Deep Learning for Computer Vision

Fall 2021

http://vllab.ee.ntu.edu.tw/dlcv.html (Public website)
https://cool.ntu.edu.tw/courses/8854 (NTU COOL)

Yu-Chiang Frank Wang 王鈺強, Professor
Dept. Electrical Engineering, National Taiwan University

Some Updates...

Syllabus

11	12/07	Meta-Learning for Visual Analysis (I)	
12	12/14	Meta-Learning for Visual Analysis (II); Self-Supervised Learning for Visual Analysis	HW #3 due; HW #4-1 out Final Project Announcement
13	12/21	Vision and Language	HW #4-2 (bonus & optional?)
14	12/28	Beyond 2D Vision (3D and Depth)	
15	01/04	Guest Lectures (TBD)	HW #4 due
16	01/11	Final Week (no class)	
17	01/18	Presentation for Final Projects	

• Final Challenge/Project

- At least one company is sponsoring the final challenge, still confirming another
- Considering the size of the class, 4 students per group is preferable
 - No fewer then 3 and no more than 5
 - Inter/intra group evaluation will be conducted
 - Start looking for your teammates!

What to Cover Today...

- Meta-Learning
 - Definition
 - Parametric & Non-Parametric based Approaches
- Meta-Learning for Few-Shot Learning
 - Few-Shot Classification
 - Metric Learning vs. Data Hallucination
 - Few-Shot Image Segmentation
 - Few-Shot Object Detection (probably next lecture)
- Meta-Learning for Domain Generalization (probably next lecture)
 - From Domain Adaptation to Domain Generalization
- Challenges in Few-Shot Learning Tasks (next lecture)

Meta Learning 元學習

• Meta Learning ⊆ Supervised Learning

For Supervised Learning,

• Given training data $D = \{X, Y\}$, learn function/model f so that $f(x_i) = y_i$

What If Only Limited Amount of Data Available?

- Naive transfer?
 - Model finetuning:
 e.g., Train a learning model (e.g., CNN) on large-size data (base classes),
 following by finetuning on small-size data (novel classes).
 - That is, freeze feature backbone (learned from base classes) and learn classifier weights for novel classes.
 - Possibly poor generalization 😕

Selected Applications of Few-Shot Learning in Computer Vision

å Few-Shot Image Classification

Vinyals et al., NIPS 2016

• Domain Transfer/Generalization

Human Pose/Motion Prediction

Few-Shot Image Segmentation

Selected Applications of Few-Shot Learning in Computer Vision

Few-Shot Image Generation

• Few-Shot Image-to-Image Translation

Reed et al., ICLR 2018

Liu et al., ICCV 2019

Generation of Novel Viewpoints

Generating Talking Heads from Images

Zakharov et al., ICCV 2019

Meta Learning (cont'd)

- Two Ways to View Meta Learning
 - Probabilistic View
 - Extract prior info from a set of (meta training) tasks, allowing efficient learning of a new task
 - Learning a new task uses this prior and (small) training set to infer most likely posterior model parameters
 - Easy to understand meta learning algorithms

• Mechanistic View

- A learning model (e.g., DNN) reads in a meta-training dataset, which consists of many datasets, each for a different task
- Then, the model observes new data points (for a novel task) and make predictions accordingly
- Easy to implement meta learning algorithms

Some ML Backgrounds (if time permits...)

- We know the biggest problem is that...
 - Can't always collect a large amount of labeled data D in advance.

• Now, for the *Meta Learning* scheme...

supervised learning:

$$rg \max_{\phi} \log p(\phi | \mathcal{D})$$
?

