1．(15%) Find the points on the surface $x y^{2} z^{3}=2$ that are closest to the origin and also the shortest distance between the surface and the origin．

Solution：

Solution．Consider the Lagrange function $F(x, y, z, \lambda)=x^{2}+y^{2}+z^{2}-\lambda\left(x y^{2} z^{3}-2\right)$ ．The critical points of $F(x, y, z, \lambda)$ satisfy

$$
\begin{align*}
& F_{x}=2 x-\lambda y^{2} z^{3}=0 \tag{1}\\
& F_{y}=2 y-\lambda 2 x y z^{3}=0 \tag{2}\\
& F_{z}=2 z-\lambda 3 x y^{2} z^{2}=0 \tag{3}\\
& F_{\lambda}=-\left(x y^{2} z^{3}-2\right)=0 \tag{4}
\end{align*}
$$

（8pts）
To solve these equations，since $x \neq 0, y \neq 0, z \neq 0$ on the surface $x y^{2} z^{3}=2$ ，from（1），（2），and（3），we get

$$
\lambda=\frac{2 x}{y^{2} z^{3}}=\frac{2 y}{2 x y z^{3}}=\frac{2 z}{3 x y^{2} z^{2}} .
$$

Second equality gives $2 x^{2}=y^{2} \Rightarrow x= \pm \frac{\sqrt{2}}{2} y$ ．Third equality gives $2 z^{2}=3 y^{2} \Rightarrow z= \pm \frac{\sqrt{6}}{2} y$ ．We put $x= \pm \frac{\sqrt{2}}{2} y$ and $z= \pm \frac{\sqrt{6}}{2} y$ into（4）and get

$$
\left(\pm \frac{\sqrt{2}}{2} y\right) y^{2}\left(\pm \frac{\sqrt{6}}{2} y\right)^{3}=2 \Rightarrow y^{6}=\left(\frac{2}{\sqrt{3}}\right)^{3} \Rightarrow y^{2}=\frac{2}{\sqrt{3}} \Rightarrow y= \pm \frac{\sqrt{2}}{\sqrt[4]{3}}
$$

（4pts）
So we get four critical points

$$
\left(\frac{1}{\sqrt[4]{3}}, \frac{\sqrt{2}}{\sqrt[4]{3}}, \sqrt[4]{3}\right),\left(-\frac{1}{\sqrt[4]{3}}, \frac{\sqrt{2}}{\sqrt[4]{3}},-\sqrt[4]{3}\right),\left(\frac{1}{\sqrt[4]{3}},-\frac{\sqrt{2}}{\sqrt[4]{3}}, \sqrt[4]{3}\right),\left(-\frac{1}{\sqrt[4]{3}},-\frac{\sqrt{2}}{\sqrt[4]{3}},-\sqrt[4]{3}\right)
$$

（2pts）
These four critical points have the same distance to the origin：

$$
d=\sqrt{\left(\frac{1}{\sqrt[4]{3}}\right)^{2}+\left(\frac{\sqrt{2}}{\sqrt[4]{3}}\right)^{2}+(\sqrt[4]{3})^{2}}=\sqrt{\frac{1}{\sqrt{3}}+\frac{2}{\sqrt{3}}+\sqrt{3}}=\sqrt{2 \sqrt{3}}=\sqrt{2} \sqrt[4]{3}
$$

（1pts）

Solution 2．Another method to solve the system of equations（1）－（4）is comparing $6 x \times(1), 3 y \times(2)$ ，and $2 z \times(3)$ ， then we get $12 x^{2}=6 y^{2}=4 z^{2}$ ．So we also find relations $2 x^{2}=y^{2}$ and $2 z^{2}=3 y^{2}$ ．
Solution 3．Instead of finding the maximum or minimum values of the function $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ ，we consider its square function $f^{2}(x, y, z)=x^{2}+y^{2}+z^{2}$ because they both attain maximum or minimum at the same places．
Since $x y^{2} z^{3}=1$ ，we get $y^{2}=\frac{1}{x z^{3}}$ ，so the question reduce to find the absolute minimum of the following function of two variables：

$$
f(x, z)=x^{2}+\frac{2}{x z^{3}}+z^{2}
$$

The critical points of $f(x, z)$ satisfy

$$
\begin{aligned}
& f_{x}=2 x-\frac{2}{x^{2} z^{3}}=\frac{2 x^{3} z^{3}-2}{x^{2} z^{3}}=\frac{2\left(x^{3} z^{3}-1\right)}{x^{2} z^{3}}=0 \\
& f_{z}=-\frac{6}{x z^{4}}+2 z=\frac{-6+2 x z^{5}}{x z^{4}}=\frac{2\left(-3+x z^{5}\right)}{x z^{4}}=0 .
\end{aligned}
$$

