way image matching)

* Question: output label of the following example is 1 or 0?
(i.e., same ID or not)

Input Hidden Distance Output
layer layer layer layer

Xtest

* What have we learned from these examples?
* And, can we perform multi-way classification (beyond matching)?

32



Supportset

Learn to Compare... — — ";f
with the Representative Ones! LI =3 L

Testing Task Train .@/0 g Test d N E
* Prototypical Networks (NIPS’'17) —

Bike ()  Car(-)
Learn a model which properly describes data in terms of intra/inter-class info

* It learns a prototype for each class, with data similarity/separation guarantees

Meta-Training Stage support set

.@ S= {(xi'yi)}{'czl

Base class data e Z\’&/{ fcp
extractor ,,9|,“,‘§§!ff§!' ! f

‘ oo — (

Meta-Testing Stage

Novel class data

Fixed
(Few) Feature

extractor Classﬁ‘er

mn

Snell et al., Prototypical Networks for Few-Shot Learning, NIPS 2017

33



Learn to Compare... T st |
with the Representative Ones!

Testing Task

* Prototypical Networks

For DL version, the learned feature space is derived by a non-linear mapping fg
and the representatives (i.e., prototypes) of each class is the mean feature vector c;,.

support set

Meta-Training Stage
S = {(x, ¥y}

Base class data
(Many Feature

- extractor , Classifier

Meta-Testing Stage

Novel class data Fixed .@
(Few) Feature

Z fo (xi), where S, C S indicates features of class k from support set S

(xi:yi)esk 34



Learn to Compare

* Matching Networks

* Inspired by the attention mechanism,
access an augmented memory containing useful info to solve the task of interest

* The authors proposed a weighted nearest-neighbor classifier,
with attention over a learned embedding from the support set S = {(xi,yi)}fﬂ,
so that the label of the query X can be predicted.

c(.,.): cosine similarity

k
§= S alt. oy with (i) = ETEIEN) S STE9E)
i=1

supportset S = ,

{Cen y)¥y w.
b A
O

query example X

Vinyals et al., "Matching Networks for One Shot Learning," NIPS, 2016 35
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Learn to Compare

* Matching Networks (cont’d)

* Ifwehaveg =f,
the model turns into a Siamese network like architecture

* Also similar to prototypical network for one-shot learning

support set
{Cx y)Iey

query example X

Vinyals et al., "Matching Networks for One Shot Learning," NIPS, 2016 36



* Matching Networks (cont’d)
* Full context embedding (FCE):
* Each element in S should not be embedded independently of other elements
* g(x;) 2 g(S) as a bidirectional LSTM by considering the whole S as a sequence
* Also, S should be able to modify the way we embed &

* f(X) > f(x,S) as an LSTM with read-attention over g(S): attLSTM(f'(X), g(S),K),
where f'(X) is the (fixed) CNN feature, and K is the number of unrolling steps

* Experiment results on minilmageNet

support set
S ={(x;, ¥,

=

Q. .

= . . S-way Acc

3 Model Matching Fn  Fine Tune I-shot 5-shot

o0

o PIXELS Cosine N 23.0% 26.6%

o BASELINE CLASSIFIER Cosine N 36.6% 46.0%

a BASELINE CLASSIFIER Cosine Y 36.2% 52.2%

: BASELINE CLASSIFIER Softmax Y 384% 51.2%

‘_”| MATCHING NETS (OURS)  Cosine N 41.2% 56.2%

2 MATCHING NETS (OURS)  Cosine Y 42.4% 58.0%
MATCHING NETS (OURS) Cosine (FCE) N 44.2% 57.0%
MATCHING NETS (OURS) Cosine (FCE) Y 46.6% 60.0%

query example X
Vinyals et al., "Matching Networks for One Shot Learning," NIPS, 2016 37



Learn to Compare...with Self-Learned Metrics!

* Relation Network

* Metric-learning approaches typically focus on learning an embedding function
with a fixed metric (e.g., Euclidean distance, cosine similarity, ...)