- can we incorporate additional data?
- $\arg\max_{\phi}\log p(\phi|\underline{\mathcal{D}},\mathcal{D}_{\text{meta-train}})$

Few-shot data domain of interest

$$\mathcal{D} = \{(x_1, y_1), \dots, (x_k, y_k)\}$$

$$\mathcal{D}_{\text{meta-train}} = \{\mathcal{D}_1, \dots, \mathcal{D}_n\}$$

$$=\{\mathcal{D}_1,\ldots,\mathcal{D}_n\}$$

$$\mathcal{D}_i = \{(x_1^i, y_1^i), \dots, (x_k^i, y_k^i)\}$$

$$\mathcal{D}_{ ext{meta-train}}$$
 \mathcal{D}_{1} \mathcal{D}_{2} \vdots \vdots \vdots \mathcal{D}

What Meta Learning Solves:

$$\arg\max_{\phi} \log p(\phi|\mathcal{D}, \mathcal{D}_{\text{meta-train}})$$

Object label: "cat"

 $\mathcal{D}_{ ext{meta-train}} = \{\mathcal{D}_1, \dots, \mathcal{D}_n\}$

 $\mathcal{D} = \{(x_1, y_1), \dots, (x_k, y_k)\}\$

4	L	β	8	l
T	α	K	Χ	V
υ	θ	γ	Ĩ	۵
ω	π	η	D	ε
ρ	ξ	ζ	Ψ	

- \Rightarrow what if we don't want to keep $\mathcal{D}_{\text{meta-train}}$ around forever?
- \Rightarrow learn meta-parameters θ : $p(\theta|\mathcal{D}_{\text{meta-train}})$

whatever we need to know about $\mathcal{D}_{\text{meta-train}}$ to solve new tasks

$$\log p(\phi|\mathcal{D}, \mathcal{D}_{\text{meta-train}}) = \log \int_{\Theta} p(\phi|\mathcal{D}, \theta) p(\theta|\mathcal{D}_{\text{meta-train}}) d\theta$$

$$\approx \log p(\phi|\mathcal{D}, \theta^{\star}) + \log p(\theta^{\star}|\mathcal{D}_{\text{meta-train}})$$

$$\text{Rose}$$

What Meta Learning Solves:

$$\operatorname{arg} \max_{\phi} \log p(\phi | \mathcal{D}, \mathcal{D}_{\text{meta-train}})$$

$$\mathcal{D} = \{(x_1, y_1), \dots, (x_k, y_k)\}$$

- $\log p(\phi|\mathcal{D}, \mathcal{D}_{\text{meta-train}}) = \log \int_{\Theta} p(\phi|\mathcal{D}, \theta) p(\theta|\mathcal{D}_{\text{meta-train}}) d\theta$ $\approx \log p(\phi|\mathcal{D}, \theta^{\star}) + \log p(\theta^{\star}|\mathcal{D}_{\text{meta-train}})$
- $\Rightarrow \arg \max_{\phi} \log p(\phi | \mathcal{D}, \mathcal{D}_{\text{meta-train}}) \approx \arg \max_{\phi} \log p(\phi | \mathcal{D}, \theta^{\star})$
- \Rightarrow What meta learning cares is the learning of Φ from D (and implicitly from $D_{meta-train}$)
- \Rightarrow What makes meta learning challenging is the learning of optimal Θ^* from $D_{\text{meta-train}}$:

$$\theta^* = \arg\max_{\theta} \log p(\theta | \mathcal{D}_{\text{meta-train}})$$

A Quick Example

- \Rightarrow Meta training: $\theta^* = \arg \max_{\theta} \log p(\theta | \mathcal{D}_{\text{meta-train}})$
- \Rightarrow Meta testing: $\phi^* = \arg \max_{\phi} \log p(\phi|\mathcal{D}, \theta^*)$

$$\mathcal{D} = \{(x_1, y_1), \dots, (x_k, y_k)\}$$

A Quick Example (cont'd)

In other words, meta learning is to learn the mechanism, not to fit the data/labels.

15

Meta-Learning Terminology

✓ Remarks

- Meta learning: learn a N-way K-shot learning mechanism, **not** fitting data/labels
- The conditions (i., N-way K-shot) of meta-training and meta-testing must match.
- Additional remarks on N & K for affecting the learning performance?

