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1. (15%) Find the points on the surface xy2z3 = 2 that are closest to the origin and also the shortest distance between
the surface and the origin.

Solution:

Solution. Consider the Lagrange function F (x, y, z, λ) = x2 + y2 + z2 − λ(xy2z3 − 2). The critical points of
F (x, y, z, λ) satisfy

Fx = 2x− λy2z3 = 0 (1)

Fy = 2y − λ2xyz3 = 0 (2)

Fz = 2z − λ3xy2z2 = 0 (3)

Fλ = −(xy2z3 − 2) = 0. (4)

(8pts)
To solve these equations, since x 6= 0, y 6= 0, z 6= 0 on the surface xy2z3 = 2, from (1), (2), and (3), we get

λ =
2x

y2z3
=

2y

2xyz3
=

2z

3xy2z2
.

Second equality gives 2x2 = y2 ⇒ x = ±
√
2
2 y. Third equality gives 2z2 = 3y2 ⇒ z = ±

√
6
2 y. We put x = ±

√
2
2 y

and z = ±
√
6
2 y into (4) and get(

±
√

2

2
y

)
y2

(
±
√

6

2
y

)3

= 2⇒ y6 =

(
2√
3

)3

⇒ y2 =
2√
3
⇒ y = ±

√
2

4
√

3
.

(4pts)
So we get four critical points(

1
4
√

3
,

√
2

4
√

3
,

4
√

3

)
,

(
− 1

4
√

3
,

√
2

4
√

3
,− 4
√

3

)
,

(
1
4
√

3
,−
√

2
4
√

3
,

4
√

3

)
,

(
− 1

4
√

3
,−
√

2
4
√

3
,− 4
√

3

)
.

(2pts)
These four critical points have the same distance to the origin:

d =

√√√√( 1
4
√

3

)2

+

(√
2

4
√

3

)2

+
(

4
√

3
)2

=

√
1√
3

+
2√
3

+
√

3 =

√
2
√

3 =
√

2
4
√

3.

(1pts)

Solution 2. Another method to solve the system of equations (1) – (4) is comparing 6x×(1), 3y×(2), and 2z×(3),
then we get 12x2 = 6y2 = 4z2. So we also find relations 2x2 = y2 and 2z2 = 3y2.

Solution 3. Instead of finding the maximum or minimum values of the function f(x, y, z) =
√
x2 + y2 + z2, we

consider its square function f2(x, y, z) = x2 + y2 + z2 because they both attain maximum or minimum at the
same places.

Since xy2z3 = 1, we get y2 = 1
xz3 , so the question reduce to find the absolute minimum of the following function

of two variables:

f(x, z) = x2 +
2

xz3
+ z2.

The critical points of f(x, z) satisfy

fx = 2x− 2

x2z3
=

2x3z3 − 2

x2z3
=

2(x3z3 − 1)

x2z3
= 0

fz = − 6

xz4
+ 2z =

−6 + 2xz5

xz4
=

2(−3 + xz5)

xz4
= 0.

From fx = 0, we get (xz)3 = 1⇒ xz = 1. From fz = 0, we get xz5 = 3⇒ z4 = 3⇒ z = ± 4
√

3.
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(a) If z = 4
√

3, then x = 1
4√3

, and y2 = 1
xz3 = 1√

3
⇒ y = ± 1

4√3
.

? At P1 = ( 1
4√3
, 1

4√3
, 4
√

3), d(P1, O) =
√

2
√

3 =
√

2 4
√

3.

? At P2 = ( 1
4√3
,− 1

4√3
, 4
√

3), d(P2, O) =
√

2
√

3 =
√

2 4
√

3.

(b) If z = − 4
√

3, then x = − 1
4√3

, and y2 = 1
xz3 = 1√

3
⇒ y = ± 1

4√3
.

? At P3 = (− 1
4√3
, 1

4√3
,− 4
√

3), d(P3, O) =
√

2
√

3 =
√

2 4
√

3.

? At P4 = (− 1
4√3
,− 1

4√3
,− 4
√

3), d(P4, O) =
√

2
√

3 =
√

2 4
√

3.

These four critical points have the shortest distance between the surface and the origin.

2. (12%) Find all the critical points of f(x, y) = 4 + x3 + y3 − 3xy. Then determine which gives a local maximum or a
local minimum or a saddle point.

Solution:

• f(x, y) = 4 + x3 + y3 − 3x y =⇒ (fx, fy) = (3x2 − 3 y, 3 y2 − 3x) (fx: 1%, fy: 1%)

• Solve {
fx = 3x2 − 3y = 0
fy = 3y2 − 3x = 0.

to obtain (x, y) = (0, 0), (1, 1). Therefore the critical points are (x, y) = (0, 0), (1, 1).
(fx = 0 : 1%, fy = 0 : 1%, solving: 1%)

• (fx, fy) = (3x2 − 3 y, 3 y2 − 3x) =⇒ fxx = 6x, fxy = fyx = −3, fyy = 6 y, and

D(x, y) =

∣∣∣∣ fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

∣∣∣∣ =

∣∣∣∣ 6x −3
−3 6 y

∣∣∣∣ = 36x y − 9.

