1001微乙01-05班期中考解答和評分標準

1. (10%) 計算
$$\lim_{x \to \infty} (\frac{x-1}{x+1})^x$$
 。

Sol:

$$\lim_{x \to \infty} \left(1 + \frac{-2}{x+1} \right)^x = \lim_{x \to \infty} \left[(1 + \frac{-2}{x+1})^{x+1} (1 + \frac{-2}{x+1})^{-1} \right]$$
$$= \lim_{y \to \infty} \left[(1 + \frac{-2}{y})^y (1 + \frac{-2}{y})^{-1} \right]$$
$$= e^{-2}$$

評分標準:

有利用 $e = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$ 的概念得 7 分;依算式完整度得 7 至 10 分 。

2.
$$(10\%) \Leftrightarrow f(x) = x^{\ln x} \circ \# f'(x) \circ$$

Sol:

$$f(x) = x^{\ln x} = e^{(\ln x)^2} \Rightarrow f'(x) = e^{(\ln x)^2} \cdot 2 \ln x \cdot \frac{1}{x} = 2 \ln x \cdot x^{(\ln x) - 1}.$$

(There is no partial credit)

3.
$$(10\%) \Leftrightarrow f(x) = \tan^{-1}(\sqrt{x}) \cdot \tan(x^2) \circ \# f'(x) \circ$$

Sol:

Let
$$f(x) = \arctan(\sqrt{x}) \cdot \tan(x^2)$$
. Try to find $f'(x)$

$$f'(x) = \arctan(\sqrt{x})' \cdot \tan(x^2) + \arctan(\sqrt{x}) \cdot \tan(x^2)' \quad \text{The Prodcut Rule : 2pts}$$

$$= \left(\frac{1}{1 + (\sqrt{x})^2} \cdot \sqrt{x'}\right) \cdot \tan(x^2) + \arctan(\sqrt{x}) \cdot \left(\sec^2(x^2) \cdot x^{2'}\right) \quad \text{The Chain Rules : 2pts + 2pts}$$

$$= \left(\frac{1}{1 + x} \cdot \frac{1}{2\sqrt{x}}\right) \cdot \tan(x^2) + \arctan(\sqrt{x}) \cdot \left(\sec^2(x^2) \cdot 2x\right) \quad \text{The Differentations : 2pts + 2pts}$$

4.
$$(10\%)$$
 説明 $f(x) = 4x^3 + 2x^2 + 4x + 1$ 和 $g(x) = 2x^2 + \cos(x)$ 僅有一個交點。

Sol:

Let
$$F(x) = f(x) - g(x) = 4x^3 + 4x + 1 - \cos x$$
 be the difference of $f(x)$ and $g(x)$.

Since
$$F(0) = 0$$
, $f(x)$ and $g(x)$ has an intersection at $x = 0$. (3 %)

M1: Suppose there is another intersection at $x=a\neq 0$, i.e. F(a)=0. By Mean Value Theorem(1%), $\exists c$ lies between a and 0, such that $F'(c)=\frac{F(a)-F(0)}{a-0}=0 \to \leftarrow$ $(\because F'(x)=12x^2+4+\sin x>0)$. Therefore, f(x) and g(x) only intersect at x=0 (6%).

M2: Since $F'(x) = 12x^2 + 4 + \sin x > 0$, F(x) is strictly increasing. Moreover F(0) = 0, so f(x) and g(x) only intersect at x = 0 (7%).

- 5. (20%) 假設 $y^3 + xy x = 1$ 。
 - (a) 求過點 (1,1) 之切線方程式。

(b) 求
$$\frac{d^2y}{dx^2}$$
 在點 (1,1) 之值。

Sol:

(a) If the reader can find the clues of chain rules (3 pts).

$$3y^2y' + y + xy' - 1 = 0$$
 (5 pts)

After that you plug in (0,0) and find y'=0, thus y=1. (2 pts)

(b) If you have already get (8 pts) in part A, you may get (3 pts) from starting your second order operation.

$$6y(y')^2 + 3y^2y'' + y' + y' + xy'' = 0$$
 (5 pts)

After that you plug in (0,0) and find y'' = 0. (2 pts)

6.~(10%) 利用線性逼近去估計 $\ln 0.97$ 之值。

Sol:

設
$$f(x) = \ln x$$
.