A Closely Related Yet Different Task: Multi-Task Learning

Expression

Meta Learning

- Meta training: $\theta^{\star} = \arg\max_{\theta} \log p(\theta|\mathcal{D}_{\text{meta-train}})$ $\mathcal{D}_{\text{meta-train}} = \{\mathcal{D}_1, \dots, \mathcal{D}_n\}$ Meta testing: $\phi^{\star} = \arg\max_{\phi} \log p(\phi|\mathcal{D}, \theta^{\star})$ $\mathcal{D} = \{(x_1, y_1), \dots, (x_k, y_k)\}$

Face ID

- Multi-Task Learning
 - Learn model with parameter Θ* that simultaneously solves multiple tasks

$$\theta^* = \arg\max_{\theta} \sum_{i=1}^n \log p(\theta \mathcal{D}_i)$$

Can be viewed as a special case where

$$\phi_i = \theta$$
 (i.e., $f_{\theta}(\mathcal{D}_i) = \theta$)

What about Transfer Learning?

What to Cover Today...

- Meta-Learning
 - Definition
 - Parametric & Non-Parametric based Approaches
- Meta-Learning for Few-Shot Learning
 - Few-Shot Classification
 - Metric Learning vs. Data Hallucination
 - Few-Shot Image Segmentation

Approaches

Training Tasks

Train

Train

Test

Test

Test

Query set

Query set

Cat (+) Dog (-)

Test

Apple (+) Orange (-)

Test

Test

Apple (+) Orange (-)

Test

T

- Two Ways to View Meta Learning
 - *Probabilistic* View (e.g., optimization-based)
 - Extract prior info from a set of (meta training) tasks, allowing efficient learning of a new task (i.e., meta-testing)
 - Learning a new task uses this prior and (small) training set to infer most likely posterior model parameters
 - → Easy to understand meta learning algorithms
 - Mechanistic View (e.g., metric-learning based)
 - Meta training: A learning model (e.g., DNN) reads in a meta-dataset which consists of many datasets, each for a different task
 - Meta-testing: the model observes new data points (for a novel task) and make prediction accordingly
 - → Easy to implement meta learning algorithms

Approach #1: Optimization-Based Approach

- Model-Agnostic Meta-Learning (MAML)*
 - Key idea:
 - Train over many tasks (with a small amount of data & few gradient steps), so that the learned model parameter would generalize to novel tasks
 - Learning to initialize/fine-tune
 - Meta-Learner $\Phi \rightarrow \Theta_0$:
 - Learn a parameter initialization Θ_0 of model that transfers/generalizes to novel tasks well.
 - That is, learn model Θ_0 which can be fine-tuned by novel tasks efficiently/effectively.

MAML

Illustration of MAML

MAML doesn't care how model θ^0 performs on each task.

$$L(\theta^0) = \sum_{n=1}^{N} l^n(\theta^n)$$

It only cares how model θ^n performs for task n when starting from a properly learned θ^0 . In other words, a good θ^0 matters!

 Comparison: Model Pre-Training or Multi-Task Learning

$$L(\theta^0) = \sum_{n=1}^N l^n(\theta^0)$$

Determine the best θ^0 for all existing tasks

However, no guarantee that θ^0 is preferable for learning good θ^n for task n. Again, a good θ^0 really matters!

Slide credit: H.-Y. Lee

MAML

- Remarks
 - Train a good initialized parameter set Φ (i.e., θ^0) for quick adaptation/generalization
 - Meta-training:

$$L(\phi) = \sum_{n=1}^{N} l^n(\theta^n)$$

Meta-testing (for adaptation):

Note that one or multiple updates can be performed during meta-testing.

Meta-Training in MAML

 θ : initial model parameters θ : model parameters updated via the support set

$$\varphi \leftarrow \varphi - \eta \cdot \nabla_{\varphi} D(\varphi) \tag{1}$$

$$L(\varphi) = \sum_{n=1}^{N} l^n(\hat{\theta}^n)$$
 (2)

$$\hat{\theta} = \varphi - \varepsilon \cdot \nabla_{\varphi} l(\varphi) \tag{3}$$

$$\nabla_{\varphi} L(\varphi) = \sum_{n=1}^{N} \nabla_{\varphi} l^{n}(\hat{\theta}^{n})$$
 (4)

$$\hat{\theta} = \varphi - \varepsilon \cdot \nabla_{\varphi} l(\varphi) \tag{3}$$

$$\nabla_{\varphi} L(\varphi) = \sum_{n=1}^{N} \nabla_{\varphi} l^{n}(\hat{\theta}^{n})$$
 (4)

$$\nabla_{\varphi} l\left(\hat{\theta}\right) = \begin{bmatrix} \frac{\partial l(\hat{\theta})}{\partial \varphi_{1}} \\ \frac{\partial l(\hat{\theta})}{\partial \varphi_{2}} \\ \vdots \\ \frac{\partial l(\hat{\theta})}{\partial \varphi_{i}} \end{bmatrix}$$
 (5)