From $f_{x}=0$ ，we get $(x z)^{3}=1 \Rightarrow x z=1$ ．From $f_{z}=0$ ，we get $x z^{5}=3 \Rightarrow z^{4}=3 \Rightarrow z= \pm \sqrt[4]{3}$ ．
(a) If $z=\sqrt[4]{3}$, then $x=\frac{1}{\sqrt[4]{3}}$, and $y^{2}=\frac{1}{x z^{3}}=\frac{1}{\sqrt{3}} \Rightarrow y= \pm \frac{1}{\sqrt[4]{3}}$.
\star At $P_{1}=\left(\frac{1}{\sqrt[4]{3}}, \frac{1}{\sqrt[4]{3}}, \sqrt[4]{3}\right), d\left(P_{1}, O\right)=\sqrt{2 \sqrt{3}}=\sqrt{2} \sqrt[4]{3}$.
\star At $P_{2}=\left(\frac{1}{\sqrt[4]{3}},-\frac{1}{\sqrt[4]{3}}, \sqrt[4]{3}\right), d\left(P_{2}, O\right)=\sqrt{2 \sqrt{3}}=\sqrt{2} \sqrt[4]{3}$.
(b) If $z=-\sqrt[4]{3}$, then $x=-\frac{1}{\sqrt[4]{3}}$, and $y^{2}=\frac{1}{x z^{3}}=\frac{1}{\sqrt{3}} \Rightarrow y= \pm \frac{1}{\sqrt[4]{3}}$.
\star At $P_{3}=\left(-\frac{1}{\sqrt[4]{3}}, \frac{1}{\sqrt[4]{3}},-\sqrt[4]{3}\right), d\left(P_{3}, O\right)=\sqrt{2 \sqrt{3}}=\sqrt{2} \sqrt[4]{3}$.
\star At $P_{4}=\left(-\frac{1}{\sqrt[4]{3}},-\frac{1}{\sqrt[4]{3}},-\sqrt[4]{3}\right), d\left(P_{4}, O\right)=\sqrt{2 \sqrt{3}}=\sqrt{2} \sqrt[4]{3}$.
These four critical points have the shortest distance between the surface and the origin.
2. (12%) Find all the critical points of $f(x, y)=4+x^{3}+y^{3}-3 x y$. Then determine which gives a local maximum or a local minimum or a saddle point.

Solution:

- $f(x, y)=4+x^{3}+y^{3}-3 x y \Longrightarrow\left(f_{x}, f_{y}\right)=\left(3 x^{2}-3 y, 3 y^{2}-3 x\right) \underline{\left(f_{x}: 1 \%, f_{y}: 1 \%\right)}$
- Solve

$$
\left\{\begin{array}{l}
f_{x}=3 x^{2}-3 y=0 \\
f_{y}=3 y^{2}-3 x=0 .
\end{array}\right.
$$

to obtain $(x, y)=(0,0),(1,1)$. Therefore the critical points are $(x, y)=(0,0),(1,1)$.
($f_{x}=0: 1 \%, f_{y}=0: 1 \%$, solving: $\left.1 \%\right)$

- $\left(f_{x}, f_{y}\right)=\left(3 x^{2}-3 y, 3 y^{2}-3 x\right) \Longrightarrow f_{x x}=6 x, f_{x y}=f_{y x}=-3, f_{y y}=6 y$, and

$$
D(x, y)=\left|\begin{array}{cc}
f_{x x}(x, y) & f_{x y}(x, y) \\
f_{y x}(x, y) & f_{y y}(x, y)
\end{array}\right|=\left|\begin{array}{cc}
6 x & -3 \\
-3 & 6 y
\end{array}\right|=36 x y-9 .
$$

$\underline{\left(f_{x x}: 1 \%, f_{x y}: 1 \%, f_{y x}: 1 \%, f_{y y}: 1 \%, D(x, y): 1 \%\right)}$

- $D(0,0)=-9<0 \Longrightarrow(0,0)$ is a saddle point. $(\underline{1 \%)}$
- $f_{x x}(1,1)=6>0$ and $D(1,1)=27>0 \Longrightarrow f(1,1)$ is a local minimum. $\underline{(1 \%)}$

3. (12%) Let the unit vectors \mathbf{u} and \mathbf{n} be respectively the tangent direction and the normal direction (with positive x-components) of the circle $x^{2}+y^{2}-2 x=0$ at the point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$. Let $f(x, y)=\tan ^{-1}\left(\frac{y}{x}\right)$. Find $\nabla f\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, $D_{\mathbf{u}} f\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $D_{\mathbf{n}} f\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.

