10121 1 01- 04 B Z R E AL 121

k
1
1. (15 points) Let s = Z - k=1,2, -, and Az Zskx
—J
j=1
(a) Find the interval of convergence of A(x).

(b) Express A(x) in terms of elementary functions by comparing A(z) and zA(x).

Solution:

(a)

Using ratio test, (knowing how to use ratio test or root test in the correct way earn 1 point)

Sk+1 ::1_+_(E$T)
Sk Sk

— 1 as k — oo,

thus the radius of convergence of A(z) is 1. (having computed the radius of convergence earn 3 points)
(The radius of convergence can also be calculated using root test.

1 1
sk = oSN Vi+l+-+1=Vk
1 1 1 1
k o — - — —_ . —_ = 1
Vi = \/ toto s \/k ot
Since
and )
Int =
i 2 i () g by I'hospital rule.
t—oo t—o00
Thus
lim VEk=1
k—o00
and by squeezing
klim s = 1.
— 00

)

Note that
sk (£1)*| = s, — 00 # 0 as k — oo,

earn 1 point)

(b)
For z € (—1,1),

o0 o0
= E skmk:x—i— E sk:vk
k=1 k=2
o0 o0
x) = E sprFtl = g sp_12".
k=1 k=2

Subtracting them, we obtain

=1 =1
(1-x)A —x+Zsk—sk1 = ;::E Z::E (5 points)
But -
Z% =—In(1—2),
k=1
So (1
Az) = —%. (5 points)

hence A(z) diverges at = +1. The interval of convergence of A(z) is (—1,1). (obtaining the endpoints behavior

2. (15 points)
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(a) Expand f(z) = (z — 1) In(1 4 3z) in powers of x — 1.

(b) For what values of z is the above expansion valid?

(¢) Find the sum f: 103 '
—k\4 '

Solution:

(a) f(z)=(z—1)In(143z) = (z—1) In[3(z—1)+4] = (xfl)ln[4(1+%(:rfl))] = (xfl)[ln4+ln[1+2(x71)]] =

[e’s) -1 kt1 3
(l’ — 1)[1H4+ Ek:l( ]z [Z(x _ 1)]k]
3 Lo e —1 7
(b) =1 < —(x—1) <1, which is say if — <2 < =
4 3 3
o 1,3
(¢) f(0)=0=—Imd+ 2, (D"

N
k:lk(4) =In4.

2 2
3. (15 points) Let C be the curve given by 7(t) = 5(1 + t)%i + §(1 - t)%j +atk, t € (-1,1), a € R\ {0}.

(a) Find the length s(b) of the curve from t =0 to ¢t =b € (0,1).
(b) Find the unit tangent, the principal normal, and the osculating plane of C at ().

(¢) Find the curvature k(t) of C at r(t).

Solution:
V()= ((1+8)2 ~(1-1)%,0)
IT'(t)] = Va* +2
b
s(b):/ [T/ (£)]d = DV 0% 4 2ueiiiiiiiiiiiece e, (3pts)
_x 1 P _(1-pia s
T(t) TRy (1487, (1 =) %) oo (3pts)
T'(t) = a21+2(%(1+t)%1,%(1—t)71,0):Nﬁ(l—kt)T,(l—t)Tl,O)
oy 1
T = V2(a® +2)(1 -2
_ T'(t) _L Y 1 s
N(t) = O (1= 3, (1 £)F,0) (3pts)
1 1 1
B(t) = T(t) x N(t) = 2(QQ+2)(—G(1+?5) ya(l —1)%,2)
Osculating plane aty(t) : (z — =(1+ )3,y — (1 —t)3,2 —at) - B(t) = 0eeeeevvvveennn, (3pts)
_ ')l _ 1
K(t) = B NN TE (=1, 1) i (3pts)

z?y
4. (15 points) Let f(z,y) = {x2 +y?’ (@y) # (0,0
0, (z,y) = (0,0).
(a) Compute f,(0,0) and f,(0,0).

(b) Calculate fy(z,y) and fy(z,y) for (z,y) # (0,0).
(c) Are f, and f, continuous at (0, 0)?
(d)

(e) Is f(x,y) differentiable at (0,0)?