* The authors proposed to train a Relation Network (RN) to explicitly learn a
transferrable deep distance metric comparing the relation between images

embedding module relation module

feature concatenation

compute relation score

support set £

s = (vl " .
X = £ () r = g6 (CCf, (D, fo()))
%> fo2)

C(f(p (xi)r f(p (2))

query example X

Sung et al., "Learning to Compare: Relation Network for Few-Shot Learning," CVPR, 2018 38



Relation Networks (cont’d)

* Some works can be extended to zero-shot learning:

* Instead of few-shot images, the support set contains
a semantic embedding vector (v, ) for each of the training classes.

* Thus, we can use a second heterogeneous embedding function
to embed the semantic embedding vectors.

* Extension of Prototypical Network:

= O feG) P =)

(x'é sYi Esk

)
R .l Y . vz
= X = Ci1 s
Q.i V1 :
° Ao 9

* Relation Networks: 7 = g4 (C(f,, (%), fo(X))) = 7 = gy (C(f,, Vi), fo, (X))

39



Some Takeaways

for Existing Meta-Learning Approaches

Parametric-based

+ handles varying & large K well
+ structure lends well to out-of-
distribution tasks

- second-order optimization

St
Non-parametric based @N‘@gr‘/\
+ simple “ﬁ?/\l

+ entirely feedforward
+ computationally fast & easy to optimize

- harder to generalize to varying K
- hard to scale to very large K
- so far, limited to classification

Generally, well-tuned versions of each perform comparably on existing FSL benchmarks.

40



What to Cover Today...

* Meta-Learning for Few-Shot Learning

* Few-Shot Classification
* Metric Learning vs. Data Hallucination




Learn to Augment...Data Hallucination for FSL

e Data Hallucination

* Many modes of intra-class variation (e.g., camera pose, translation, lighting changes,
and even articulation) are shared across categories.

* As humans, our knowledge of such intra-class variations allow us to visualize
what a novel object might look like in other poses or surroundings.

* We can thus hallucinate additional examples for novel classes
by transferring variation modes from the base classes.

* Typical data augmentation techniques only use a limited amount of a priori known
invariances (e.g., translations, rotations, flips, addition of Gaussian noise, etc.).

Wang et al., "Low-Shot Learning from Imaginary Data," CVPR, 2018 42



A Super Brief Review for
Generative Adversarial Networks (GAN)

e Design of GAN
* Loss: L;,un(G,D) =E[log(1—D (G(x)))] + E[logD(y)]

Latent random variable

Real world
images

[elele)

Generator

o

it

Discriminator

Goodfellow et al., Generative Adversarial Nets, NIPS, 2014

Real

1@ 5
. n
Fake

Backprop error to
update discriminator
weights

43



Learn to Augment...Data Hallucination for FSL

* Cross-Modal Hallucination

* The lack of data in one modality (e.g., image) can be compensated by
abundant data in the other modality (e.g., text) through properly learned alignments
between two modalities.

* Here, fine-grained images with detailed textual descriptions are used
to build a text-conditional GAN for image generation

* Generated images should be not only realistic but also class-discriminative.

7 N\

This bhird has a black
crown, black primaries,
and a black belly.

This bird is brown
with black and has a
very short beak.

Small bird, with a
white chest, a blue
crown, and black
and blue wings

Pahde et al., "Cross-modal Hallucination for Few-shot Fine-grained Recognition," CVPR WS 2018 44



Cross-Modal Hallucination (cont’d)

* Discriminative text-conditional GAN (tcGAN)
* First, train a tcGAN on samples from Cp,5e With regular objective/{unction:

T: text embeddi
Crom ) = B, l00D 1) + Eerloa1 DN T,

\____\_‘
* Next, augment L;.;4y by adding a class-discriminative loss (similar to ACGAN) and
fine-tune the tcGAN on the few-shot samples from C,,ve; With the compound losses:

L(D) = Licgan(G,D) + E[P(c|D)] c: class label
L(G) = [’tCGAN(Gr D) - IE[P(C'G(Z, T))]