(fxx : 1%, fxy : 1%, fyx : 1%, fyy : 1%, D(x, y) : 1%)

• D(0, 0) = −9 < 0 =⇒ (0, 0) is a saddle point. (1%)

• fxx(1, 1) = 6 > 0 and D(1, 1) = 27 > 0 =⇒ f(1, 1) is a local minimum. (1%)

3. (12%) Let the unit vectors u and n be respectively the tangent direction and the normal direction (with positive

x-components) of the circle x2 + y2 − 2x = 0 at the point
(

1
2 ,
√
3
2

)
. Let f(x, y) = tan−1

(
y
x

)
. Find ∇f

(
1
2 ,
√
3
2

)
,

Duf
(

1
2 ,
√
3
2

)
and Dnf

(
1
2 ,
√
3
2

)
.

Solution:

• fx(x, y) = 1

1+ y2

x2

∂
∂x ( yx ) = −y

x2+y2 . (2 points)

• fy(x, y) = x
x2+y2 . (2 points)

• ∇f(x, y) = −y
x2+y2

−→
i + x

x2+y2
−→
j =⇒ ∇f( 1

2 ,
√
3
2 ) = −

√
3

2

−→
i + 1

2

−→
j . (1 point)

• The equation x2 + y2 − 2x = 0 can be rewritten as (x− 1)2 + y2 = 1, which represents a circle centered at
(1, 0). Let F (x, y) = x2 + y2 − 2x.

– The normal direction of the circle at (x, y) is ∇F = (2x− 2, 2y) = 2(x− 1, y). (2 points)

– The tangent direction of the circle at (x, y) is (y,−x+ 1). (1 point)

– At (1
2 ,
√
3
2 ), the normal direction with the positive x-component is ~n = ( 1

2 ,−
√
3
2 ). (1 point)
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– At (1
2 ,
√
3
2 ), the tangent direction with the positive x-component is ~u = (

√
3
2 ,

1
2 ). (1 point)

• D~nf( 1
2 ,
√
3
2 ) = (−

√
3
2 ,

1
2 ) · ( 1

2 ,−
√
3
2 ) = −

√
3
2 . (1 point)

• D~uf( 1
2 ,
√
3
2 ) = (−

√
3
2 ,

1
2 ) · (

√
3
2 ,

1
2 ) = − 1

2 . (1 point)

4. (a) (10%) Find the 4-th degree MacLaurin polynomials of secx and of
(
1− x2

)− 1
2 (5% each).

(b) (4%) Find lim
x→0

sec x−(1−x2)
− 1

2

x4 .

Solution:

(a) The 4-th degree MacLaurin polynomial of secx can be derived from the cosine function: since

cosx = 1− x2

2
+
x4

4!
+ · · · ,

the MacLaurin polynomial of secx can be obtained using long division or by comparing the coefficients in

1 = (cosx) · (secx) = (1− x2

2
+
x4

4!
+ · · · ) · (a0 + a2x

2 + a4x
4 + · · · )

Then we have

secx = 1 +
1

2
x2 +

5

24
x4 + · · · .

(Since only a finite number of terms are required, you may also use the definition of MacLaurin polynomial:

f(x) = f(0) + f ′(0)
1! x+ f ′′(0)

2! x2 + · · · and perform the required differentiation to get the answer.)

On the other hand, by the binomial expansion

(1− x2)−
1
2 =

∞∑
n=0

(
− 1

2

n

)
(−x2)n

= 1 +
1

2
x2 +

3

8
x4 + · · ·

Grading policy: 5 points for each polynomial. Three points are credited if only two terms are correct.

(b) From the results in part (a)

lim
x→0

secx− (1− x2)−
1
2

x4
= lim
x→0

(1 + 1
2x

2 + 5
24x

4 + · · · )− (1 + 1
2x

2 + 3
8x

4 + · · · )
x4

= lim
x→0

− 1
6x

4 + · · ·
x4

= −1

6
(4 points)

5. (a) (12%) Find the radius of convergence and the interval of convergence of the power series f(x) =
∞∑
n=2

(−1)n xn

4n lnn .

(b) (3%) Evaluate f (3)(0).

Solution:

(a) By Ratio Test, f(x) converges absolutely if lim
n→∞

|an+1

an
| < 1 (4%)

lim
n→∞

|an+1

an
| = lim

n→∞
|
(−1)n+1 xn+1

4n+1 lnn+1

(−1)n xn

4n lnn

| = lim
n→∞

| x lnn

4 lnn+ 1
| = |x

4
| < 1 (2%)

Since lim
y→∞

| ln y

ln y + 1
| = lim

y→∞
|y + 1

y
| = 1

Hence, the radius of convergence is 4.
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for x = 4, f(x) =

∞∑
n=2

(−1)n
1

lnn
converges.

