

GREEDY ALGORITHMS

Algorithm Design and Analysis Greedy Algorithms (2)

http://ada.miulab.tw

slido: #ADA2021

Mational Taiwan University

Yun-Nung (Vivian) Chen

Outline

- Greedy Algorithms
- Greedy #1: Activity-Selection / Interval Scheduling
- Greedy #2: Coin Changing
- Greedy #3: Huffman Codes
- Greedy #4: Fractional Knapsack Problem
- Greedy #5: Breakpoint Selection
- Greedy #6: Task-Scheduling
- Greedy #7: Scheduling to Minimize Lateness

Algorithm Design Strategy

- Do not focus on "specific algorithms"
- But "some strategies" to "design" algorithms
- First Skill: Divide-and-Conquer (各個擊破/分治)
- Second Skill: Dynamic Programming (動態規劃)
- Third Skill: Greedy (貪婪法則)

Greedy #4: Fractional Knapsack Problem

Textbook Exercise 16.2-2

Knapsack Problem

- Input: n items where i-th item has value v_i and weighs w_i (v_i and w_i are positive integers)
- Output: the <u>maximum value</u> for the knapsack with capacity of W
- Variants of knapsack problem
 - 0-1 Knapsack Problem: 每項物品只能拿一個
 - Unbounded Knapsack Problem: 每項物品可以拿多個
 - Multidimensional Knapsack Problem: 背包空間有限
 - Multiple-Choice Knapsack Problem: 每一類物品最多拿一個
 - Fractional Knapsack Problem: 物品可以只拿部分

Knapsack Problem

- Input: n items where i-th item has value v_i and weighs w_i (v_i and w_i are positive integers)
- Output: the <u>maximum value</u> for the knapsack with capacity of W
- Variants of knapsack problem
 - 0-1 Knapsack Problem: 每項物品只能拿一個
 - Unbounded Knapsack Problem: 每項物品可以拿多個
 - Multidimensional Knapsack Problem: 背包空間有限
 - Multiple-Choice Knapsack Problem: 每一類物品最多拿一個
 - Fractional Knapsack Problem: 物品可以只拿部分

Fractional Knapsack Problem

- Input: n items where i-th item has value v_i and weighs w_i (v_i and w_i are positive integers)
- Output: the <u>maximum value</u> for the knapsack with capacity of W, where we can take **any fraction of items**
- Greedy algorithm: at each iteration, choose the item with the highest $\frac{v_i}{w_i}$ and continue when $W-w_i>0$

Step 1: Cast Optimization Problem

Fractional Knapsack Problem

Input: n items where i-th item has value v_i and weighs w_i Output: the max value within W capacity, where we can take **any fraction of items**

Subproblems

- F-KP(i, w): fractional knapsack problem within w capacity for the first i items
- Goal: F-KP(n, W)

Step 2: Prove Optimal Substructure

Fractional Knapsack Problem

Input: n items where i-th item has value v_i and weighs w_i Output: the max value within W capacity, where we can take **any fraction of items**

- Suppose OPT is an optimal solution to F-KP(i, w), there are 2 cases:
 - Case 1: full/partial item i in OPT
 - Remove w' of item i from OPT is an optimal solution of F-KP(i-1, w-w')
 - Case 2: item i not in OPT
 - OPT is an optimal solution of F-KP(i 1, w)

Step 3: Prove Greedy-Choice Property

Fractional Knapsack Problem

Input: n items where i-th item has value v_i and weighs w_i

Output: the max value within W capacity, where we can take **any fraction of items**

- Greedy choice: select the item with the highest $\frac{v_i}{w_i}$
- Proof via contradiction $(j = \underset{i}{\operatorname{argmax}} \frac{v_i}{w_i})$
 - Assume that there is no OPT including this greedy choice
 - If $W \le w_j$, we can replace all items in OPT with item j
 - If $W > w_i$, we can replace any item weighting w_i in OPT with item j
 - The total value must be equal or higher, because item j has the highest $\frac{v_i}{w_i}$

Do other knapsack problems have this property?

