
# 個體經濟學原理與實習 CH.13 Game Theory and Strategic Play

黃家恩

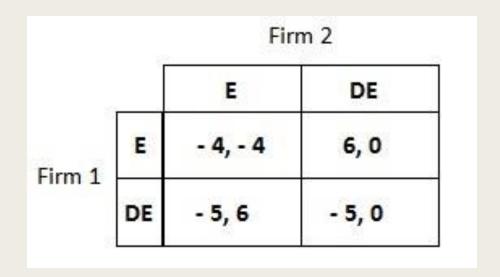
Fall 2021

#### Basic elements

- 同步賽局(simultaneous move game)中所有 玩家會同時做決策
- 玩家(players):在賽局中需要做決策的角色
- 策略(strategy):玩家可以執行的行動
- 最適回應(best response):給定對手的策略, 能帶給自己最高報酬的策略

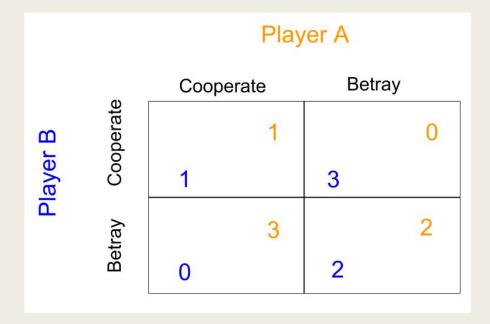


### Dominant strategy


- 優勢策略(dominant strategy)是指自己的某個策略,對對手所有的策略都是最適回應
- 承上例的payoff matrix,給定Firm2選擇E,Firm1的最適回應為E;給定Firm2選擇DE,Firm1的最適回應為E。因此無論Firm2選何者,Firm1選擇E都是最適回應,此時E就是Firm1的優勢策略
- 若雙人賽局中的兩方都有優勢策略,則兩方優勢策略的組合稱為優勢策略均衡(dominant strategy equilibrium),因為兩方的策略都是最適回應,單方面悖離(deviate)均衡無法為自己帶來更高的報酬

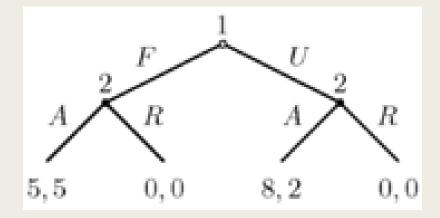
#### Nash equilibrium

- 優勢策略均衡有時並不存在,但促成玩家不悖離的均衡,並非只有優勢策略均衡
- 納許均衡 (Nash Equilibrium) 是指在一個策略的組合中,每個玩家的策略都是對其 他所有的玩家策略的最適回應。(優勢策略均衡為納許均衡的一種)
- 在納許均衡下,玩家同樣無法透過單方面悖離均衡,獲得更高的報酬。
- 納許均衡可大致分為純策略均衡 (Pure Strategy) 和混合策略均衡 (Mixed Strategy)


#### Pure-strategy Nash equilibrium

- 策略組合(E,DE)是pure-strategy Nash equilibrium,因為若Firm1選E,Firm2選DE是最適回應;若Firm2選DE,Firm1選E是最適回應
- 雖然在此例中,只有一個pure-strategy Nash equilibrium,但是一般的情況下, pure-strategy Nash equilibrium有可能不存在或是有多個解




#### Prisoner's dilemma

- 社會最適為(cooperate, cooperate),帶來的總效益最大(2+2),卻因為兩人的優勢策略均為betray,使得優勢策略均衡變成(betray, betray)
- 當個人利益阻礙集體合作的產生,而無法 達成社會最適,稱之為社會困境(social dilemma)



#### Sequential game

- 非同步賽局(sequential game)中所有玩家不會同時做決定
- 此賽局的player 1和player 2不會同時做決定, player 1會先做決定,之後才輪到player 2做 決定

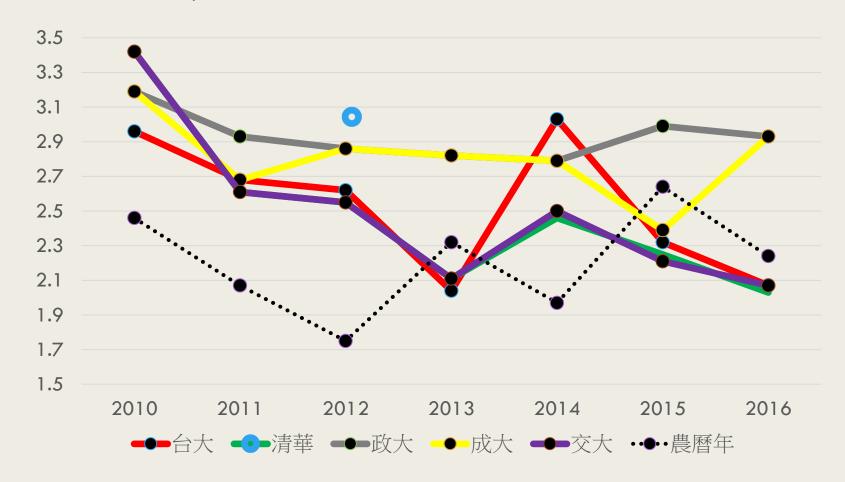


#### Backward induction

- 解非同步賽局需要利用倒推法(backward induction)
- 倒推法是由後往前推理,先求出最後決定的子賽局的均衡,再將均衡解帶回上一階 段,直到解完整個賽局
- 因此上頁的例子,需先解完player 2的最適回應(因為他最後做決定),再回頭找到 player 1的最佳策略
- 給定player 1選F,player 2會選A;給定player 1選U,player 2會選A。最後再比較左邊分支的報酬(5,5)和右邊分支的報酬(8,2),player 1選U的報酬較大,因此player 1 會選U,而player 2則一定選A