Since (i) lim
n→∞

1

lnn
= 0, (ii)

1

lnn
>

1

lnn+ 1
⇒ converges by Alternating Series Test. (3%)

for x = −4, f(x) =

∞∑
n=2

1

lnn
>

∞∑
n=2

1

n
diverges.

Since

∞∑
n=2

1

n
is p-series of p = 1⇒ diverges (3%)

(b) f ′(x) =

∞∑
n=2

(−1)n
xn−1

4n lnn
× n

f ′′(x) =

∞∑
n=2

(−1)n
xn−2

4n lnn
× n(n− 1)(1%)

f (3)(x) =

∞∑
n=3

(−1)n
xn−3

4n lnn
× n(n− 1)(n− 2)(1%)

f (3)(0) = (−1)3
1

43 ln 3
× 3× 2× 1 = − 6

43 ln 3
(1%)

< Solution2 >
f (3)(0)

3!
(2%) = coefficient of x3 =

(−1)3

43 ln 3
(1%)⇒ f (3)(0) = − 6

43 ln 3

6. (10%) Suppose that z = f(x, y) is a smooth function and let x = uv, and y = v − u. Express ∂2z
∂u∂v in terms of

x, y, fx, fy, fxx, fxy, and fyy.

Solution:

The chain rule gives

∂z

∂v
=
∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v
(3 points)

=
∂f

∂x
u+

∂f

∂y
(1) (2 points)

= u
∂f

∂x
+
∂f

∂y

Apply the product rule and again the chain rule, and also note that ∂
∂u (u) = 1,

∂2z

∂u∂v
=

∂

∂u

(
u
∂f

∂x
+
∂f

∂y

)
=
∂f

∂x
+ u

∂2f

∂u∂x
+

∂2f

∂u∂y

=
∂f

∂x
+ u

(
∂2f

∂x2
∂x

∂u
+

∂2f

∂y∂x

∂y

∂u

)
+

(
∂2f

∂x∂y

∂x

∂u
+
∂2f

∂y2
∂y

∂u

)
=
∂f

∂x
+ u

(
∂2f

∂x2
v +

∂2f

∂y∂x
(−1)

)
+

(
∂2f

∂x∂y
v +

∂2f

∂y2
(−1)

)
= uv

∂2f

∂x2
+ v

∂2f

∂x∂y
− u ∂2f

∂y∂x
− ∂2f

∂y2
+
∂f

∂x

Since f is a smooth function, fxy = fyx. Therefore

∂2z

∂u∂v
= uvfxx + (v − u)fxy − fyy + fx (4 points)

= xfxx + yfxy − fyy + fx (1 point)

(Because f satisfies the condition of Clairaut’s theorem, you can first calculate zu and zuv, and then claim that
zuv = zvu. This approach yields the same solution as above.)

7. (10%) Find the equation of the tangent plane to the elliptic paraboloid z
c = x2

a2 + y2

b2 at the point (a, b, 2c).
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Solution:

Let f(x, y, z) = x2

a2 + y2

b2 −
z
c

then fx = 2x
a2 , fy = 2y

b2 , fz = −1
c

at (a, b, 2c), we have fx = 2
a , fy = 2

b , fz = −1
c

Hence the tangent plane is 2
a (x− a) + 2

b (x− b)− 1
c (x− 2c) = 0

f 對 x 和 y 和 z 的偏微分各 1 分
把點帶進去 4 分
切平面方程式 3 分

8. (a) (2%) Parametrize the curve of intersection of the parabolic cylinders x = y2 and z = x2 by setting t = y.

(b) (10%) Find the unit tangent T and the curvature κ at the point (1, 1, 1).

Solution:

(a) Since x = y2 ,z = x2, and y = t , we can see x(t) = t2 and z(t) = t4. x = t2

y = t, t ∈ R
z = t4

or write as r(t) = (t2, t, t4), t ∈ R.
Although I do not deduction any points, you should still wirte down range of t.

(b) By formula T(t) =
r′(t)

|r′(t)|
, and easy to know r′(t) = (2t, 1, 4t3), so r′(1) = (2, 1, 4), and |r′(t)| =

√
21. So

we get T(1) = (2,1,4)√
21

.

If you do perfect, you get 5 points. If you compute some error, you will get from 1 to 4 points, depending
your answer. If you use wrong formula, you will get 0 or 1 point.

By formula κ(t) =
|r′(t)× r′′(t)|
|r′(t)|3

, so we only need to compute κ(1) =
|r′(1)× r′′(1)|
|r′(1)|3

.

First, r′′(t) = (2, 0, 12t2), so r′(1) × r′′(1) = (2, 1, 4) × (2, 0, 12) = (12,−16,−2). So |r′(1) × r′′(1)| =
√

404 = 2
√

101, and |r′(1)|3 = 21
√

21. We get the answer is κ1 =
2
√

101

21
√

21
.

If you do perfect, you get 5 points. If you compute some error, you will get from 1 to 4 points, depending
your answer. If you use wrong formula, you will get 0 or 1 point.
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