Greedy #5: Breakpoint Selection

Breakpoint Selection Problem

- Input: a planned route with n+1 gas stations b_0,\dots,b_n ; the car can go at most C after refueling at a breakpoint
- Output: a refueling schedule $(b_0 \rightarrow b_n)$ that minimizes the number of stops

Ideally: stop when out of gas

Actually: may not be able to find the gas station when out of gas

Greedy algorithm: go as far as you can before refueling

Step 1: Cast Optimization Problem

Breakpoint Selection Problem

Input: n+1 breakpoints $b_0, ..., b_n$; gas storage is COutput: a refueling schedule $(b_0 \rightarrow b_n)$ that minimizes the number of stops

Subproblems

- B (i): breakpoint selection problem from b_i to b_n
- Goal: B(0)

Step 2: Prove Optimal Substructure

Breakpoint Selection Problem

```
Input: n+1 breakpoints b_0, \dots, b_n; gas storage is C
Output: a refueling schedule (b_0 \rightarrow b_n) that minimizes the number of stops
```

- Suppose OPT is an optimal solution to B(i) where j is the largest index satisfying $b_i b_i \le C$, there are j i cases
 - Case 1: stop at b_{i+1}
 - OPT\ $\{b_{i+1}\}$ is an optimal solution of B (i + 1)
 - Case 2: stop at b_{i+2}
 - OPT\ $\{b_{i+2}\}$ is an optimal solution of B (i + 2)

$$B_i = \min_{i < k \le j} (1 + B_k)$$

- Case j i: stop at b_i
 - OPT\{b_i} is an optimal solution of B (j)

Step 3: Prove Greedy-Choice Property

Breakpoint Selection Problem

Input: n + 1 breakpoints $b_0, ..., b_n$; gas storage is C

Output: a refueling schedule $(b_0 \rightarrow b_n)$ that minimizes the number of stops

- Greedy choice: go as far as you can before refueling (select b_i)
- Proof via contradiction
 - Assume that there is no OPT including this greedy choice (after b_i then stop at b_k , $k \neq j$)
 - If k > j, we cannot stop at b_k due to out of gas
 - If k < j, we can replace the stop at b_k with the stop at b_i
 - The total value must be equal or higher, because we refuel later $(b_i > b_k)$

$$B_i = \min_{i < k \le j} (1 + B_k) \Longrightarrow B_i = 1 + B_j$$

Pseudo Code

Breakpoint Selection Problem

Input: n + 1 breakpoints $b_0, ..., b_n$; gas storage is C

Output: a refueling schedule $(b_0 \rightarrow b_n)$ that minimizes the number of stops

```
BP-Select(C, b)
   Sort(b) s.t. b[0] < b[1] < ... < b[n]
   p = 0
   S = {0}
   for i = 1 to n - 1
      if b[i + 1] - b[p] > C
      if i == p
        return "no solution"
      A = A U {i}
      p = i
   return A
```

$$T(n) = \Theta(n \log n)$$

Greedy #6: Task-Scheduling

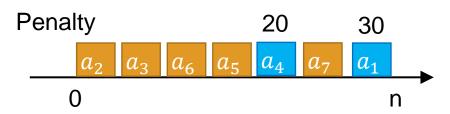
Textbook Exercise 16.2-2

Task-Scheduling Problem

• Input: a finite set $S = \{a_1, a_2, ..., a_n\}$ of n unit-time tasks, their corresponding integer deadlines $d_1, d_2, ..., d_n$ ($1 \le d_i \le n$), and nonnegative penalties $w_1, w_2, ..., w_n$ if a_i is not finished by time d_i

Job	1	2	3	4	5	6	7
Deadline (d_i)	1	2	3	4	4	4	6
Penalty (w_i)	30	60	40	20	50	70	10

Output: a schedule that minimizes the total penalty



Task-Scheduling Problem

Task-Scheduling Problem

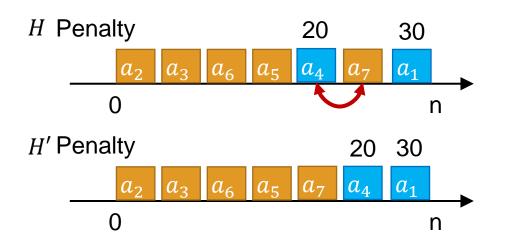
Input: n tasks with their deadlines $d_1, d_2, ..., d_n$ and penalties $w_1, w_2, ..., w_n$

Output: the schedule that minimizes the total penalty

- Let a schedule H is the OPT
 - A task a_i is <u>late</u> in H if $f(H,i) > d_i$
 - A task a_i is early in H if $f(H,i) \leq d_i$

Task	1	2	3	4	5	6	7
d_i	1	2	3	4	4	4	6
w_i	30	60	40	20	50	70	10

• We can have an **early-first** schedule H' with the same total penalty (OPT)



If the late task proceeds the early task, switching them makes the early one earlier and late one still late

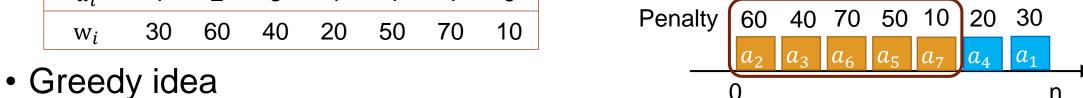
Task-Scheduling Problem

Input: n tasks with their deadlines $d_1, d_2, ..., d_n$ and penalties $w_1, w_2, ..., w_n$

Output: the schedule that minimizes the total penalty

Rethink the problem: "maximize the total penalty for the set of early tasks"

Task	1	2	3	4	5	6	7
d_i	1	2	3	4	4	4	6
w_i	30	60	40	20	50	70	10



- Largest-penalty-first w/o idle time?
- Earliest-deadline-first w/o idle time?