因爲已知
$$f(1) = \ln 1 = 0$$
 且 0.97 與 1 很接近,

所以用
$$f(x)$$
 在 $x=1$ 的切線來估計 $f(0.97)=\ln 0.97$ 的值.

由公式
$$f(x) \approx f(a) + f'(a)(x-a)$$

代入
$$x = 0.97$$
, $a = 1$. 則 $f'(1) = (\ln x)' \Big|_{x=1} = \frac{1}{x} \Big|_{x=1} = 1$

$$\ln 0.97 = f(0.97) \approx f(1) + f'(1)(0.97 - 1)$$

$$= \ln 1 + 1 * (-0.03)$$

$$= 0 - 0.03 = -0.03$$

評分標準:

$$f(x) \approx f(a) + f'(a)(x - a)$$
 (5%)

$$(\ln x)'|_{x=1} = \frac{1}{x}|_{x=1} = 1$$
 (2%)

$$\ln 0.97 \approx -0.03$$
 (3%)

7. (20%) 若 $y = f(x) = x^2 + \frac{1}{x}$ 。

(d)
$$y = f(x)$$
 所有的漸近線爲 _____

(e) 畫出 y = f(x) 之圖形。

Sol: $f(x) := x^2 + x^{-1}$ defined on $x \neq 0$

$$f'(x) = 2x - x^{-2} = x^{-2}(2x^3 - 1) \begin{cases} < 0, & x < 2^{-1/3}, x \neq 0 \\ > 0, & x > 2^{-1/3}. \end{cases}$$

Hence f(x) is increasing on $[2^{-1/3}, \infty)$. (2%)

$$f(x)$$
 is decreasing on $(-\infty, 0)$ and $(0, 2^{-1/3}]$. (2%)

Critical points: $x_1, 0 = f'(x_1) \Rightarrow x_1 = 2^{-1/3}$

$$f''(x) = 2 + 2x^{-3} = 2x^{-3}(1+x)(1-x+x^2) \begin{cases} > 0, & x \in (-\infty, -1), \\ = 0, & x = -1, \\ < 0, & x \in (-1, 0) \\ > 0, & x \in (0, \infty). \end{cases}$$

$$f''(x_1) = 2 + 4 > 0, f(x_1) = 2^{-2/3} + 2^{1/3} = \frac{3}{2}2^{1/3}.$$

Hence $(x, y) = (2^{-1/3}, \frac{3}{2}2^{1/3})$ is local minimum. (2%)

There are no other critical points, hence no local maximum. (2%)

$$f$$
 is concave up when $f'' > 0$, i.e. $x \in (-\infty, -1)$ and $x \in (0, \infty)$. (2%)

$$f$$
 is concave down when $f'' < 0$, i.e. $x \in (-1,0)$. (2%)

 $\lim_{x\to 0^{\pm}} f(x) = \pm \infty, \Rightarrow 'x = 0'$ is a vertical asymptote. Since f is defined and continuous on $\{x \neq 0\}$, there is no other vertical asymptote.

Let y = mx + b be an asymptote, then $m = \lim_{x \to \pm \infty} f(x)/x = \lim_{x \to \pm \infty} (x - x^{-3}) = \pm \infty$. Hence no such asymptote.

The only asymptote is
$$x = 0$$
. (4%)

The graph is

8. (10%) 若高鐵每月載客量為 40,000 人,票價為 1,500 元/人。高鐵公司希望調整票價,增加收益。若票價每調高 10 元,則會損失乘客 200 人。請問該如何調整票價,才能達到最大的收益?

Sol:

Let increasing x dollar then it will lost 20x people

$$f(x) = (40000 - 20x)(1500 + x)$$
$$= -20x^{2} + 10000x + 40000 * 1500$$

then

$$f'(x) = -40x + 10000$$

if f'(x) = 0 then x = 250 and f'(x) = -40 < 0 so it has max value Hence increasing 250 dollar.

(4%)

The standard of anwser:

if you get the $f(x) = -20x^2 + 10000x + 40000 * 1500$ then 6 points.

if you get the x=250 then 4 points.