1012微甲01－04班期中考解答和評分標準

1．（15 points）Let $s_{k}=\sum_{j=1}^{k} \frac{1}{j}, k=1,2, \cdots$ ，and $A(x)=\sum_{k=1}^{\infty} s_{k} x^{k}$ ．
（a）Find the interval of convergence of $A(x)$ ．
（b）Express $A(x)$ in terms of elementary functions by comparing $A(x)$ and $x A(x)$ ．

Solution：

（a）
Using ratio test，（knowing how to use ratio test or root test in the correct way earn 1 point）

$$
\frac{s_{k+1}}{s_{k}}=1+\frac{\left(\frac{1}{k+1}\right)}{s_{k}} \rightarrow 1 \text { as } k \rightarrow \infty
$$

thus the radius of convergence of $A(x)$ is 1 ．（having computed the radius of convergence earn 3 points） （The radius of convergence can also be calculated using root test．

$$
\begin{aligned}
& \sqrt[k]{s_{k}}=\sqrt[k]{\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{k}} \leq \sqrt[k]{1+1+\cdots+1}=\sqrt[k]{k} \\
& \sqrt[k]{s_{k}}=\sqrt[k]{\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{k}} \geq \sqrt[k]{\frac{1}{k}+\frac{1}{k}+\cdots+\frac{1}{k}}=1
\end{aligned}
$$

Since

$$
\sqrt[k]{k}=e^{\frac{\ln k}{k}}
$$

and

$$
\lim _{t \rightarrow \infty} \frac{\ln t}{t}=\lim _{t \rightarrow \infty} \frac{\left(\frac{1}{t}\right)}{1}=0 \text { by l'hospital rule. }
$$

Thus

$$
\lim _{k \rightarrow \infty} \sqrt[k]{k}=1
$$

and by squeezing

$$
\lim _{k \rightarrow \infty} \sqrt[k]{s_{k}}=1
$$

）
Note that

$$
\left|s_{k}(\pm 1)^{k}\right|=s_{k} \rightarrow \infty \neq 0 \text { as } k \rightarrow \infty
$$

hence $A(x)$ diverges at $x= \pm 1$ ．The interval of convergence of $A(x)$ is $(-1,1)$ ．（obtaining the endpoints behavior earn 1 point）
（b）
For $x \in(-1,1)$ ，

$$
\begin{aligned}
A(x) & =\sum_{k=1}^{\infty} s_{k} x^{k}=x+\sum_{k=2}^{\infty} s_{k} x^{k} \\
x A(x) & =\sum_{k=1}^{\infty} s_{k} x^{k+1}=\sum_{k=2}^{\infty} s_{k-1} x^{k} .
\end{aligned}
$$

Subtracting them，we obtain

$$
(1-x) A(x)=x+\sum_{k=2}^{\infty}\left(s_{k}-s_{k-1}\right) x^{k}=x+\sum_{k=2}^{\infty} \frac{1}{k} x^{k}=\sum_{k=1}^{\infty} \frac{1}{k} x^{k} .(5 \text { points })
$$

But

$$
\sum_{k=1}^{\infty} \frac{1}{k} x^{k}=-\ln (1-x)
$$

So

$$
A(x)=-\frac{\ln (1-x)}{1-x} \cdot(5 \text { points })
$$

2．（15 points）
(a) Expand $f(x)=(x-1) \ln (1+3 x)$ in powers of $x-1$.
(b) For what values of x is the above expansion valid?
(c) Find the sum $\sum_{k=1}^{\infty} \frac{1}{k}\left(\frac{3}{4}\right)^{k}$.

