Solution:

$$\frac{\sqrt[3]{x^3 + x - 8} - \sqrt[3]{x}}{x - 2} = \frac{\left(\sqrt[3]{x^3 + x - 8} - \sqrt[3]{x}\right)\left(\left(\sqrt[3]{x^3 + x - 8}\right)^2 + \sqrt[3]{x^3 + x - 8}\sqrt[3]{x} + \left(\sqrt[3]{x}\right)^2\right)}{\left(x - 2\right)\left(\left(\sqrt[3]{x^3 + x - 8}\right)^2 + \sqrt[3]{x^3 + x - 8}\sqrt[3]{x} + \left(\sqrt[3]{x}\right)^2\right)}$$

$$= \frac{x^3 + x - 8 - x}{\left(x - 2\right)\left(\left(\sqrt[3]{x^3 + x - 8}\right)^2 + \sqrt[3]{x^3 + x - 8}\sqrt[3]{x} + \left(\sqrt[3]{x}\right)^2\right)}$$

$$= \frac{x^2 + 2x + 4}{\left(\sqrt[3]{x^3 + x - 8}\right)^2 + \sqrt[3]{x^3 + x - 8}\sqrt[3]{x} + \left(\sqrt[3]{x}\right)^2}$$

Therefore,

$$\lim_{x \to 2} \frac{\sqrt[3]{x^3 + x - 8} - \sqrt[3]{x}}{x - 2} = \lim_{x \to 2} \frac{x^2 + 2x + 4}{\left(\sqrt[3]{x^3 + x - 8}\right)^2 + \sqrt[3]{x^3 + x - 8}\sqrt[3]{x} + \left(\sqrt[3]{x}\right)^2}$$
$$= \frac{4 + 4 + 4}{\left(\sqrt[3]{2}\right)^2 + \left(\sqrt[3]{2}\right)^2 + \left(\sqrt[3]{2}\right)^2}$$
$$= 2^{4/3}$$

2. (10%) 用均值定理説明 $|\tan x - \tan y| \le 2|x-y|$ 對 $x, y \in [0, \pi/4]$ 均成立。

Solution:

If x = y, then |tanx - tan y| = 2|x - y| = 0. In general case, we may assume that x > y, and $x, y \in [0, \pi/4]$. First, we take the differential

$$\frac{d}{dx}\tan x = \sec^2 x$$
 (2 points).

By the mean value theorem, we have

there exists
$$\xi$$
 with $y < \xi < x$ such that
$$\tan x - \tan y = \sec^2 \xi(x - y)$$
 (5 points) for all $x, y \in [0, \pi/4]$.

In the interval $[0, \pi/4]$, we have

$$\sec^2 \xi \le \sec^2 \frac{\pi}{4} = 2$$
 (2 points)

so

$$|\tan x - \tan y| = |\sec^2 \xi| |x - y| \le 2|x - y|$$
 (1 point)

for all $x,y \in [0, \pi/4]$. It completes the proof.

3. (10%) 給定一個方程式 $xy^2 + x^2y - 2 = 0$,求在點(x, y) = (1, 1)的切線方程式。

Solution:

Use implicit differentiation.

$$\frac{d}{dx}(xy^2 + xy^2 - 2) = \frac{d}{dx}(0)$$

$$\Rightarrow y^2 + x(2y)y' + 2xy + x^2y' = 0....(8pts)$$

$$(x, y) = (1, 1) \Rightarrow 1 + 2y' + 2 + y' = 0 \Rightarrow y' = 1.$$

So the tangent line at (x, y) = (1, 1) is

$$\frac{y-1}{x-1} = -1$$
(or $x+y=2$).....(2pts)

- 4. $\Leftrightarrow f(x) = x^7 7x^6 + 5x^4$
 - (a) (10%) 求 f(x) 在 x = 1 處之線性逼近。
 - (b) (5%) 以之求 f(0.92) 之近似值。

Solution:

(a)

$$f'(x) = 7x^{6} - 42x^{5} + 20x^{3}$$
$$f'(1) = -15, f(1) = -1$$
$$f(x) \approx -15(x - 1) - 1$$

(b)

$$f(0.92 \approx -15(0.92 - 1) - 1 = 0.2$$

5. (15%) (每小題5%)計算下列函數之導函數

(1)
$$\sin(3^x)$$
 (2) $e^{\tan^{-1}x}$ (3) $\frac{\ln x}{x}$

Solution:

(1) $(\sin(3^x))' = [2\%] \cos(3^x) \cdot (3^x)' = [2\%] \cos(3^x) \cdot 3^x \cdot \ln 3$. The rest 1\% depends on the detail of your answer.