$\int \frac{\partial l(\hat{\theta})}{\partial \varphi_i} = \sum \frac{\partial l(\hat{\theta})}{\partial \hat{\theta}_i} \frac{\partial \hat{\theta}_j}{\partial \varphi_i}$

First-order approximation:

If
$$i \neq j$$
, then:

$$\hat{\theta}_j = \varphi_j - \varepsilon \cdot \frac{\partial l(\varphi)}{\partial \varphi_j}$$

$$\frac{\partial \hat{\theta}_{j}}{\partial \varphi_{i}} = -\varepsilon \cdot \frac{\partial l(\varphi)}{\partial \varphi_{i} \partial \varphi_{i}} \approx 0$$

If
$$i = j$$
, then:

$$\hat{\theta}_{j} = \varphi_{j} - \varepsilon \cdot \frac{\partial l(\varphi)}{\partial \varphi_{j}} \qquad \frac{\partial \hat{\theta}_{j}}{\partial \varphi_{i}} = -\varepsilon \cdot \frac{\partial l(\varphi)}{\partial \varphi_{j} \partial \varphi_{i}} \approx 0 \qquad \frac{\partial \hat{\theta}_{j}}{\partial \varphi_{i}} = 1 - \varepsilon \cdot \frac{\partial l(\varphi)}{\partial \varphi_{j} \partial \varphi_{i}} \approx 1$$

 φ : initial model parameters

 $\hat{\theta}$: model parameters updated via the support set

$$\nabla_{\varphi} l\left(\hat{\theta}\right) = \begin{bmatrix} \frac{\partial l(\hat{\theta})}{\partial \varphi_{1}} \\ \frac{\partial l(\hat{\theta})}{\partial \varphi_{2}} \\ \frac{\partial l(\hat{\theta})}{\partial \varphi_{i}} \end{bmatrix} = \begin{bmatrix} \frac{\partial l(\hat{\theta})}{\partial \hat{\theta}_{1}} \\ \frac{\partial l(\hat{\theta})}{\partial \hat{\theta}_{2}} \\ \frac{\partial l(\hat{\theta})}{\partial \hat{\theta}_{j}} \end{bmatrix} = \nabla_{\hat{\theta}} l\left(\hat{\theta}\right)$$

$$\nabla_{\varphi} L(\varphi) = \sum_{n=1}^{N} \nabla_{\varphi} l^{n} (\hat{\theta}^{n}) = \sum_{n=1}^{N} \nabla_{\widehat{\theta}} l^{n} (\hat{\theta}^{n})$$

Recap: MAML

- Remarks
 - Train a good initialized parameter set Φ (i.e., θ^0) for quick adaptation/generalization
 - Meta-training:

$$L(\phi) = \sum_{n=1}^{N} l^n(\hat{\theta}^n)$$

$$\phi \leftarrow \phi - \eta \nabla_{\phi} L(\phi)$$

Meta-testing (for adaptation):

$$\hat{\theta} = \phi - \varepsilon \nabla_{\phi} l(\phi)$$

Note that one or multiple updates can be performed during meta-testing.

Approaches

- Two Ways to View Meta Learning
 - Probabilistic View (e.g., optimization-based)
 - Extract prior info from a set of (meta training) tasks, allowing efficient learning of a new task (i.e., meta-testing)
 - Learning a new task uses this prior and (small) training set to infer most likely posterior model parameters
 - → Easy to understand meta learning algorithms
 - Mechanistic View (e.g., metric-learning based)
 - Meta training: A learning model (e.g., DNN) reads in a meta-dataset which consists of many datasets, each for a different task
 - Meta-testing: the model observes new data points (for a novel task) and make prediction accordingly
 - → Easy to implement meta learning algorithms

Approach #2: Non-Parametric Approach

- Can models learn to compare?
- E.g., Siamese Network
 - Learn a network to determine whether a pair of images are of the same category.