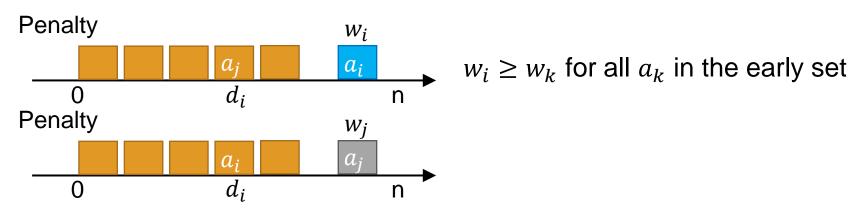
Prove Correctness

Task-Scheduling Problem

Input: n tasks with their deadlines d_1, d_2, \dots, d_n and penalties w_1, w_2, \dots, w_n

Output: the schedule that minimizes the total penalty

- Greedy choice: select the largest-penalty task into the early set if feasible
- Proof via contradiction
 - Assume that there is no OPT including this greedy choice
 - If OPT processes a_i after d_i , we can switch a_i and a_i into OPT'
 - The maximum penalty must be equal or lower, because $w_i \ge w_i$



Prove Correctness

Task-Scheduling Problem

Input: n tasks with their deadlines $d_1, d_2, ..., d_n$ and penalties $w_1, w_2, ..., w_n$

Output: the schedule that minimizes the total penalty

Greedy algorithm

```
Task-Scheduling(n, d[], w[])
  sort tasks by penalties s.t. w[1] ≥ w[2] ≥ ... ≥ w[n]
  for i = 1 to n
    find the latest available index j <= d[i]
    if j > 0
        A = A U {i}
        mark index j unavailable
return A // the set of early tasks
```

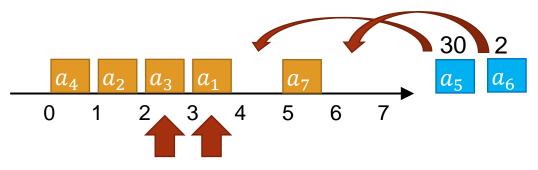
$$T(n) = O(n^2)$$

Can it be better?

Practice: reduce the time for finding the latest available index

Example Illustration

Job	1	2	3	4	5	6	7
Deadline (d_i)	4	2	4	3	1	4	6
Penalty (w _i)	70	60	50	40	30	20	10



Total penalty = 30 + 20 = 50

Practice: how about the greedy algorithm using "earliest-deadline-first"

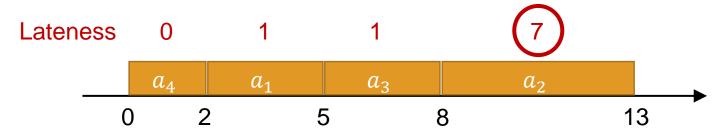
Greedy #7: Scheduling to Minimize Lateness

Scheduling to Minimize Lateness

• Input: a finite set $S=\{a_1,a_2,\dots,a_n\}$ of n tasks, their processing time t_1,t_2,\dots,t_n , and integer deadlines d_1,d_2,\dots,d_n

Job	1	2	3	4
Processing Time (t_i)	3	5	3	2
Deadline (d_i)	4	6	7	8

Output: a schedule that minimizes the maximum lateness



Scheduling to Minimize Lateness

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

- Let a schedule H contains s(H,j) and f(H,j) as the start time and finish time of job j
 - $f(H,j) s(H,j) = t_j$
 - Lateness of job j in H is $L(H,j) = \max\{0, f(H,j) d_j\}$
- The goal is to minimize $\max_{j} L(H,j) = \max_{j} \{0, f(H,j) d_j\}$

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

- Greedy idea
 - Shortest-processing-time-first w/o idle time?
 - Earliest-deadline-first w/o idle time?