« D* =argmaxpL(D) and G* = argmin;L(G)

This is a mostly
yellow bird with
black and white

m! ﬂ Select top-scored generated

D images computed by D*

¥

{ ikl [ -
e it R
wings and a black B s N
- - f ] N
Wt‘s — . ; =3 .. -“ M
Generated images

z per category Ranked images per category

Pahde et al., "Cross-modal Hallucination for Few-shot Fine-grained Recognition," CVPR WS 2018 45



Learn to Augment...Data Hallucination for FSL

e Data Hallucination GAN

* Previous hallucination approaches leveraged datasets with expensive annotations

* Moreover, the modes of intra-class variations typically come from fixed pre-specified
rules (e.g., pre-specified instance-level textual descriptions)

* Can we learn a model of a larger invariance space, through training a conditional GAN
in the source domain (Cpse), and apply it to the target domain (Cpgve))?

Cbase Cnovel

N s

/)

E 79AN J
1/

<X
Antoniou et al., "Data Augrr{é‘%f'ation Generative Adversarial Networks," ICLR Workshop, 2018 46



* Data Augmentation GAN

(Left) Generator
I, = Enc(xi)

~ N(0,I)
Xy, = Dec(z;,1;)

j%nf{

Data Provider

R I

lTrue Ima% xii>

/

Linear Encoder
Projection

& (Gaussian)

| Projected z | |r| Low Dim Repr. | |

Decoder
(Generator)

True Ima @

\

$

E:ake Distr.

Real Distr. (x;, X)) ]

A

Generator Network

(, xg,}-]—l

Real/Fake

Discriminator Network

e

Kr > (T
/X‘,K——)R/F_?

(Right) Discrimi
D(x;,X;) = Re&al pair
D(xi-) Fake pair

Why not just discriminate
between Xx; and xg
= To prevent

K} . LQW‘? )

=>» That is, to improve...
druevst

Antoniou et al., "Data Augmentation Generative Adversarial Networks," ICLR Workshop, 2018 47



Learn to Augment...Data Hallucination for FSL

* Jointly Trained Hallucinator
e The hallucinated examples should be useful for classification tasks,

rather than just being diverse or realistic (that may fail to improve FSL performances).

* The authors proposed to train a conditional-GAN-based data hallucinator (G (x, z))
jointly with the meta-learning module (h) in an end-to-end manner.

Noise z

—>

forward pass

I' Illllll =

= = == ==
back-propagation

Wang et al., Low-shot learning from imaginary data, CVPR 2018
———————
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Learn to Augment...Data Hallucination for FSL

e Hallucination by Analogy
* Modern recognition models are trained on large labeled datasets like ImageNet

* To deal with the above challenges faced by recognition systems in the wild, the
authors proposed a FSL benchmark in two phases:

Base classes (many training examples) Novel classes (few training examples)
\ 000 \h—\ T\
\—%\\\\ \:\ \—é
b
A
\\ Ay
i ‘ Classifier base and novel categories)
_‘.
R ion | . —_— Feature —_— L hot | —_— é%,_
epresentation learning ow-shot learning
extractor ,#P %|“

N

data hallucinator

Hariharan et al., Low-shot Visual Recognition by Shrinking and Hallucinating Features, ICCV, 2017 49



* Hallucination by Analogy (cont’d)

* Analogy-based Data Hallucinator

* Train H using analogy quadruplets (a,, a,, by, b,),
where (a4, a, ) belong to some class, (by, b,) belong to another class, and a;: a, :: b;: b, holds.

training quadruplets collected from base classes

hallucinated sample

b,

Hariharan et al., Low-shot Visual Recognition by Shrinking and Hallucinating Features, ICCV, 2017 50



Recap:
Data Analogy in Video Prediction

* Learning to generate long-term future via hierarchical prediction
(Villegas et al., ICML'17)

Step 3:

Image Generation Visual-Structure Analogy

Objective Function:

Adversarial Training -> alternately minimize L & LDisc

Update Image Generation Network (G)

L= Eimg + Efcal 1 EGen

- . [T ['im;z = “xtJrn - )A(Hrn”g
!_ > Real Liea = [|C1 (Xe4n) = C1 (Xen) |I3
. +|Ca (Xt 4n) — C2 (Xt4n) Hg
A L SR :

Pron e ﬁGen = — log D ([Pt+m xt—l—n])

— Update Discriminator (D)

!_ e = —log

ph .y | EDisc = OgD ([pt+mxt-§-n])

= 0.510g (1 = D ([PtsnsXtsn)))

-0.5 log (1 = i) ([pt-{-naxt})) ’
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A Closer Look at FSL (1/3)

Deeper ba@ignificantly reduce the gap across existing FSL methods.
domain shifts between base and novel classes)

* Aslightly modified baseline method (baseline++)
surprisingly achieves competitive performance.

* Simple baselines (baseline and baseline++: trained on base and fine-tuned on novel)
outperform representative FSL methods when the domain shift grows larger.

Training stage Fine-tuning stage

Base class data Novel class data Fixed @
(Many Feature ) (Few) Feature -
- |Geg J  extractor 1,9_'?_'??!!!?9[‘ : e - extractor Classifier

xr-— C(IWy)— ¥

Xy

‘cosine

cistance

use cosine distances between the input feature and the
weight vector for each class to reduce intra-class variations

52
Chen et al., A Closer Look at Few-shot Classification, ICLR, 2019



A Closer Look at FSL (2/3)

* Performance with deeper backbones
* For CUB, gaps among different methods diminish as the backbone gets deeper.

* For mini-ImageNet, some meta-learning methods are even beaten by baselines with
a deeper backbone.

—d— Baseline Baseline++ MatchingNet
1-shot 5-shot
0% 5 558
80% ./’/ 50%
70% 45%
60% 40%
O . = = = Oy 3 = e =)
S S & @ o S 2 B & B
= = = = = = = = = =
e o 8 & @ £ o I el I
5 ® ¢ & o B

F-AUOT)

Y

ProtoNet

1 -shot

7/

g-AUO7)

OT-12M5ay

—— MAML

== RelationNet
ynini-ImageNet

BI-1BNs=Y

FE-1PNSEH

Chen et al., A Closer Look at Few-shot Classification, ICLR, 2019

80%

60%

5-shot

¢

)

F-AUOT

0-ALO7)

OT-12Nsay

BT-12NsaY
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o Fation B A wINK

‘ CUY
A Closer Look at FSL (3/3) ko e ok

* Performance with domain shifts (using ResNet-18)

* Existing FSL methods fail to address large domain shifts (e.g., mini-lmageNet - CUB)
and are inferior to the baseline methods.

e This highlights the importance of learning to adapt to domain differences in FSL.

B Baseline M Baseline++ M MatchingNet ™ ProtoNet MMAML M RelationNet
90%

80%

70%
60%
il
40%

minilmageNet  minilmageNet -> CUB

Small < » lLarge
Domain Difference

54
Chen et al., A Closer Look at Few-shot Classification, ICLR, 2019



What to Cover Today...

* Meta-Learning for Few-Shot Learning

* Few-Shot Image Segmentation

Selected slide credits: C. Finn, S. Levine, & H.-Y. Lee



Semantic Segmentation

* Goal
* Assign a class label to each pixel in the input image

* Don’t differentiate instances, only care about pixels

56



Few-Shot Segmentation

A large number of image categories are with pixel-wise ground truth labels,
while a small number of them are with limited.

A shared backbone produces feature maps for both support and query images.

Prototypes for each class is obtained by masked pooling from support feature maps.

Query feature maps are then compared with the pooled prototypes pixel-by-pixel.

Typically, cosine similarity is adopted for pixel-wise feature comparison.