Learn to Compare (cont'd)

- Siamese Network (cont'd)
 - Meta-training/testing: learn to match (i.e., 2-way image matching)
 - Question: output label of the following example is 1 or 0? (i.e., same ID or not)

Learn to Compare (cont'd)

- Siamese Network (cont'd)
 - Meta-training/testing: learn to match (i.e., 2-way image matching)
 - Question: output label of the following example is 1 or 0? (i.e., same ID or not)

- What have we learned from these examples?
- And, can we perform multi-way classification (beyond matching)?

Learn to Compare... with the Representative Ones!

- Prototypical Networks (NIPS'17)
 - Learn a model which properly describes data in terms of intra/inter-class info.
 - It learns a **prototype** for each class, with **data similarity/separation** guarantees.

Meta-Testing Stage

Learn to Compare... with the Representative Ones!

- Prototypical Networks
 - Learn a model which properly describes data in terms of intra/inter-class info.
 - It learns a prototype for each class, with data similarity/separation guarantees. For DL version, the learned feature space is derived by a non-linear mapping f_{θ} and the representatives (i.e., prototypes) of each class is the **mean feature vector** \mathbf{c}_k .

Learn to Compare

Matching Networks

- Inspired by the **attention** mechanism, access an augmented memory containing useful info to solve the task of interest
- The authors proposed a weighted nearest-neighbor classifier, with attention over a learned embedding from the support set $S = \{(x_i, y_i)\}_{i=1}^k$, so that the label of the query \hat{x} can be predicted.

Learn to Compare

- Matching Networks (cont'd)
 - If we have g=f, the model turns into a Siamese network like architecture
 - Also similar to prototypical network for one-shot learning

Matching Networks (cont'd)

- Full context embedding (FCE):
- Each element in S should not be embedded independently of other elements
 - $g(x_i) \rightarrow g(S)$ as a **bidirectional LSTM** by considering the whole S as a **sequence**
- Also, S should be able to modify the way we embed \hat{x}
 - $f(\hat{x}) \rightarrow f(\hat{x}, S)$ as an **LSTM** with **read-attention** over g(S): attLSTM $(f'(\hat{x}), g(S), K)$, where $f'(\hat{x})$ is the (fixed) CNN feature, and K is the number of unrolling steps
- Experiment results on minilmageNet

Model	Matching Fn Fine Tune		5-way Acc 1-shot 5-shot	
PIXELS	Cosine	N	23.0% 26.6%	
BASELINE CLASSIFIER	Cosine	N	36.6% 46.0%	
BASELINE CLASSIFIER	Cosine	Y	36.2% 52.2%	
BASELINE CLASSIFIER	Softmax	Y	38.4% 51.2%	
MATCHING NETS (OURS)	Cosine	N	41.2% 56.2%	
MATCHING NETS (OURS)	Cosine	Y	42.4% 58.0%	
MATCHING NETS (OURS)	Cosine (FCE)	N	44.2% 57.0%	
MATCHING NETS (OURS)	Cosine (FCE)	Y	46.6% 60.0%	

query example \hat{x}

Learn to Compare...with Self-Learned Metrics!

Relation Network

- Metric-learning approaches typically focus on learning an embedding function with a fixed metric (e.g., Euclidean distance, cosine similarity, ...)
- The authors proposed to train a **Relation Network** (RN) to explicitly learn a transferrable **deep distance metric** comparing the relation between images

Relation Networks (cont'd)

- Some works can be extended to zero-shot learning:
 - Instead of few-shot images, the support set contains a **semantic embedding vector** (\mathbf{v}_k) for each of the training classes.
 - Thus, we can use a second **heterogeneous** embedding function to embed the semantic embedding vectors.
 - Extension of **Prototypical Network**:

$$\mathbf{c}_{k} = \frac{1}{|S_{k}|} \sum_{(\mathbf{x}_{i}, y_{i}) \in S_{k}} f_{\phi}(\mathbf{x}_{i}) \Rightarrow \mathbf{c}_{k} = g_{\vartheta}(\mathbf{v}_{k})$$

$$\mathbf{c}_{k} = g_{\vartheta}(\mathbf{v}_{k})$$

$$\mathbf{c}_{1} = g_{\vartheta}(\mathbf{v}_{k})$$

$$\mathbf{c}_{1} = g_{\vartheta}(\mathbf{v}_{k})$$

• Relation Networks: $r = g_{\phi}(\mathcal{C}(f_{\varphi}(\mathbf{x}_i), f_{\varphi}(\hat{\mathbf{x}})))$ \rightarrow $r = g_{\phi}(\mathcal{C}(f_{\varphi_2}(\mathbf{v}_k), f_{\varphi_1}(\hat{\mathbf{x}})))$

