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1. (15%) Find lim
x→0−

and lim
x→0+

of the following functions:

(a)
sin(|x|)
x

, (b)
cosx− 1

sin(x sinx)
, (c)

cos(sinx)− 1

tan2 x

Solution:

(a) 5 points

lim
x→0−

sin |x|
x

= lim
x→0−

sin (−x)

x
= lim
x→0−

− sinx

x
= −1

lim
x→0+

sin |x|
x

= lim
x→0+

sinx

x
= lim
x→0+

sinx

x
= 1

(b) 5 points

lim
x→0

cosx− 1

sin (x sinx)
= lim
x→0

cosx− 1

sin (x sinx)
(
cosx+ 1

cosx+ 1
) =

lim
x→0

cos2 x− 1

[sin (x sinx)](cosx+ 1)
= lim
x→0

− sin2 x

[sin (x sinx)](cosx+ 1)

= lim
x→0

− sin2 x

[sin (x sinx)](cosx+ 1)

x sinx

x sinx
=

lim
x→0

[− sin (x)/x] lim
x→0

[(x sin (x)/ sin(x sin (x))] lim
x→0

(
1

cosx+ 1
) =
−1

2

(c) 5 points

lim
x→0

cos (sinx)− 1

tan2 x
= lim
x→0

cos2 (sinx)− 1

tan2 x(cos (sinx) + 1)
= lim
x→0

− sin2 (sinx) cos2 x

sin2 x(cos (sinx) + 1)

= lim
x→0

[− sin2 (sinx)/ sin2 x] lim
x→0

cos2 x

cos (sinx) + 1
=
−1

2

2. (10%) Show that | tan
x

2
− tan

y

2
| ≥ |x− y|

2
for x, y ∈ (−π, π).

Solution:

Let x, y ∈ (−π, π), W.L.O.G, set x < y.

Let f(t) = tan
t

2
, then f is continuous on [x, y] and differentiable on (x, y). (2 point)

By Mean Value Theorem, there is a number c between x and y such that
f(x)− f(y)

x− y
= f ′(c) (2 point)

Since f ′(c) =
1

2
sec2

c

2
(2 point)

⇒
| tan x

2 − tan y
2 |

| x− y |
=| 1

2
sec2

c

2
|

⇒ | tan
x

2
− tan

y

2
|=| 1

2
sec2

c

2
|| x− y | (2 point)

We know that | 1

2
sec2

c

2
|≥ 1

2
, (1 point)

⇒| tan
x

2
− tan

y

2
| ≥ | x− y |

2
(1 point)

3. (10%) A rhombus (菱形) has sides 10in. long. Two of its opposite vertices are pulled apart at a rate of 2 in. per
second. How fast is the area changing when the vertices being pulled are 16 in apart?
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Solution:

Let the distance between the two pulled vertices is x in., and the length of another diagonal is y in.. The change

rate of x is
dx

dt
= 2.

By Pythagorean theorem, (
x

2
)2 + (

y

2
)2 = 102 = 100 =⇒ x2 + y2 = 400 =⇒ y =

√
400− x2

So the area A of the rhombus is
xy

2
=

1

2
x
√

400− x2

dA

dt
=
dA

dx
· dx
dt

=

(
1

2

√
400− x2 − 1

2
· x2√

400− x2

)
× 2 =

√
400− x2 − · x2√

400− x2

When x = 16,
dA

dt

∣∣∣∣
x=16

= 12− 256

12
= −28

3
(in2/sec)

評分標準如下:

寫出長度或者角度之間的關係 (2分)

寫出面積與所設變數之間的關係式 (2分)

將面積對變數作微分 (4分)

代入欲求取之值 (2分)

其餘錯誤酌量扣分。

4. (10%) Let f(x) =
1 + cosx

1 + sinx
. Use a differential to estimate f(44◦).

Solution:

f(x+ h) ' f(x) + f ′(x) · h

f ′(x) =
− sinx(1 + sinx)− cosx(1 + cosx)

(1 + sinx)2
=
− sinx− cosx− 1

(1 + sinx)2
(4 points)

f(44◦) = f(45◦ + (−1◦)) ' f(45◦) + f ′(45◦) · (−1◦) (2 points)

= f(
π

4
) + f ′(

π

4
) · −π

180
(2 points)

= 1 + (2− 2
√

2) · −π
180

= 1 +
(
√

2− 1)π

90
. (1 point)

其中:

f(
π

4
) =

1 + cos π4
1 + sin π

4

=
1 +

√
2
2

1 +
√
2
2

= 1

f ′(
π

4
) =
−
√
2
2 −

√
2
2 − 1

(1 +
√
2
2 )2

=
−
√

2− 1
3
2 +
√

2
=
−2
√

2− 2

3 + 2
√

2
· 3− 2

√
2

3− 2
√

2

= (−2
√

2− 2)(3− 2
√

2)

= 2− 2
√

2. (1 points)

5. (25%) Let f(x) =
(x+ 1)2

x2 + 1
.