Solution:

(a) $f(x)=(x-1) \ln (1+3 x)=(x-1) \ln [3(x-1)+4]=(x-1) \ln \left[4\left(1+\frac{3}{4}(x-1)\right)\right]=(x-1)\left[\ln 4+\ln \left[1+\frac{3}{4}(x-1)\right]\right]=$ $(x-1)\left[\ln 4+\Sigma_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}\left[\frac{3}{4}(x-1)\right]^{k}\right]$
(b) $-1<\frac{3}{4}(x-1) \leq 1$, which is say if $\frac{-1}{3}<x \leq \frac{7}{3}$
(c) $f(0)=0=-\ln 4+\sum_{k=1}^{\infty} \frac{1}{k}\left(\frac{3}{4}\right)^{k}$. $\Rightarrow \sum_{k=1}^{\infty} \frac{1}{k}\left(\frac{3}{4}\right)^{k}=\ln 4$.
3. (15 points) Let \mathcal{C} be the curve given by $\boldsymbol{r}(t)=\frac{2}{3}(1+t)^{\frac{3}{2}} \boldsymbol{i}+\frac{2}{3}(1-t)^{\frac{3}{2}} \boldsymbol{j}+a t \boldsymbol{k}, t \in(-1,1), a \in \mathbb{R} \backslash\{0\}$.
(a) Find the length $s(b)$ of the curve from $t=0$ to $t=b \in(0,1)$.
(b) Find the unit tangent, the principal normal, and the osculating plane of \mathcal{C} at $\boldsymbol{r}(t)$.
(c) Find the curvature $\kappa(t)$ of \mathcal{C} at $\boldsymbol{r}(t)$.

Solution:

$$
\text { Osculating plane at } \gamma(t):\left(x-\frac{2}{3}(1+t)^{\frac{2}{3}}, y-\frac{2}{3}(1-t)^{\frac{2}{3}}, z-a t\right) \cdot B(t)=0
$$

\qquad

$$
\begin{equation*}
\kappa(t)=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\gamma^{\prime}(t)\right|}=\frac{1}{\sqrt{2}\left(a^{2}+2\right) \sqrt{1-t^{2}}}, \quad t \in(-1,1) . . \tag{3pts}
\end{equation*}
$$

4. (15 points) Let $f(x, y)= \begin{cases}\frac{x^{2} y}{x^{2}+y^{2}}, & (x, y) \neq(0,0) ; \\ 0, & (x, y)=(0,0) .\end{cases}$
(a) Compute $f_{x}(0,0)$ and $f_{y}(0,0)$.
(b) Calculate $f_{x}(x, y)$ and $f_{y}(x, y)$ for $(x, y) \neq(0,0)$.
(c) Are f_{x} and f_{y} continuous at $(0,0)$?
(d) Determine $f_{x y}(0,0)$ and $f_{y x}(0,0)$ if they exist. If they do not exist, explain why.
(e) Is $f(x, y)$ differentiable at $(0,0)$?

$$
\begin{aligned}
& \gamma^{\prime}(t)=\left((1+t)^{\frac{1}{2}},-(1-t)^{\frac{1}{2}}, a\right) \\
& \left|\mathbf{T}^{\prime}(t)\right|=\sqrt{a^{2}+2} \\
& s(b)=\int_{0}^{b}\left|\mathbf{T}^{\prime}(t)\right| d t=b \sqrt{a^{2}+2} . \\
& \mathbf{T}(t)=\frac{\gamma^{\prime}(t)}{\left|\gamma^{\prime}(t)\right|}=\frac{1}{\sqrt{a^{2}+2}}\left((1+t)^{\frac{1}{2}},-(1-t)^{\frac{1}{2}}, a\right) . \\
& \left.\mathbf{T}^{\prime}(t)=\frac{1}{\sqrt{a^{2}+2}}\left(\frac{1}{2}(1+t)^{\frac{-1}{2}}, \frac{1}{2}(1-t)^{\frac{-1}{2}}, 0\right)=\frac{1}{2 \sqrt{a^{2}+2}}(1+t)^{\frac{-1}{2}},(1-t)^{\frac{-1}{2}}, 0\right) \\
& \left|\mathbf{T}^{\prime}(t)\right|=\frac{1}{\sqrt{2\left(a^{2}+2\right)\left(1-t^{2}\right)}} \\
& \mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}=\frac{1}{\sqrt{2}}\left((1-t)^{\frac{1}{2}},(1+t)^{\frac{1}{2}}, 0\right) . \\
& \mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)=\frac{1}{\sqrt{2\left(a^{2}+2\right)}}\left(-a(1+t)^{\frac{1}{2}}, a(1-t)^{\frac{1}{2}}, 2\right)
\end{aligned}
$$