Determine f;,(0,0) and f,.(0,0) if they exist. If they do not exist, explain why.
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Solution:

(a) by definition ,
f(h,O) — f(0,0)

gzl = iy =——5——— =0
similaritly ,
0 _ f(0,h) — £(0,0
5‘75 (0,0) = }lbl_r% % =0 (each 1 pts.)
(b) when f on (z,5) # (0,0)
Af  2xy(a® +y°) —2®y(2r)  2ay’
or (x2 +y2)2 - (x2 +y2)2
20,2 1 22 _ .2 2002 _ 2
or =2 (@ +y) —zyQy) =7 (2"~ y) (each 2pts.)
Ay (% +y?)? (% +y?)?
(¢) observe f along y = mz , m arbitrary
: ) 2z (mx)3 2m3
1 z\<L, = 1 =
(z,y)ﬂo,o) fe(@:y) (m,mxl)IE(O,O) (22 4 (mx)?)?2 (14 m?)?
7é fm(oa 0) =0
22(2? — (mx)?) 1 —m?
].. = i fr—
() (0,0) fulz.y) () 300) (22 + (ma)2)? (1 +m?)?
# £,(0,0) =0

= limit doesn’t exist at (0,0)
= fz, fy not conti. at (0,0) (3 pts.)

_% T fw(O,h)—fI(O,O) _
(e)sol.l If f diff. at (0,0) , then h214i—rl?2—>0 f(h,k) - f(o\’/(;b)zjrika(o’o) (k) _ 0 (1 pts)
h2k
= _

VRZTRZ-0 (h2 4 k2)2
But along h =k

. h2k . h3 =3 .
hzlir]?z_)o m = hll)r%) 2%h3 = 2 2 # O SO f not dlﬁ at(0,0) (3 pts)
1 m
1.2 set U = ,
sol.2 se <\/m2+1 \/m2+1)
h mh
£,(0.0) = Tim e ) — 1000 m
u 9 - - 3
h—0 h (1+m?)2

But Vf(0,0) - ¥ =< f,(0,0), f,(0,0) > -7 =0
a contradiction , so f not diff. at (0,0) (3 pts.)

5. (15 points) Let f(z,y,z) = €®Inz. Find the directional derivatives of f at P(1,0,e) in the following directions.
(a) In the direction in which f increases most rapidly at P.
(b) In the directions parallel to the line in which the planes z +y — z = 2 and 4o — y — z = 1 intersect.

(¢) In the direction of increasing ¢ along the path

r(t) = V1 + 12 + tantj + 2k

Solution:
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flz,y,z) =e®Inz

S V(,y,2) = (ge Inz) i+ (e Inz) 4+ (Ce) k(2 pts)
z
1

(Get the correct expression of Vf(z,y,z) but the wrong value of Vf(1,0,¢): 2-point deduction for
whole question.)

(a)
V1+e2

The desired directional derivative is ||V f(1,0,€)| = P (4 pts)

(b)
The directions of this line are v = (1,1,—1) x (4,—1,-1) = (-2,-3,-5) and —v = (2, 3,5).

v 1 1
= The unit vectors are u = — = —(—2,-3,-5) and —u = ——(2,3,5) . (2 pts)
vl V38 V38
= The directional derivative in u is Vf(1,0,e) -u = ——(3 + 5e~'), and directional derivative the in —u is

) V38
-1

(If you only write one of the two derivatives, you get at most 3 pts.)

(c) .

r'(t) = i+sec?tj+ 22! k.
W="Tre ]

=1'(0) =j+2e k. (2 pts)

= The desired directional derivative is V f(r(0))

r'(0) 3
WO T Vitae 2P

(Calculation error: 1-point deduction for each error.)
(Correct formula but with wrong answer form: 1-point deduction for each error.)
(Did not use unit vectors: 1-point deduction for each error.)

6. (15 points) Suppose f(z,y) = x? + cxy + 2y* where ¢ is a constant.

(a) Find all values of ¢ such that (0,0) is a stationary point of f.

(b) Find all values of ¢ such that (0,0) is a saddle point of f.

(c) Find all values of ¢ such that f has a local minimum at (0, 0).

(d) Find all values of ¢ and all (xo,y0) # (0,0) such that f has a local minimum at (xg,yo).

Solution:

(a) (3 %)

solution: . .

For Vf = (22 + cy)i + (cx + 4y)j, we have a point (x,y) is a stationary point if Vf(z,y) = 0, that is 2z +cy =0
and cz + 4y = 0. So, for (0,0) to be a stationary point of f, it is clear that ¢ can be any real number, i.e. ¢ € R.