Some Takeaways for Existing Meta-Learning Approaches

Parametric-based

- + handles varying & large K well
- + structure lends well to out-ofdistribution tasks
- second-order optimization

Non-parametric based Potter

- + simple
- + entirely **feedforward**
- + computationally fast & easy to optimize
- harder to generalize to varying K
- hard to scale to very large K
- so far, limited to classification

Generally, well-tuned versions of each perform **comparably** on existing FSL benchmarks.

What to Cover Today...

- Meta-Learning
 - Definition
 - Parametric & Non-Parametric based Approaches
- Meta-Learning for Few-Shot Learning
 - Few-Shot Classification
 - Metric Learning vs. Data Hallucination
 - Few-Shot Image Segmentation

Learn to Augment...Data Hallucination for FSL

- Data Hallucination
 - Many modes of intra-class variation (e.g., camera pose, translation, lighting changes, and even articulation) are shared across categories.
 - As humans, our knowledge of such intra-class variations allow us to visualize what a novel object might look like in other poses or surroundings.

- We can thus *hallucinate* additional examples for novel classes by transferring variation modes from the base classes.
- Typical data augmentation techniques only use a limited amount of a priori known invariances (e.g., translations, rotations, flips, addition of Gaussian noise, etc.).

A Super Brief Review for Generative Adversarial Networks (GAN)

- Design of GAN
 - Loss: $\mathcal{L}_{GAN}(G, D) = \mathbb{E}[\log(1 D(G(x)))] + \mathbb{E}[\log D(y)]$

Learn to Augment...Data Hallucination for FSL

- Cross-Modal Hallucination
 - The lack of data in one modality (e.g., image) can be compensated by abundant data in the other modality (e.g., text) through properly learned **alignments** between two modalities.
 - Here, fine-grained images with detailed textual descriptions are used to build a text-conditional GAN for image generation
 - Generated images should be not only realistic but also class-discriminative.

- Cross-Modal Hallucination (cont'd)
 - Discriminative text-conditional GAN (tcGAN)
 - First, train a tcGAN on samples from $\mathcal{C}_{\text{base}}$ with regular objective function:

$$\mathcal{L}_{tcGAN}(G,D) = \mathbb{E}_{I,T}[\underbrace{logD(I,T)}_{I:\text{ image embedding}} + \mathbb{E}_{z,T}[log(1-D(G(z,T),T))] \qquad \begin{array}{c} T:\text{ text embedding} \\ I:\text{ image embedding} \end{array}$$

Next, augment \mathcal{L}_{tcGAN} by adding a class-discriminative loss (similar to ACGAN) and fine-tune the tcGAN on the few-shot samples from \mathcal{C}_{novel} with the compound losses:

$$\mathcal{L}(D) = \mathcal{L}_{tcGAN}(G, D) + \mathbb{E}[P(c|I)] \qquad c: \text{class label}$$

$$\mathcal{L}(G) = \mathcal{L}_{tcGAN}(G, D) - \mathbb{E}[P(c|G(z, T))]$$

• $D^* = \operatorname{argmax}_D \mathcal{L}(D)$ and $G^* = \operatorname{argmin}_G \mathcal{L}(G)$

Select top-scored generated images computed by D^*

Learn to Augment...Data Hallucination for FSL

- Data Hallucination GAN
 - Previous hallucination approaches leveraged datasets with expensive annotations
 - Moreover, the modes of intra-class variations typically come from fixed pre-specified rules (e.g., pre-specified instance-level textual descriptions)
 - Can we learn a model of a larger invariance space, through training a conditional GAN in the source domain (\mathcal{C}_{base}), and apply it to the target domain (\mathcal{C}_{novel})?