Solution:

(a) by definition,
$\left.\frac{\partial f}{\partial x}\right|_{(0,0)}=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=0$
similaritly ,
$\left.\frac{\partial f}{\partial y}\right|_{(0,0)}=\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=0$ (each 1 pts.$\left.\right)$
(b) when f on $(x, y) \neq(0,0)$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{2 x y\left(x^{2}+y^{2}\right)-x^{2} y(2 x)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{2 x y^{3}}{\left(x^{2}+y^{2}\right)^{2}} \\
& \frac{\partial f}{\partial y}=\frac{x^{2}\left(x^{2}+y^{2}\right)-x^{2} y(2 y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2}\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}(\text { each 2pts.) }
\end{aligned}
$$

(c) observe f along $y=m x$, m arbitrary

$$
\lim _{(x, y) \rightarrow(0,0)} f_{x}(x, y)=\lim _{(x, m x) \rightarrow(0,0)} \frac{2 x(m x)^{3}}{\left(x^{2}+(m x)^{2}\right)^{2}}=\frac{2 m^{3}}{\left(1+m^{2}\right)^{2}}
$$

$$
\neq f_{x}(0,0)=0
$$

$$
\lim _{(x, y) \rightarrow(0,0)} f_{y}(x, y)=\lim _{(x, m x) \rightarrow(0,0)} \frac{x^{2}\left(x^{2}-(m x)^{2}\right)}{\left(x^{2}+(m x)^{2}\right)^{2}}=\frac{1-m^{2}}{\left(1+m^{2}\right)^{2}}
$$

$$
\neq f_{y}(0,0)=0
$$

\Rightarrow limit doesn't exist at $(0,0)$
$\Rightarrow f_{x}, f_{y}$ not conti. at $(0,0)(3 \mathrm{pts}$. $)$
(d) $f_{x y}=\frac{\partial f_{x}}{\partial y}(0,0)=\lim _{h \rightarrow 0} \frac{f_{x}(0, h)-f_{x}(0,0)}{h}=0$
$f_{y x}=\frac{\partial f_{y}}{\partial x}(0,0)=\lim _{h \rightarrow 0} \frac{f_{y}(h, 0)-f_{y}(0,0)}{h}=\lim _{h \rightarrow 0} \frac{1}{h} \longrightarrow \infty(3 \mathrm{pts}$.
(e) sol. 1 If f diff. at $(0,0)$, then $\lim _{\sqrt{h^{2}+k^{2}} \rightarrow 0} \frac{f(h, k)-f(0,0)-\nabla f(0,0) \cdot(h, k)}{\sqrt{h^{2}+k^{2}}}=0(1 \mathrm{pts})$
$\Rightarrow \lim _{\sqrt{h^{2}+k^{2} \rightarrow 0}} \frac{h^{2} k}{\left(h^{2}+k^{2}\right)^{\frac{3}{2}}}=0$
But along $h=k$
$\lim _{\sqrt{h^{2}+k^{2}} \rightarrow 0} \frac{h^{2} k}{\left(h^{2}+k^{2}\right)^{\frac{3}{2}}}=\lim _{h \rightarrow 0} \frac{h^{3}}{2^{\frac{3}{2}} h^{3}}=2^{\frac{-3}{2}} \neq 0$ so f not diff. at $(0,0)(3 \mathrm{pts}$.)
sol. 2 set $\vec{u}=\left(\frac{1}{\sqrt{m^{2}+1}}, \frac{m}{\sqrt{m^{2}+1}}\right)$
$f_{u}(0,0)=\lim _{h \rightarrow 0} \frac{f\left(\frac{h}{\sqrt{m^{2}+1}}, \frac{m h}{\sqrt{m^{2}+1}}\right)-f(0,0)}{h}=\frac{m}{\left(1+m^{2}\right)^{\frac{3}{2}}}$
But $\nabla f(0,0) \cdot \vec{u}=<f_{x}(0,0), f_{y}(0,0)>\cdot \vec{u}=0$
a contradiction, so f not diff. at $(0,0)(3 \mathrm{pts}$.)
5. (15 points) Let $f(x, y, z)=e^{x y} \ln z$. Find the directional derivatives of f at $P(1,0, e)$ in the following directions.
(a) In the direction in which f increases most rapidly at P.
(b) In the directions parallel to the line in which the planes $x+y-z=2$ and $4 x-y-z=1$ intersect.
(c) In the direction of increasing t along the path