(2) $(e^{\tan^{-1}x}) = [2\%]e^{\tan^{-1}x} \cdot (\tan^{-1}x)' = [2\%]e^{\tan^{-1}x} \cdot \frac{1}{1+x^2}.$

The rest 1% depends on the detail of your answer. Another solution: Apply the formula on p45, $(f(x)^{g(x)})' = [2\%]g(x) \cdot f(x)^{g(x)-1} \cdot f'(x) + [2\%] \ln f(x) \cdot f(x)^{g(x)} \cdot g'(x)$. (Here $f(x) = e, g(x) = \tan^{-1} x$)

(3) Use the quotient rule for derivatives: $\left(\frac{\ln x}{x}\right)' = \frac{\frac{1}{x} \cdot x - \ln x \cdot 1}{x^2} = [2\%] \frac{1}{x^2} - [2\%] \frac{\ln x}{x^2}$

The rest 1% depends on the detail of your answer.

6. (15%) 設計一圓柱形無蓋的杯子 (厚度忽略不計),假設在容積固定為1000立方公分的條件下,試問使得杯子表面積最小的杯底半徑為何? (12%) 需使用極值測試法。(3%)

Solution:

let r be the radius of the bottom of the cylinder and let h be the height of the cylinder

we have fixed volume $\pi r^2 h = 1000$ (2 pts) and the surface area $A(r) = \pi r^2 + 2\pi r h$ (2 pts)

$$= \pi r^2 + 2\pi r \frac{1000}{\pi r^2}$$

$$=\pi r^2 + \frac{2000}{r}$$
 (2 pts)

$$\Rightarrow A'(r) = 2\pi r - \frac{2000}{r^2} = \frac{2\pi r^3 - 2000}{r^2} \text{ (3 pts)}$$

$$A'(r) = 0 \text{ iff } 2\pi r^3 - 2000 = 0 \text{ iff } r = \frac{10}{\sqrt[3]{\pi}} (3 \text{ pts})$$

if
$$r > \frac{10}{\sqrt[3]{\pi}}$$
, since $2\pi r^3 - 2000 > 0$ and $r^2 > 0$

we have
$$A'(r) = \frac{2\pi r^3 - 2000}{r^2} > 0$$
 for all $r > \frac{10}{\sqrt[3]{\pi}}$

$$\Rightarrow A(r)$$
 is increasing for all $r > \frac{10}{\sqrt[3]{\pi}}$

if
$$0 < r < \frac{10}{\sqrt[3]{\pi}}$$
, since $2\pi r^3 - 2000 < 0$ and $r^2 > 0$

we have
$$A'(r) = \frac{2\pi r^3 - 2000}{r^2} < 0$$
 for all $0 < r < \frac{10}{\sqrt[3]{\pi}}$

$$\Rightarrow A(r)$$
 is decreasing for all $0 < r < \frac{10}{\sqrt[3]{\pi}}$

we thus conclude that the cylinder has minimum surface area as $r = \frac{10}{\sqrt[3]{\pi}}$ (3 pts)

(if you just say that r is a local minima, you get only 1 pt)

(另解)

本題批改方式為分段給分,其中「設定區」佔6分,「計算區」佔6分,「極值測試」佔3分,。每一區詳細配分標註於解法中。從計算錯誤的地方開始之後都不給分,例如一開始就設定錯誤就不給分。

根據考試規則,只寫出結果者不給分,常見於「極值測試」中,直接寫出一階微分或二階微分正負號而沒有計算過程,或是只畫個簡圖或表格,都無法判斷是因為題目指定要最小值而把結果直接寫上去,或是自己算出來的,這樣的狀況都不給分。

設定區: 設底面半徑為 r, 高為 h, 則:

體積
$$V(r) = 1000 = \pi r^2 h$$
 (2 pts)
表面積 $A(r) = 2\pi r h + \pi r^2$ (注意題目為「無蓋」) (2 pts)
將 $h = \frac{1000}{\pi r^2}$ 帶入 $A(r)$ 得 $A(r) = \pi r^2 + \frac{2000}{r}$ (2 pts)

計算區: 求 A(r) 的極值,即求滿足 A'(r) = 0 的點:

$$A'(r) = 2\pi r - \frac{2000}{r^2}$$
 (3 pts)
 $A'(r) = 0 \implies -2000 + 2\pi r^3 = 0$
 $\Rightarrow r = \frac{10}{\pi^{1/3}}$ (3 pts)

極值測試:一階測試:(3 pts)

$$A'(r) > 0 \Leftrightarrow -2000 + 2\pi r^3 > 0 \Leftrightarrow r > \frac{10}{\pi^{1/3}}$$

 $A'(r) < 0 \Leftrightarrow -2000 + 2\pi r^3 > 0 \Leftrightarrow r < \frac{10}{\pi^{1/3}}$

故 A(r) 在 r 大於 $\frac{10}{\pi^{1/3}}$ 遞增,在 r 小於 $\frac{10}{\pi^{1/3}}$ 時遞減,所以在 $r = \frac{10}{\pi^{1/3}}$ 發生最小值。