(a) (5%) Find f ′ and f ′′.

(b) (10%) Find the intervals on which f increases and the intervals on which f decreases. Indicate local extreme
values and absolute extreme values.

(c) (5%) Find the intervals on which the graph of f is concave up and the intervals on which the graph of f is
concave down. Indicate points of inflection.

(d) (5%) Find vertical and horizontal asymptotes if any. Sketch the graph of f .

Solution:

(a)
f(x) = (x2 + 1)−1(x+ 1)2
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f ′(x) = −(x2 + 1)−2(2x)(x+ 1)2 + 2(x2 + 1)−1(x+ 1) =
−2(x+ 1)(x− 1)

(x2 + 1)2
(3%)

f ′′(x) = −2[−2(x2 + 1)−3(2x)(x+ 1)(x− 1) + (x2 + 1)−2(2x)] =
4x(x2 − 3)

(x2 + 1)3
(2%)

(b)

From the above chart we know that
(1) f is increasing on [−1, 1] (2%)
(2) f is decreasing on (−∞,−1] and [1,∞] (2%)
(3) Local minimum: f(−1) = 0 (2%); local maximum: f(1) = 2 (2%)
(4) Absolute minimum: f(−1) = 0 ; absolute maximum: f(1) = 2 (1%) since lim

x→±∞
f(x) = 1 and f(x) is finite

for any real x (reasoning 1%).

(c) f ′′(x) is 0 and changes its sign at x = 0,±
√

3

⇒ inflection points: x = 0,±
√

3 (3%).

From the chart in (b), we know that

f is concave up on (−
√

3, 0) and (
√

3,∞) (1%), concave down on (−∞,−
√

3) and (0,
√

3) (1%).

(d) Since f(x) and f ′(x) are finite for any real x, the graph y = f(x) does not have any vertical asymp-
totes.
Since lim

x→±∞
f(x) = 1 (1%), y = f(x) has a horizontal asymptote y = 1 (1%).

Sketch of f(x):

6. (10%) Consider all the rectangles with base on the line y = −2 and with two upper vertices on the ellipse x2+y2/4 = 1
and symmetric with respect to the y-axis. Find the maximal possible area for such a rectangle.
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Solution:

f(θ) = 2 cos θ(2 sin θ + 2) (3pt.) 0 ≤ θ ≤ π

2
(1 pt.)

f ′(θ) = −4(2 sin θ − 1)(sin θ + 1) (2 pt.)

sin θ =
1

2
C.P. at θ =

π

6

f(0) = 4

f(
π

6
) = 3

√
3

f(
π

2
) = 0

(2 pt. )

f(
π

6
) = 3

√
3 is the maximum (2 pt.)

7. (10%) Find f ′(2) given that f(x) =

∫ x3−4

2x

x

1 +
√
t
dt.

Solution:

f(x) =

∫ x3−4

2x

x

1 +
√
t
dt = x

∫ x3−4

2x

1

1 +
√
t
dt

By the fundamental theorem of calculus,

d

dx
f(x) =

∫ x3−4

2x

1

1 +
√
t
dt+ x

[
1

1 +
√
x3 − 4

· (3x2)− 1

1 +
√

2x
· (2)

]
(3pts) (2pts) (2pts)

f ′(2) =

∫ 4

4

1

1 +
√
tdt

+ 2

[
32̇2

1 +
√

4
− 2

1 +
√

4

]
=

20

3

(2pts) (1pts)

8. (10%) Calculate

∫
csc2 2x√
2 + cot 2x

dx.

Solution:

Let u = 2 + cot 2x, then du = −2 csc2 2x dx (2 point)∫
csc2 x√

2 + cot 2x
dx

=

∫ −1
2√
u

du (2 point)

=
−1

2

∫
1√
u

du

= - u
1
2 + C (5points)

= -
√

cot 2x+ 2 + C, where C is a constant. (1 point)
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