$$
\boldsymbol{r}(t)=\sqrt{1+t^{2}} \boldsymbol{i}+\tan t \boldsymbol{j}+e^{2 t+1} \boldsymbol{k}
$$

Solution:

$$
\begin{aligned}
& f(x, y, z)=e^{x y} \ln z \\
\Rightarrow & \nabla f(x, y, z)=\left(y e^{x y} \ln z\right) \mathbf{i}+\left(x e^{x y} \ln z\right) \mathbf{j}+\left(\frac{1}{z} e^{x y}\right) \mathbf{k} \quad(\mathbf{2} \mathbf{p t s}) \\
\Rightarrow & \nabla f(1,0, e)=\mathbf{j}+\frac{1}{e} \mathbf{k} \quad(\mathbf{1} \mathbf{p t})
\end{aligned}
$$

(Get the correct expression of $\nabla f(x, y, z)$ but the wrong value of $\nabla f(1,0, e)$: 2-point deduction for whole question.)
(a)

The desired directional derivative is $\|\nabla f(1,0, e)\|=\frac{\sqrt{1+e^{2}}}{e}$. (4 pts)
(b)

The directions of this line are $\mathbf{v}=(1,1,-1) \times(4,-1,-1)=(-2,-3,-5)$ and $-\mathbf{v}=(2,3,5)$.
\Rightarrow The unit vectors are $\mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|}=\frac{1}{\sqrt{38}}(-2,-3,-5)$ and $-\mathbf{u}=\frac{1}{\sqrt{38}}(2,3,5) .(\mathbf{2} \mathbf{p t s})$
\Rightarrow The directional derivative in \mathbf{u} is $\nabla f(1,0, e) \cdot \mathbf{u}=\frac{-1}{\sqrt{38}}\left(3+5 e^{-1}\right)$, and directional derivative the in $-\mathbf{u}$ is $\frac{1}{\sqrt{38}}\left(3+5 e^{-1}\right) \cdot(2 \mathbf{p t s})$
(If you only write one of the two derivatives, you get at most 3 pts.)
(c)
$\mathbf{r}^{\prime}(t)=\frac{t}{\sqrt{1+t^{2}}} \mathbf{i}+\sec ^{2} t \mathbf{j}+2 e^{2 t+1} \mathbf{k}$.
$\Rightarrow \mathbf{r}^{\prime}(0)=\mathbf{j}+2 e \mathbf{k}$. (2 pts)
\Rightarrow The desired directional derivative is $\nabla f(\mathbf{r}(0)) \cdot \frac{\mathbf{r}^{\prime}(0)}{\left\|\mathbf{r}^{\prime}(0)\right\|}=\frac{3}{\sqrt{1+4 e^{2}}}$. (2 pts)
(Calculation error: 1-point deduction for each error.)
(Correct formula but with wrong answer form: 1-point deduction for each error.)
(Did not use unit vectors: 1-point deduction for each error.)
6. (15 points) Suppose $f(x, y)=x^{2}+c x y+2 y^{2}$ where c is a constant.
(a) Find all values of c such that $(0,0)$ is a stationary point of f.
(b) Find all values of c such that $(0,0)$ is a saddle point of f.
(c) Find all values of c such that f has a local minimum at $(0,0)$.
(d) Find all values of c and all $\left(x_{0}, y_{0}\right) \neq(0,0)$ such that f has a local minimum at $\left(x_{0}, y_{0}\right)$.