Data Augmentation GAN

(Right) Discriminator $D(\mathbf{x}_i, \mathbf{x}_j) \rightarrow \text{Real pair}$

 $D(\mathbf{x}_i(\mathbf{x}_g)) \rightarrow$ Fake pair

Why not just discriminate between \mathbf{x}_j and \mathbf{x}_g ?

→ To prevent... (mote collapse)

→ That is, to improve...

diversity

Learn to Augment...Data Hallucination for FSL

- Jointly Trained Hallucinator
 - The hallucinated examples should be **useful** for classification tasks, rather than just being **diverse** or **realistic** (that may fail to improve FSL performances).
 - The authors proposed to train a **conditional-GAN-based** data hallucinator (G(x, z)) **jointly** with the meta-learning module (h) in an **end-to-end** manner.

Learn to Augment...Data Hallucination for FSL

- Hallucination by Analogy
 - Modern recognition models are trained on large labeled datasets like ImageNet
 - To deal with the above challenges faced by **recognition systems in the wild**, the authors proposed a FSL benchmark in two phases:

- Hallucination by Analogy (cont'd)
 - Analogy-based Data Hallucinator
 - Train H using **analogy quadruplets** (a_1,a_2,b_1,b_2) , where (a_1,a_2) belong to some class, (b_1,b_2) belong to another class, and $a_1:a_2::b_1:b_2$ holds.

Recap:

Data Analogy in Video Prediction

 Learning to generate long-term future via hierarchical prediction (Villegas et al., ICML'17)

Step 3:

Image Generation

G

Visual-Structure Analogy

Objective Function:

Adversarial Training -> alternately minimize L & LDisc

Update Image Generation Network (G)

$$\mathcal{L} = \mathcal{L}_{img} + \mathcal{L}_{feat} + \mathcal{L}_{Gen}$$

$$\mathcal{L}_{img} = \|\mathbf{x}_{t+n} - \hat{\mathbf{x}}_{t+n}\|_2^2$$

$$\mathcal{L}_{feat} = \|C_1(\mathbf{x}_{t+n}) - C_1(\hat{\mathbf{x}}_{t+n})\|_2^2$$

$$+ \|C_2(\mathbf{x}_{t+n}) - C_2(\hat{\mathbf{x}}_{t+n})\|_2^2$$

$$\mathcal{L}_{Gen} = -\log D\left([\mathbf{p}_{t+n}, \hat{\mathbf{x}}_{t+n}]\right)$$

Update Discriminator (D)

$$\mathcal{L}_{\text{Disc}} = -\log D\left(\left[\mathbf{p}_{t+n}, \mathbf{x}_{t+n}\right]\right)$$
$$-0.5\log\left(1 - D\left(\left[\mathbf{p}_{t+n}, \hat{\mathbf{x}}_{t+n}\right]\right)\right)$$
$$-0.5\log\left(1 - D\left(\left[\mathbf{p}_{t+n}, \mathbf{x}_{t}\right]\right)\right),$$

A Closer Look at FSL (1/3)

- Idea
 - **Deeper backbones** significantly reduce the gap across existing FSL methods. (with decreased domain shifts between base and novel classes)
 - A slightly modified baseline method (baseline++) surprisingly achieves competitive performance.
 - Simple baselines (baseline and baseline++: trained on base and fine-tuned on novel) outperform representative FSL methods when the domain shift grows larger.

use **cosine distances** between the input feature and the weight vector for each class to reduce intra-class variations

A Closer Look at FSL (2/3)

- Performance with deeper backbones
 - For CUB, gaps among different methods diminish as the backbone gets deeper.
 - For mini-ImageNet, some meta-learning methods are even beaten by baselines with a deeper backbone.

méta-tran: Bose class millet modarters: mond CUB

A Closer Look at FSL (3/3)

- Performance with domain shifts (using ResNet-18)
 - Existing FSL methods fail to address large domain shifts (e.g., mini-ImageNet → CUB)
 and are inferior to the baseline methods.
 - This highlights the importance of learning to adapt to domain differences in FSL.

What to Cover Today...