(b) (4 %)
solution: of of o2 5 f 52
For vf = (2z + cy)t + (cx + 4y)y = %z—l— 3y we have @(a@y) =2, a—yz(:ﬂ,y) =4, and (%Cay(x,y) =
0% f 0% f 0% f 0% f

= c for all R?. Th A= — =2,0=—% =4 B= =
0°f (0,0)=c
oyox T

The discriminant is D = AC — B2 = 8 — 2.
By second partials test, for (0,0) to be a saddle point, we must have D < 0, that is 8 — ¢? < 0, so ¢ > 2v/2 and

c< —2V/2.
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If you do this problem only until here, you can get 4 points ,but the check for the case D = 0 will be 2 points in
next problem (c).

When D = 0, we have ¢ = +2v2, so if ¢ = 2v/2, we have f(z,y) = 2% + 2V2zy + 24 = (z + V2y)? > 0
for all (x,y) € R?, thus (0,0) is a local minimum if ¢ = 2v/2. Similarly, when ¢ = —2v/2, we have f(z,y) =
22— 2v2zy + 2y% = (z — V2y)? > 0 for all (z,y) € R, thus (0,0) is a local minimum if ¢ = —2v/2.

Therefore, the point (0,0) si a saddle point only when ¢ > 2v/2 and ¢ < —2v/2.

(c) (4 %)

solution:

The discriminant is D = AC — B? = 8 — 2. )

By second partials test, for (0,0) to be a local minimum, we must have D > 0 and A > 0, but A = %(0, 0) =
4

2 > 0, which is clear. So we only need to consider D > 0, that is 8 — ¢ > 0, s0 —2V2 < ¢ < 2V/2 .

If you do this problem only until here, you can get 2 points.

By the argument in the problem (b), we know that when ¢ = £2v/2, (0,0) is a locl minimum. Thus (0,0) si a
locl minimum only when —2v/2 < ¢ < 2v/2

(d) (4%)

solution:

Note that if a point (zg,yo) is a locl minimum of f, we must have the point (xo,yo) satisfies Vf(zo.yo) = 0,
that is 229 + cyo = 0 and cxg + 4yo = 0. But to have the point (zg,yo) # (0,0), we need the above system of
equations (2z¢ + cyo = 0 & cxo + 4yo = 0) have solutions other than (0,0) this is equivalent to 8 — ¢ = 0 (which
is the determinant of the matrix of the coefficints of the above system of equations ).

So ¢ = +2v/2, when ¢ = 2v/2, we have f(z,y) = 2 + 2v2zy + 2y* = (z + V2y)? > 0 for all (z,y) € R?, thus we
have all the points on the line  + 2v/2y = 0 are local minimum of f.

Similarly, when ¢ = —2v/2,we have f(z,y) = 22 — 2v2zy + 2% = (x — V2y)? > 0 for all (z,y) € R?, thus we
have all the points on the line z — 2v/2y = 0 are local minimum of f.

Therefore, the value of ¢ are +2+/2, and the corresponding (zo, y0) # (0,0) are the set {(z,%) # (0,0) : z+v2y =
0} and {(z,y) # (0,0) : © — V/2y = 0}, respectively.

7. (15 points) A rectangular box has three of its faces on the coordinate planes and one vertex in the first octant on
the paraboloid z = 4 — 52% — 6. Determine the maximum volume of the box.

Solution:

We want to find the maximum of zyz with side condition z = 4 — 52% — 6y>. So putting flz,y,2) = xyz and
g(z,y,2) = 522 + 63> + 2, and using Lagrang’s method by setting Vf = AVg, we have

yz = 10\x
rz = 12)\y
Ty = A

Substituting xy = A to the first and the second equation, we have

yz = 1022y
rz = 12Xy
1 1 1
Hence, we get z = 10x? = 12¢?, since z = 4— 522 —6y>, we get 22 = =, y? = =, and z = 2 (also we get A = ——
g y Yo, weg PV =5 ( g \/%)

/2
when xyz attains extrema. We then deduce the maximum should be T

FEIRE

(a) BEHVfEVg WHHVf = A\VgLABA/R{# F Lagrange 77 1% » 1525

(b) W BTt E I B3 Hyz = 10Az, 22 = 12Xy, vy = \Z BBV EEHGR - 535

(c) W2 BT HF H 102? = 12¢% 2 BRI S ERGL » 1535

(d) W BT EAE BA H 2 = 1002 = 1292 Z BRERPISE G - 1525

(e) TR R HAGR EREE S > 15500 o (B& M RNl iR B R 23 E KE 2 JBAR ~ HEBNATET A H #5350

HF o B3 -

(f) FERHAMTTE (Flan - B mEEHERE - BEAFAEE) Bk -
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