Solution:

(a) (3\%)
solution:
For $\nabla f=(2 x+c y) \hat{i}+(c x+4 y) \hat{j}$, we have a point (x, y) is a stationary point if $\nabla f(x, y)=0$, that is $2 x+c y=0$ and $c x+4 y=0$. So, for $(0,0)$ to be a stationary point of f, it is clear that c can be any real number, i.e. $c \in \mathbb{R}$.
(b) (4\%)
solution:
For $\nabla f=(2 x+c y) \hat{i}+(c x+4 y) \hat{j}=\frac{\partial f}{\partial x} \hat{i}+\frac{\partial f}{\partial y} \hat{j}$, we have $\frac{\partial^{2} f}{\partial x^{2}}(x, y)=2, \quad \frac{\partial^{2} f}{\partial y^{2}}(x, y)=4$, and $\frac{\partial^{2} f}{\partial x \partial y}(x, y)=$ $\frac{\partial^{2} f}{\partial y \partial x}(x, y)=c$ for all $(x, y) \in \mathbb{R}^{2}$. Thus, at $(0,0), A=\frac{\partial^{2} f}{\partial x^{2}}(0,0)=2, C=\frac{\partial^{2} f}{\partial y^{2}}(0,0)=4$, and $B=\frac{\partial^{2} f}{\partial x \partial y}(0,0)=$ $\frac{\partial^{2} f}{\partial y \partial x}(0,0)=c$.
The discriminant is $D=A C-B^{2}=8-c^{2}$.
By second partials test, for $(0,0)$ to be a saddle point, we must have $D<0$, that is $8-c^{2}<0$, so $c>2 \sqrt{2}$ and $c<-2 \sqrt{2}$.

If you do this problem only until here，you can get 4 points，but the check for the case $D=0$ will be 2 points in next problem（c）．

When $D=0$ ，we have $c= \pm 2 \sqrt{2}$ ，so if $c=2 \sqrt{2}$ ，we have $f(x, y)=x^{2}+2 \sqrt{2} x y+2 y^{2}=(x+\sqrt{2} y)^{2} \geq 0$ for all $(x, y) \in \mathbb{R}^{2}$ ，thus $(0,0)$ is a local minimum if $c=2 \sqrt{2}$ ．Similarly，when $c=-2 \sqrt{2}$ ，we have $f(x, y)=$ $x^{2}-2 \sqrt{2} x y+2 y^{2}=(x-\sqrt{2} y)^{2} \geq 0$ for all $(x, y) \in \mathbb{R}^{2}$ ，thus $(0,0)$ is a local minimum if $c=-2 \sqrt{2}$ ．

Therefore，the point $(0,0)$ si a saddle point only when $c>2 \sqrt{2}$ and $c<-2 \sqrt{2}$ ．
（c）(4%)

solution：

The discriminant is $D=A C-B^{2}=8-c^{2}$ ．
By second partials test，for $(0,0)$ to be a local minimum，we must have $D>0$ and $A>0$ ，but $A=\frac{\partial^{2} f}{\partial x^{2}}(0,0)=$ $2>0$ ，which is clear．So we only need to consider $D>0$ ，that is $8-c^{2}>0$ ，so $-2 \sqrt{2}<c<2 \sqrt{2}$ ．
If you do this problem only until here，you can get 2 points．
By the argument in the problem（b），we know that when $c= \pm 2 \sqrt{2},(0,0)$ is a locl minimum．Thus $(0,0)$ si a locl minimum only when $-2 \sqrt{2} \leq c \leq 2 \sqrt{2}$
（d）(4%)