- Meta-Learning
 - Definition
 - Parametric & Non-Parametric based Approaches
- Meta-Learning for Few-Shot Learning
 - Few-Shot Classification
 - Metric Learning vs. Data Hallucination
 - Few-Shot Image Segmentation

Semantic Segmentation

- Goal
 - Assign a class label to each pixel in the input image
 - Don't differentiate instances, only care about pixels

Few-Shot Segmentation

- A large number of image categories are with pixel-wise ground truth labels, while a small number of them are with limited.
- A shared backbone produces feature maps for both support and query images.
- Prototypes for each class is obtained by masked pooling from support feature maps.
- Query feature maps are then compared with the pooled prototypes pixel-by-pixel.
- Typically, **cosine similarity** is adopted for pixel-wise feature comparison.

OSLSM [BMVC 2017]

- S is an annotated image from a new semantic class
- Input S to a function g that outputs a set of parameters θ
- heta is used to parameterize part of the segmentation model which produces a segmentation mask given I_q

OSLSM [BMVC 2017]

Prototype Learning [BMVC 2018]

- A prototype is learned for each foreground class and the background class.
- Prototypes are used to predict rough segmentation maps for each class.
- The final prediction is optimized using probability fusion.

PL [BMVC 2018]

AMP [ICCV 2019]

- Adaptive masked proxies (i.e., prototypes') are extracted for ach semantic class.
- Proxies update themselves in a continuous stream of data (e.g., video).
- Proxies from different resolution levels are used in multi-resolution imprinting

AMP [ICCV 2019]

CANet [CVPR 2019]

- Dense comparison module (DCM) concatenates prototypes to each spatial location in query feature map
- Rough segmented maps are produced after comparing with mask-pooled feature prototypes
- The final result is optimized in an iterative manner

CANet [CVPR 2019]

FWB [ICCV 2019]

- Standard FSL methods (e.g., shared backbone, masked pooling...) are used during training.
- A 'relevance' factor is added and taken into account during cosine similarity computation.

FWB [ICCV 2019]

- During inference, ensemble is utilized to select the best set of parameters
- Prototypes are used to predict the support masks reversely, which can be compared to the ground truth.

PANet [ICCV 2019]

- Extracted prototypes are first used to predict query masks, as standard FSL methods do.
- Predicted query masks are used to generate new prototypes and reversely predict support masks
- Similar concept to that of the 'cycle consistency' (support → query; query → support)

PANet [ICCV 2019]

Dataset & Evaluation Metric

- Datasets
 - PASCAL VOC 2012 (main)
 - 20 classes
 - Split: (15 *base* + 5 *novel*)
 - coco (secondary)
- Evaluation Metrics
 - **Binary-mloU** (difficult)
 - FB-mIoU (easy)
 - Foreground/Background IoU

Performance Comparisons

Method		Split-0	Split-1	Split-2	Split-3	Mean
Reduced-DFCN8s		39.2	48.0	39.3	34.2	40.2
OSLSM	BMVC 2017	33.6	55.3	40.9	33.5	40.8
<u>co-FCN</u>	ICLRW 2018	36.7	50.6	44.9	32.4	41.2
<u>AMP</u>	ICCV 2019	41.9	50.2	46.7	34.7	43.4
SG-One		40.2	58.4	48.4	38.4	46.4
PANet	ICCV 2019	42.3	58.0	51.1	41.2	48.1
PRNet		51.6	61.3	53.1	47.6	53.4
<u>Co-att</u>		49.5	65.5	50.0	49.2	53.5
CANet	CVPR 2019	52.5	65.9	51.3	51.9	55.4
<u>PGNet</u>	ICCV 2019	56.0	66.9	50.6	50.4	56.0
<u>FWB</u>	ICCV 2019	51.3	64.5	56.7	52.2	56.2

What We've Covered Today...

- Meta-Learning
 - Definition
 - Parametric & Non-Parametric based Approaches
- Meta-Learning for Few-Shot Learning
 - Few-Shot Classification
 - Metric Learning vs. Data Hallucination
 - Few-Shot Image Segmentation
 - Few-Shot Object Detection (next lecture)
- Meta-Learning for Domain Generalization (next lecture)
 - From Domain Adaptation to Domain Generalization
- Challenges in Few-Shot Learning Tasks (next lecture)