Pooled features

Masked

Pooling Query mask

prediction

Cosine
Similarity

Support image

Query Feature maps

Query image
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OS LS M [BMVC 2017]

r’_n’"
Support Set §

)

Query Image I, Segmentation Mask

* Sisan annotated image from a new semantic class

Input S to a function g that outputs a set of parameters 6

6 is used to parameterize part of the segmentation model
which produces a segmentation mask given I,

Shaban, Amirreza, et al. "One-shot learning for semantic segmentation." BMVC 2017 58



OS LS M [BMVC 2017]

224x224x4

Masking
_—

VGG

1000

(4096+1)

FCN-32s

conv-fc7

4096xhxw

“E weight hashing

-

=

qQm

c(.,w,b)

Shaban, Amirreza, et al. "One-shot learning for semantic segmentation." BMVC 2017



Prototype Learning ivvczos

:' |
o I

: I == Prototype Learner
@ I
! I

b oo o oo oo o e e e e omm e e e o mm mm om om—

Support Set prototyp esﬁ

— Segmentor

/)

Query Image

A prototype is learned for each foreground class and the background class.

Prototypes are used to predict rough segmentation maps for each class.

The final prediction is optimized using probability fusion.

Dong, Nanqging, and Eric Xing. "Few-Shot Semantic Segmentation with Prototype Learning." BMVC. 2018. 60



P L [BMVC 2018]

Image-wise
GAP NN Classifier
Support l l
Set

Human — f ] cls
(a) o —g g '
T
{ —\
| 1«— Prototypes
Horse BG I\_______'
 E— \ ]S eg
! ! ! ¢ prediction
i (Human) E ] l
(b) Prototype i i Probability
Fusion : ! Fusion
: (Horse) :
Probability Maps —-i m i W
y Mo o G:fP
()

Dong, Nanqging, and Eric Xing. "Few-Shot Semantic Segmentation with Prototype Learning." BMVC. 2018. 61



AM P [ICCV 2019]

Masked old

A Layes Proxies Weights
Adaptive Masked Proxies
FCN-8s |—»

Multi-resolution
‘ Imprinting

* Adaptive masked proxies (i.e., prototypes’) are extracted for ach semantic class.
* Proxies update themselves in a continuous stream of data (e.g., video).

* Proxies from different resolution levels are used in multi-resolution imprinting

Jagersand et al., AMP: Adaptive masked proxies for few-shot segmentation, ICCV 2019. 62



AM P [ICCV 2019]

Phase I:
Imprinting

Phase II: ’

Segmentation

Jagersand et al., AMP:

Base Network

/ Support Set Image |
§ + Label ;

. Normalized Masked Avg Pooling ;

AMP: Adaptive

1
Il
1
1
0
0

Extracted | +(1 — o
Embeddings Ea % (

1x1 Convolution
For Final Classification

Adaptive masked proxies for few-shot segmentation, ICCV 2019.



CAN et [CVPR 2019]

ik

Iter 0 Iter 1

INDdQ
N
[ ]
[ ]
¥

Query set

* Dense comparison module (DCM) concatenates prototypes to each spatial location in
query feature map

* Rough segmented maps are produced after comparing with mask-pooled feature
prototypes

* The final result is optimized in an iterative manner

Chi, et al. CANet: Class-agnostic segmentation networks with iterative refinement and attentive FSL, CVPR 2019.
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CAN et [CVPR 2019]

Dense Comparison Module SUE'W*
ResNet e Upsampﬁ/
.; Pool 7 77774
** Block-2 Block-3 | =~ D | ® Pyt (4 %%(f Eﬁ
3
uo age @Weights sharing @

ResNet
*** | Block-2 Block-3 —& D ‘ ' ‘

M, PO,

Iter0 Iterl Itern

¢ D Conv + RelU
Iterative Optimization Module .. __ASPP /

Chi, et al. CANet: Class-agnostic segmentation networks with iterative refinement and attentive FSL, CVPR 2019.
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FWB [ICCV 2019]

Training

15t contribution
< Relevancer

" PRIOR WORK

~

Support mask mg

Support image xg
P —y

Query image x,
\_ q

— i—;
Feature maps F;

-

Masked
Pooling

Cosine
Similarity

Feature vector f Similarity map o,

Feature maps F;

v

Ground-truth mg

Cross-entropy
Loss

Prediction r’ﬁq/

* Standard FSL methods (e.g., shared backbone, masked pooling...) are used during training.