solution：

Note that if a point $\left(x_{0}, y_{0}\right)$ is a locl minimum of f ，we must have the point $\left(x_{0}, y_{0}\right)$ satisfies $\nabla f\left(x_{0} . y_{0}\right)=0$ ， that is $2 x_{0}+c y_{0}=0$ and $c x_{0}+4 y_{0}=0$ ．But to have the point $\left(x_{0}, y_{0}\right) \neq(0,0)$ ，we need the above system of equations $\left(2 x_{0}+c y_{0}=0 \& c x_{0}+4 y_{0}=0\right)$ have solutions other than $(0,0)$ this is equivalent to $8-c^{2}=0$（which is the determinant of the matrix of the coefficints of the above system of equations ）．
So $c= \pm 2 \sqrt{2}$ ，when $c=2 \sqrt{2}$ ，we have $f(x, y)=x^{2}+2 \sqrt{2} x y+2 y^{2}=(x+\sqrt{2} y)^{2} \geq 0$ for all $(x, y) \in \mathbb{R}^{2}$ ，thus we have all the points on the line $x+2 \sqrt{2} y=0$ are local minimum of f ．
Similarly，when $c=-2 \sqrt{2}$ ，we have $f(x, y)=x^{2}-2 \sqrt{2} x y+2 y^{2}=(x-\sqrt{2} y)^{2} \geq 0$ for all $(x, y) \in \mathbb{R}^{2}$ ，thus we have all the points on the line $x-2 \sqrt{2} y=0$ are local minimum of f ．
Therefore，the value of c are $\pm 2 \sqrt{2}$ ，and the corresponding $\left(x_{0}, y_{0}\right) \neq(0,0)$ are the set $\{(x, y) \neq(0,0): x+\sqrt{2} y=$ $0\}$ and $\{(x, y) \neq(0,0): x-\sqrt{2} y=0\}$ ，respectively．

7．（15 points）A rectangular box has three of its faces on the coordinate planes and one vertex in the first octant on the paraboloid $z=4-5 x^{2}-6 y^{2}$ ．Determine the maximum volume of the box．

Solution：

We want to find the maximum of $x y z$ with side condition $z=4-5 x^{2}-6 y^{2}$ ．So putting $f(x, y, z)=x y z$ and $g(x, y, z)=5 x^{2}+6 y^{2}+z$ ，and using Lagrang＇s method by setting $\nabla f=\lambda \nabla g$ ，we have

$$
\left\{\begin{array}{l}
y z=10 \lambda x \\
x z=12 \lambda y \\
x y=\lambda
\end{array}\right.
$$

Substituting $x y=\lambda$ to the first and the second equation，we have

$$
\left\{\begin{array}{l}
y z=10 x^{2} y \\
x z=12 \lambda x y^{2} .
\end{array}\right.
$$

Hence，we get $z=10 x^{2}=12 y^{2}$ ，since $z=4-5 x^{2}-6 y^{2}$ ，we get $x^{2}=\frac{1}{5}, y^{2}=\frac{1}{6}$ ，and $z=2$（also we get $\lambda=\frac{1}{\sqrt{30}}$ ） when $x y z$ attains extrema．We then deduce the maximum should be $\sqrt{\frac{2}{15}}$ ．

評分標準：

（a）算出 ∇f 及 ∇g ，並列出 $\nabla f=\lambda \nabla g$ 以明示使用Lagrange方法，得 2 分
（b）滿足前述條件且列出 $y z=10 \lambda x, x z=12 \lambda y, x y=\lambda$ 之明顯的等價敘述，得 3 分
（c）滿足前述條件且列出 $10 x^{2}=12 y^{2}$ 之明顯的等價敘述，得 3 分
（d）滿足前述條件且列出 $z=10 x^{2}=12 y^{2}$ 之明顯的等價敘述，得 2 分
（e）滿足前述條件且得到正確答案，得 5 分。但若滿足前述條件且得到達最大值之座標，比值或 λ 卻計算出錯誤答案，得 3 分。
（f）使用其他方法（例如：第二偏導數判定法，算幾不等式等等）斟酌給分。