### First mover advantage

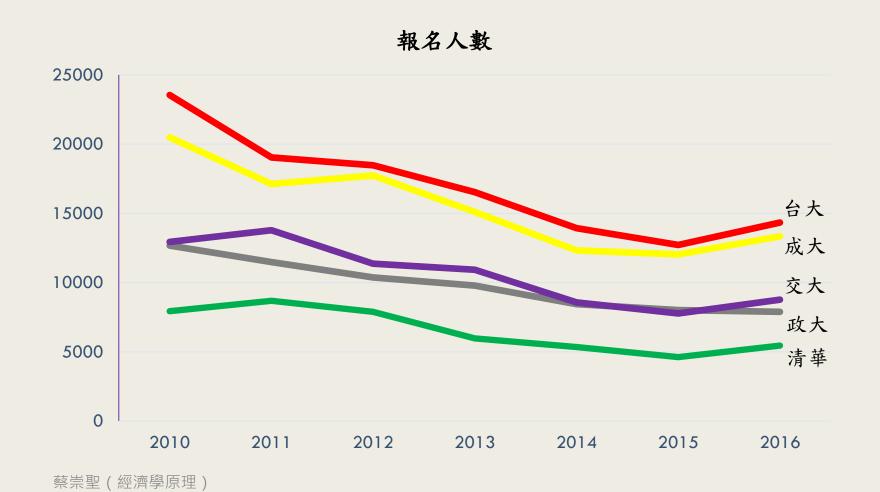
- 在部分非同步賽局中先做決定的人會有優勢,經濟學上稱為先行者優勢(first mover advantage)。上例中player 1先做決定,當他做完決定後均衡即被決定
- 理想上只要玩家是理性的,利用倒推法預測的均衡即為最後實際發生的均衡
- 上述說法可能存在例外,若人不是理性的,有可能其中一方不按牌理出牌


# EXAMPLE

Provided by 蔡崇聖老師

#### ■頂大研究所考試日期之賽局

|    | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
|----|------|------|------|------|------|------|------|
| 台大 | 2.27 | 2.19 | 2.18 | 2.01 | 3.01 | 2.09 | 2.02 |
| 清華 | 3.13 | 2.17 | 2.16 | 2.03 | 2.13 | 2.07 | 2.01 |
| 政大 | 3.06 | 2.26 | 2.25 | 2.23 | 2.22 | 2.28 | 2.27 |
| 成大 | 3.06 | 2.19 | 2.25 | 2.23 | 2.22 | 2.11 | 2.27 |
| 交大 | 3.13 | 2.17 | 2.16 | 2.03 | 2.14 | 2.06 | 2.02 |


■頂大研究所考試日期



■頂大研究所考試近年報名人數

|    | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  |
|----|-------|-------|-------|-------|-------|-------|-------|
| 台大 | 23546 | 19032 | 18474 | 16526 | 13927 | 12721 | 14334 |
| 清華 | 7934  | 8694  | 7887  | 5970  | 5354  | 4623  | 5454  |
| 政大 | 12674 | 11478 | 10374 | 9791  | 8448  | 8021  | 7889  |
| 成大 | 20479 | 17122 | 17737 | 15095 | 12330 | 12034 | 13343 |
| 交大 | 12935 | 13784 | 11372 | 10928 | 8575  | 7780  | 8765  |

■ 頂大研究所考試近年報名人數



- 現象觀察:
  - 報考人數(餅)越來越少(少子化、學歷貶值...),學校間競爭越趨激烈
  - 研究所考試日期越來越早
  - 頂大間常彼此撞期
  - 要如何解釋此現象?

#### 分析:

- 將考試日前提前可以增加報考人數
  - 利用考生厭惡風險,想盡早確定學校的心態(尤其是理工科)
  - 彼此競爭的結果,研究所考試日期越來越早
- 》 農曆年效果,選擇受限,撞期勢不可免
  - "撞期"是兩校在搶100%的餅,"不撞期"則考生可重複報考,餅大於100%
- Tradeoff: 提早vs. 撞期
  - 策略:跟主要競爭者"撞期"但避開次要競爭者
  - 清大vs.交大、成大vs.政大、台大vs.其他

- NTU與NTHU的賽局
- 均衡有兩個:
  - 台大比清大早一點考(2010前)
  - 清大比台大早一點考(2010後)(台大不爽中)

#### **NTHU**

|     |   | 早             | 中             | 晚              |
|-----|---|---------------|---------------|----------------|
|     | 早 | 60, 40        | <u>80, 50</u> | <u>90</u> , 35 |
| NTU | 中 | <u>70, 60</u> | 60, 40        | 80, 50         |
|     | 晚 | 65, <u>65</u> | 70, 60        | 60, 40         |