註1: 若只在 $r=\frac{10}{\pi^{1/3}}$ 這個點上用二階測試,只能確定他產生「局部極小值」,無法確定他是「最小值」,這種狀況給1分。

註2: 若在「計算區」中用算幾不等式者,當作沒有做極值測試,若都寫對的話給12分。

- 7. (25%) 令 $y = f(x) = \frac{x(x-2)+2}{x-1}$. 回答以下各小題 (若不存在的話,須註明不存在):
 - (a) y = f(x) 的遞增區間 $(-\infty, 0] \cup [2, \infty)$, y = f(x) 的遞減區間 $[0, 1) \cup (1, 2]$
 - (b) y = f(x) 之極大值(座標) (0, -2), y = f(x) 之極小值(座標) (2, 2)
 - (c) y = f(x) 的凹向上區間 $(1, \infty)$, y = f(x) 的凹向下區間 $(-\infty, 1)$
 - (d) y = f(x) 之反曲點(座標) f has no inflection point on \mathbb{R}

- (e) y = f(x) 所有的漸近線為 $x = 1 \cdot y = x 1$
- (f) 畫出 y = f(x) 的圖形。

Solution:

For f to be well-defined, we need $x \neq 1$. Then we can simplify f as

$$f(x) = (x-1) + \frac{1}{(x-1)}$$

$$\Longrightarrow f'(x) = 1 - \frac{1}{(x-1)^2}$$

$$\Longrightarrow f''(x) = \frac{2}{(x-1)^3}$$

Hence we observe that:

(a.1)
$$f'(x) \ge 0$$
 for $x \in (-\infty, 0] \cup [2, \infty) \Longrightarrow f$ is increasing on $(-\infty, 0] \cup [2, \infty)$

(a.2)
$$f'(x) \leq 0$$
 for $x \in [0,1) \cup (1,2] \Longrightarrow f$ is decreasing on $[0,1) \cup (1,2]$

Furthermore, f'(x) = 0 for x = 0 or 2, and from the two observations above, we have

- (b.1) f has a local maximum at (0, -2)
- (b.2) f has a local minimum at (2,2)

And to observe the convexity and concavity.

(c.1)
$$f''(x) \ge 0$$
 for $x \ge 1 \Longrightarrow f$ is convex on $(1, \infty)$

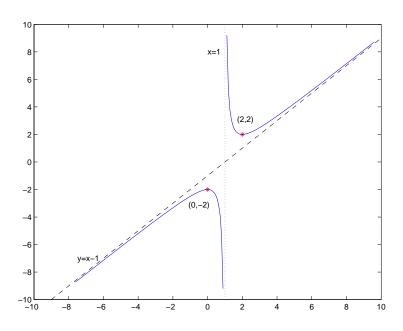
(c.1)
$$f''(x) \le 0$$
 for $x \le 1 \Longrightarrow f$ is concave on $(-\infty, 1)$

Now we observe the inflection point and asymptote.

- (d) $f''(x) \neq 0$ for all $x \in \mathbb{R} \Longrightarrow f$ has no inflection point on \mathbb{R}
- (e) f(x) tends to infinite when x tends to $1 \Longrightarrow x = 1$ is an asymptote of f and $f(x) (x 1) = \frac{1}{(x 1)} \to 0$ as $x \to \infty \Longrightarrow y = x 1$ is an asymptote of f

Finally, we can figure the graph by the above observations.

(f)



Grading evaluation:

- (a.1) If your answer is " $(-\infty,0)$, $(2,\infty)$ ", " $(-\infty,0]$, $(2,\infty)$ ", " $(-\infty,0)$, $[2,\infty)$ ", or " $(-\infty,0]$, $[2,\infty)$ ", you will get 2 points.
 - If your answer only holds one of the two intervals, you will get 1 point.
- (a.2) If your answer is "(0,1), (1,2)", "[0,1), (1,2)", "(0,1), (1,2]", or "[0,1), (1,2]", you will gent 2 points. Moreover, if your answer contains $\{1\}$, we also give you 2 points. If your answer only holds one of the two intervals, you will get 1 point.
- (b.1) If your answer is "(0,-2)" or "-2", you will get 2 points.
- (b.2) If your answer is "(2,2)" or "2", you will get 2 points.
- (c.1) If your answer is " $(1,\infty)$ " or " $[1,\infty)$ ", you will get 2 points.
- (c.2) If your answer is " $(\infty, 1)$ " or " $(\infty, 1]$ ", you will get 2 points.
 - (d) If your answer is "x = 1" or "nowhere", you will get 2 points.
 - (e) If your answer is "x = 1, y = x 1", you will get 4 points. If your answer holds one of the two asymptotes, you will get 2 points.
 - (f) If your graph of f is wrong, you have no point. If your graph of f is nearly the true graph, you will get 1 point. And if you figure the two asymptotes, you will get 1 more point; if you mark the local maximum point and local minimum point (you also need to write the coordinates), you will get 1 more point.