Solution:

- $f_{x}(x, y)=\frac{1}{1+\frac{y^{2}}{x^{2}}} \frac{\partial}{\partial x}\left(\frac{y}{x}\right)=\frac{-y}{x^{2}+y^{2}} . \quad$ (2 points)
- $f_{y}(x, y)=\frac{x}{x^{2}+y^{2}} . \quad$ (2 points)
- $\nabla f(x, y)=\frac{-y}{x^{2}+y^{2}} \vec{i}+\frac{x}{x^{2}+y^{2}} \vec{j} \Longrightarrow \nabla f\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)=\frac{-\sqrt{3}}{2} \vec{i}+\frac{1}{2} \vec{j} . \quad$ (1 point)
- The equation $x^{2}+y^{2}-2 x=0$ can be rewritten as $(x-1)^{2}+y^{2}=1$, which represents a circle centered at $(1,0)$. Let $F(x, y)=x^{2}+y^{2}-2 x$.
- The normal direction of the circle at (x, y) is $\nabla F=(2 x-2,2 y)=2(x-1, y)$. (2 points)
- The tangent direction of the circle at (x, y) is $(y,-x+1)$. (1 point)
- At $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, the normal direction with the positive x-component is $\vec{n}=\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$. (1 point)
- At $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, the tangent direction with the positive x-component is $\vec{u}=\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$. (1 point)
- $D_{\vec{n}} f\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)=\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \cdot\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)=-\frac{\sqrt{3}}{2}$. (1 point)
- $D_{\vec{u}} f\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)=\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \cdot\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)=-\frac{1}{2}$. (1 point)

4. (a) (10%) Find the 4-th degree MacLaurin polynomials of $\sec x$ and of $\left(1-x^{2}\right)^{-\frac{1}{2}}$ (5\% each).
(b) (4%) Find $\lim _{x \rightarrow 0} \frac{\sec x-\left(1-x^{2}\right)^{-\frac{1}{2}}}{x^{4}}$.

Solution:

(a) The 4-th degree MacLaurin polynomial of $\sec x$ can be derived from the cosine function: since

$$
\cos x=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}+\cdots,
$$

the MacLaurin polynomial of $\sec x$ can be obtained using long division or by comparing the coefficients in

$$
1=(\cos x) \cdot(\sec x)=\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}+\cdots\right) \cdot\left(a_{0}+a_{2} x^{2}+a_{4} x^{4}+\cdots\right)
$$

Then we have

$$
\sec x=1+\frac{1}{2} x^{2}+\frac{5}{24} x^{4}+\cdots
$$

(Since only a finite number of terms are required, you may also use the definition of MacLaurin polynomial: $f(x)=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots$ and perform the required differentiation to get the answer.)

On the other hand, by the binomial expansion

$$
\begin{aligned}
\left(1-x^{2}\right)^{-\frac{1}{2}} & =\sum_{n=0}^{\infty}\binom{-\frac{1}{2}}{n}\left(-x^{2}\right)^{n} \\
& =1+\frac{1}{2} x^{2}+\frac{3}{8} x^{4}+\cdots
\end{aligned}
$$

Grading policy: 5 points for each polynomial. Three points are credited if only two terms are correct.
(b) From the results in part (a)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sec x-\left(1-x^{2}\right)^{-\frac{1}{2}}}{x^{4}} & =\lim _{x \rightarrow 0} \frac{\left(1+\frac{1}{2} x^{2}+\frac{5}{24} x^{4}+\cdots\right)-\left(1+\frac{1}{2} x^{2}+\frac{3}{8} x^{4}+\cdots\right)}{x^{4}} \\
& =\lim _{x \rightarrow 0} \frac{-\frac{1}{6} x^{4}+\cdots}{x^{4}} \\
& =-\frac{1}{6}(4 \text { points })
\end{aligned}
$$

5. (a) (12%) Find the radius of convergence and the interval of convergence of the power series $f(x)=\sum_{n=2}^{\infty}(-1)^{n} \frac{x^{n}}{4^{n} \ln n}$.
(b) (3%) Evaluate $f^{(3)}(0)$.

Solution:

(a) By Ratio Test, $\mathrm{f}(\mathrm{x})$ converges absolutely if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$ (4\%)
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} \frac{x^{n+1}}{4^{n+1} \ln n+1}}{(-1)^{n} \frac{x^{n}}{4^{n} \ln n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x \ln n}{4 \ln n+1}\right|=\left|\frac{x}{4}\right|<1(2 \%)$
Since $\lim _{y \rightarrow \infty}\left|\frac{\ln y}{\ln y+1}\right|=\lim _{y \rightarrow \infty}\left|\frac{y+1}{y}\right|=1$
Hence, the radius of convergence is 4 .
for $x=4, f(x)=\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{\ln n}$ converges.
Since (i) $\lim _{n \rightarrow \infty} \frac{1}{\ln n}=0$, (ii) $\frac{1}{\ln n}>\frac{1}{\ln n+1} \Rightarrow$ converges by Alternating Series Test. (3\%)
for $x=-4, f(x)=\sum_{n=2}^{\infty} \frac{1}{\ln n}>\sum_{n=2}^{\infty} \frac{1}{n}$ diverges.
Since $\sum_{n=2}^{\infty} \frac{1}{n}$ is p-series of $p=1 \Rightarrow$ diverges (3%)
(b) $f^{\prime}(x)=\sum_{n=2}^{\infty}(-1)^{n} \frac{x^{n-1}}{4^{n} \ln n} \times n$
$f^{\prime \prime}(x)=\sum_{n=2}^{\infty}(-1)^{n} \frac{x^{n-2}}{4^{n} \ln n} \times n(n-1)(1 \%)$
$f^{(3)}(x)=\sum_{n=3}^{\infty}(-1)^{n} \frac{x^{n-3}}{4^{n} \ln n} \times n(n-1)(n-2)(1 \%)$
$f^{(3)}(0)=(-1)^{3} \frac{1}{4^{3} \ln 3} \times 3 \times 2 \times 1=-\frac{6}{4^{3} \ln 3}(1 \%)$
$<$ Solution2 $>\frac{f^{(3)}(0)}{3!}(2 \%)=$ coefficient of $x^{3}=\frac{(-1)^{3}}{4^{3} \ln 3}(1 \%) \Rightarrow f^{(3)}(0)=-\frac{6}{4^{3} \ln 3}$
6. (10%) Suppose that $z=f(x, y)$ is a smooth function and let $x=u v$, and $y=v-u$. Express $\frac{\partial^{2} z}{\partial u \partial v}$ in terms of $x, y, f_{x}, f_{y}, f_{x x}, f_{x y}$, and $f_{y y}$.

Solution:

The chain rule gives

$$
\begin{align*}
\frac{\partial z}{\partial v} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial v} \tag{3points}\\
& =\frac{\partial f}{\partial x} u+\frac{\partial f}{\partial y}(1) \tag{2points}\\
& =u \frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}
\end{align*}
$$

Apply the product rule and again the chain rule, and also note that $\frac{\partial}{\partial u}(u)=1$,

$$
\begin{aligned}
\frac{\partial^{2} z}{\partial u \partial v} & =\frac{\partial}{\partial u}\left(u \frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}\right) \\
& =\frac{\partial f}{\partial x}+u \frac{\partial^{2} f}{\partial u \partial x}+\frac{\partial^{2} f}{\partial u \partial y} \\
& =\frac{\partial f}{\partial x}+u\left(\frac{\partial^{2} f}{\partial x^{2}} \frac{\partial x}{\partial u}+\frac{\partial^{2} f}{\partial y \partial x} \frac{\partial y}{\partial u}\right)+\left(\frac{\partial^{2} f}{\partial x \partial y} \frac{\partial x}{\partial u}+\frac{\partial^{2} f}{\partial y^{2}} \frac{\partial y}{\partial u}\right) \\
& =\frac{\partial f}{\partial x}+u\left(\frac{\partial^{2} f}{\partial x^{2}} v+\frac{\partial^{2} f}{\partial y \partial x}(-1)\right)+\left(\frac{\partial^{2} f}{\partial x \partial y} v+\frac{\partial^{2} f}{\partial y^{2}}(-1)\right) \\
& =u v \frac{\partial^{2} f}{\partial x^{2}}+v \frac{\partial^{2} f}{\partial x \partial y}-u \frac{\partial^{2} f}{\partial y \partial x}-\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial f}{\partial x}
\end{aligned}
$$

Since f is a smooth function, $f_{x y}=f_{y x}$. Therefore

$$
\begin{align*}
\frac{\partial^{2} z}{\partial u \partial v} & =u v f_{x x}+(v-u) f_{x y}-f_{y y}+f_{x} \tag{4points}\\
& =x f_{x x}+y f_{x y}-f_{y y}+f_{x} \tag{1point}
\end{align*}
$$

(Because f satisfies the condition of Clairaut's theorem, you can first calculate z_{u} and $z_{u v}$, and then claim that $z_{u v}=z_{v u}$. This approach yields the same solution as above.)
7. (10%) Find the equation of the tangent plane to the elliptic paraboloid $\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ at the point $(a, b, 2 c)$.

Solution：

Let $f(x, y, z)=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z}{c}$
then $f_{x}=\frac{2 x}{a^{2}}, f_{y}=\frac{2 y}{b^{2}}, f_{z}=\frac{-1}{c}$
at $(a, b, 2 c)$ ，we have $f_{x}=\frac{2}{a}, \stackrel{c}{f_{y}}=\frac{2}{b}, f_{z}=\frac{-1}{c}$
Hence the tangent plane is $\frac{2}{a}(x-a)+\frac{2}{b}(x-b)-\frac{1}{c}(x-2 c)=0$
f 對 x 和 y 和 z 的偏微分各 1 分
把點帶進去 4 分
切平面方程式 3 分

8．（a）(2%) Parametrize the curve of intersection of the parabolic cylinders $x=y^{2}$ and $z=x^{2}$ by setting $t=y$ ．
（b）（ 10% ）Find the unit tangent \mathbf{T} and the curvature κ at the point $(1,1,1)$ ．

Solution：

（a）Since $x=y^{2}, z=x^{2}$ ，and $y=t$ ，we can see $x(t)=t^{2}$ and $z(t)=t^{4}$ ．

$$
\left\{\begin{array}{l}
x=t^{2} \\
y=t, \\
z=t^{4}
\end{array} \quad t \in \mathbb{R}\right.
$$

or write as $\mathbf{r}(t)=\left(t^{2}, t, t^{4}\right), t \in \mathbb{R}$ ．
Although I do not deduction any points，you should still wirte down range of t ．
（b）By formula $\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|r^{\prime}(t)\right|}$ ，and easy to know $\mathbf{r}^{\prime}(t)=\left(2 t, 1,4 t^{3}\right)$ ，so $\mathbf{r}^{\prime}(1)=(2,1,4)$ ，and $\left|r^{\prime}(t)\right|=\sqrt{21}$ ．So we get $\mathbf{T}(1)=\frac{(2,1,4)}{\sqrt{21}}$ ．
If you do perfect，you get 5 points．If you compute some error，you will get from 1 to 4 points，depending your answer．If you use wrong formula，you will get 0 or 1 point．

By formula $\kappa(t)=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}$ ，so we only need to compute $\kappa(1)=\frac{\left|\mathbf{r}^{\prime}(1) \times \mathbf{r}^{\prime \prime}(1)\right|}{\left|\mathbf{r}^{\prime}(1)\right|^{3}}$ ．

First， $\mathbf{r}^{\prime \prime}(t)=\left(2,0,12 t^{2}\right)$ ，so $\mathbf{r}^{\prime}(1) \times \mathbf{r}^{\prime \prime}(1)=(2,1,4) \times(2,0,12)=(12,-16,-2)$ ．So $\left|\mathbf{r}^{\prime}(1) \times \mathbf{r}^{\prime \prime}(1)\right|=$ $\sqrt{404}=2 \sqrt{101}$ ，and $\left|\mathbf{r}^{\prime}(1)\right|^{3}=21 \sqrt{21}$ ．We get the answer is $\kappa 1=\frac{2 \sqrt{101}}{21 \sqrt{21}}$ ．
If you do perfect，you get 5 points．If you compute some error，you will get from 1 to 4 points，depending your answer．If you use wrong formula，you will get 0 or 1 point．