* A ‘relevance’ factor is added and taken into account during cosine similarity computation.

Todorovic et al., Feature weighting and boosting for few-shot segmentation, ICCV 2019.

66



FWB [ICCV 2019]

Testing s

~—

Support mask mg

2" contribution: Guided Ensemble Inference \

: Gradient Back-
n+l _ £gn __ n
s =y~ WVE(S Propagation

S el Cosine Similarity g Cross Entropy
= > and Conv Loss

Current Support mask mg

feature fJ*

Cosine Similarity
and Conv

Ensemble of Output ql.uery
B e f Query mask mask 7,
Al b Predictions
. Feature maps F;, Ml M2 malN
Query image x4 K g, Mg, .., Mg /

* During inference, ensemble is utilized to select the best set of parameters

* Prototypes are used to predict the support masks reversely,
which can be compared to the ground truth.

Todorovic et al., Feature weighting and boosting for few-shot segmentation, ICCV 2019.



PAN et [ICCV 2019]

m -

1 Predict

Support Set

1010e13X3
ainjeaq

\/

J N
lPredict Mask T
Query Set e *'"Eseg""’

* Extracted prototypes are first used to predict query masks, as standard FSL methods do.

* Predicted query masks are used to generate new prototypes
and reversely predict support masks

* Similar concept to that of the ‘cycle consistency’ (support—query; query—support)

Kaixin, et al., Panet: Few-shot image semantic segmentation with prototype alignment, ICCV 2019. 68



PAN et [ICCV 2019]

_)‘

" VaG-16
Support Set

I share weights

(a) Support — Query (b) Query — Support
—> (COS —> y
query GT
support features I B support features EPAR

373 Masked

4 Average

cos —> 1 q Mask Pooling

query query
features features Pmmpes support GT

Kaixin, et al.,

Panet: Few-shot image semantic segmentation with prototype alignment, ICCV 2019.
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Dataset & Evaluation Metric

* Datasets

* PASCAL VOC 2012 (main)
e 20 classes

» Split: (15 base + 5 novel)
* coco (secondary)

* Evaluation Metrics
* Binary-mloU (difficult)
* FB-mloU (easy)
* Foreground/Background loU

/ .
L. 1
B J -
A,
f
a el

image ground truth prediction image ground truth prediction
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Performance Comparisons

Reduced-DFCN8s 39.2 48.0 39.3 34.2 40.2
OSLSM BMVC 2017 33.6 55.3 40.9 33.5 40.8
co-FCN ICLRW 2018 36.7 50.6 44.9 32.4 41.2
AMP ICCV 2019 41.9 50.2 46.7 34.7 43.4
SG-One 40.2 58.4 48.4 38.4 46.4
PANet ICCV 2019 42.3 58.0 51.1 41.2 48.1
PRNet 51.6 61.3 53.1 47.6 53.4
Co-att 49.5 65.5 50.0 49.2 53.5
CANet CVPR 2019 52.5 65.9 51.3 51.9 55.4
PGNet ICCV 2019 56.0 66.9 50.6 50.4 56.0

FWB ICCV 2019 51.3 64.5 56.7 52.2 56.2



What We’ve Covered Today...

Meta-Learning
* Definition
* Parametric & Non-Parametric based Approaches

Meta-Learning for Few-Shot Learning
* Few-Shot Classification
* Metric Learning vs. Data Hallucination
* Few-Shot Image Segmentation
* Few-Shot Object Detection (next lecture)

Meta-Learning for Domain Generalization (next lecture)
* From Domain Adaptation to Domain Generalization

Challenges in Few-Shot Learning Tasks (next lecture)

Selected slide credits: C. Finn, S. Levine, & H.-Y. Lee