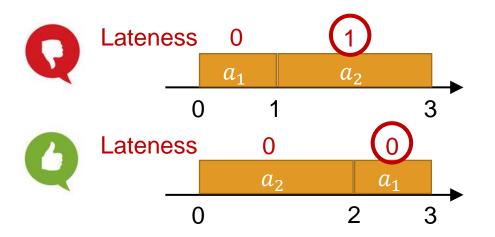
Practice: prove that any schedule w/ idle is not optimal

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$

Output: the schedule that minimizes the maximum lateness

- Idea
 - Shortest-processing-time-first w/o idle time?



Job	1	2
Processing Time (t_i)	1	2
Deadline (d_i)	10	2

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

- Idea
 - Earliest-deadline-first w/o idle time?
- Greedy algorithm

```
Min-Lateness(n, t[], d[])
   sort tasks by deadlines s.t. d[1] \leq d[2] \leq \ldots \leq d[n]
   ct = 0 // current time
   for j = 1 to n
      assign job j to interval (ct, ct + t[j])
      s[j] = ct
      f[j] = s[j] + t[j]
      ct = ct + t[j]
   return s[], f[]
```

$$T(n) = \Theta(n \log n)$$

Prove Correctness – Greedy-Choice Property

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

- Greedy choice: first select the task with the earliest deadline
- Proof via contradiction
 - Assume that there is no OPT including this greedy choice
 - If OPT processes a_1 as the *i*-th task (a_k) , we can switch a_k and a_1 into OPT'
 - The maximum lateness must be equal or lower $\rightarrow L(OPT') \leq L(OPT)$

exchange argument

Prove Correctness – Greedy-Choice Property

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

• $L(OPT') \le L(OPT)$

$$\iff \max(L(\mathsf{OPT}',1),L(\mathsf{OPT}',k)) \le \max(L(\mathsf{OPT},k),L(\mathsf{OPT},1))$$

$$\iff \max(L(\text{OPT'}, 1), L(\text{OPT'}, k)) \le L(\text{OPT}, 1)$$

$$\iff L(\mathsf{OPT}',k) \leq L(\mathsf{OPT},1) :: L(\mathsf{OPT}',1) \leq L(\mathsf{OPT},1)$$

If a_k is not late in OPT':

$$L(OPT', k) = 0$$

If a_k is late in OPT':

$$L(OPT', k) = f(OPT', k) - d_k$$
$$= f(OPT, 1) - d_k$$

$$\leq f(OPT, 1) - d_1$$

$$= L(OPT, 1)$$

L(OPT, k) L(OPT, 1)

OPT a_k a_1

L(OPT', 1) L(OPT', k)

OPT' a_1 a_k

Generalization of this property?

Prove Correctness - No Inversions

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

- There is an optimal scheduling w/o *inversions* given $d_1 \le d_2 \le \cdots \le d_n$
 - a_i and a_j are *inverted* if $d_i < d_j$ but a_j is scheduled before a_i
- Proof via contradiction
 - Assume that OPT has a_i and a_j that are inverted
 - Let OPT' = OPT but a_i and a_j are swapped
 - OPT' is equal or better than OPT $\rightarrow L(OPT') \leq L(OPT)$

Prove Correctness - No Inversions

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

```
• L(OPT') \leq L(OPT)
  \iff \max(L(\text{OPT}', i), L(\text{OPT}', j)) \le \max(L(\text{OPT}, j), L(\text{OPT}, i))
  \iff \max(L(\text{OPT}', i), L(\text{OPT}', j)) \leq L(\text{OPT}, i) :: d_i < d_j
  \iff L(OPT', j) \le L(OPT, i) :: L(OPT', i) \le L(OPT, i)
                                  If a_i is late in OPT':
  If a_i is not late in OPT':
                                                                           L(OPT, j)
                                                                                          L(OPT, i)
                                  L(OPT', j) = f(OPT', j) - d_j
  L(OPT', j) = 0
                                                                     OPT
                                              = f(OPT, i) - d_i
                                                                           L(OPT', i)
                                                                                            L(OPT', j)
                               Subproble
      Optimal
                   Greedy
                                              \leq f(OPT, i) - d_i
      Solution
                               m Solution
                                                                     OPT'
                                              =L(OPT,i)
```

The earliest-deadline-first greedy algorithm is optimal

Concluding Remarks

- "Greedy": always makes the choice that looks best at the moment in the hope that this choice will lead to a globally optimal solution
- When to use greedy
 - Whether the problem has <u>optimal substructure</u>
 - Whether we can make a greedy choice and remain only one subproblem
 - Common for <u>optimization</u> problem

- Prove for correctness
 - Optimal substructure
 - Greedy choice property



Question?

Important announcement will be sent to @ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw