1041微甲06-10班期末考解答和評分標準

- 1. (14%)
 - (a) (7%) Find the indefinite integrals $\int \frac{1}{\sqrt{x^2+1}} dx$ (5%) and $\int \frac{1}{x+2} dx$ (2%). (You may use the integral formula of $\int \sec \theta \ d\theta$.)
 - (b) (4%) Find the value of the constant a for which the improper integral

$$\int_0^\infty \left(\frac{1}{\sqrt{x^2+1}} - \frac{a}{x+2}\right) dx \text{ converges.}$$

(c) (3%) Evaluate the improper integral for this a.

Solution:

(a)(7pts)

$$\int \frac{1}{\sqrt{x^2 + 1}} \, dx$$

 $\int \frac{1}{\sqrt{x^2 + 1}} dx$ let $x = \tan \theta \implies dx = \sec^2 \theta \ d\theta$ (2pts) $\int \frac{1}{\sqrt{x^2 + 1}} dx$

$$\int \frac{1}{\sqrt{x^2 + 1}} \, dx$$

$$\int \frac{\sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} dx$$

$$= \int \frac{\sec^2 \theta}{\sec \theta} d\theta$$

$$= \int \sec \theta d\theta$$

$$= \ln|\sec \theta + \tan \theta| + c$$

$$= \ln|\sqrt{x^2 + 1} + x| + c$$

$$=\int \sec\theta \ d\theta$$

$$=\ln|\sec\theta+\tan\theta|+\epsilon$$

$$=\ln|\sqrt{x^2+1}+x|+c$$

$$\int \frac{1}{x+2} \ dx$$

$$=\ln |x+2| + \epsilon$$

(b)(4pts)
$$\int_0^\infty \left(\frac{1}{\sqrt{x^2+1}} - \frac{a}{x+2}\right) dx$$

$$= \lim_{t \to \infty} \int_0^t (\frac{1}{\sqrt{x^2 + 1}} - \frac{a}{x + 2}) dx$$

consider the indefinite integral

$$\int \left(\frac{1}{\sqrt{x^2+1}} - \frac{a}{x+2}\right) dx$$

$$=\ln |\sqrt{x^2+1}+x|-a\ln |x+2|+c$$

$$\begin{split} \operatorname{Let} & I = \int_0^\infty (\frac{1}{\sqrt{x^2+1}} - \frac{a}{x+2}) dx \\ & I = \int_0^\infty (\frac{1}{\sqrt{x^2+1}} - \frac{a}{x+2}) dx \\ & = \lim_{t \to \infty} \int_0^t (\frac{1}{\sqrt{x^2+1}} - \frac{a}{x+2}) dx \\ & = \lim_{t \to \infty} \ln (\frac{\sqrt{t^2+1}}{(t+2)^a} + t) - \ln 1 - a \ln (t+2) + a \ln 2 \,) \\ & = \lim_{t \to \infty} \ln (\frac{\sqrt{t^2+1}}{(t+2)^a} + t) + a \ln 2 & \qquad (2pts) \end{split}$$
 Thus we only need to consider $\lim_{t \to \infty} \ln \frac{\sqrt{t^2+1}}{(t+2)^a} + t$ let $\operatorname{L} = \lim_{t \to \infty} \ln \frac{\sqrt{t^2+1} + t}{(t+2)^a}$ let $\operatorname{L} = \lim_{t \to \infty} \ln \frac{\sqrt{t^2+1} + t}{(t+2)^a}$ let $\operatorname{L} = \lim_{t \to \infty} \ln \frac{\sqrt{t^2+1}}{\sqrt{x^2+1}} - \frac{a}{x+2} dx - \ln \operatorname{L} + \ln 2 & \qquad (asse1) \ a > 1 \\ \operatorname{L} = 0 & \operatorname{I} = \ln \operatorname{L} + a \ln 2 \to -\infty \text{ diverges} \\ (\operatorname{case2}) \ a < 1 & \operatorname{then} \ \operatorname{L} \to \infty \ , \text{ and } \operatorname{I} = \ln \operatorname{L} + a \ln 2 \to \infty \text{ diverges} \\ (\operatorname{case3}) \ a = 1 & \operatorname{L} = \lim_{t \to \infty} \ln \frac{\sqrt{t^2+1} + t}{(t+2)} = 2 \\ \operatorname{L} = \operatorname{L} \operatorname{L} + \ln 2 = \ln 2 + \ln 2 = 2 \ln 2 \\ \operatorname{Thus} \ 1 & \operatorname{converges} \text{ when } a = 1 \\ \operatorname{L} = \lim_{t \to \infty} \ln \frac{\sqrt{t^2+1} + t}{(t+2)} = 2 \\ \operatorname{Lien} \ln \ln \ln \frac{\sqrt{t^2+1} + t}{(t+2)} = 2 \\ \operatorname{Lien} \ln \ln \ln \frac{\sqrt{t^2+1} + t}{(t+2)} = 2 \\ \operatorname{Lien} \ln \ln \ln \frac{\sqrt{t^2+1} + t}{(t+2)} = 2 \\ \operatorname{Lien} \ln \ln \ln \ln \frac{\sqrt{t^2+1} + t}{(t+2)} = 2 \\ \operatorname{Lien} \ln \ln \ln \ln 2 = \ln 2 + \ln 2 = 2 \ln 2 \\ \operatorname{Lien} \ln \ln \ln 2 = \ln 2 + \ln 2 = 2 \ln 2 \\ \operatorname{Lien} \ln \ln 2 = \ln 2 + \ln 2 = 2 \ln 2 \\ \operatorname{Lien} \ln 2 = \ln 2 + \ln 2 = 2 \ln 2 \\ \operatorname{Lien} \ln 2 = \ln 2 + \ln 2 = 2 \ln 2 \\ \operatorname{Lien} \ln 2 = \ln 2 + \ln 2 = 2 \ln 2 \\ \operatorname{Lien} \ln 2 = \ln 2 + \ln 2 = 2 \ln 2 \\ \operatorname{Lien} \ln 2 = \ln 2 + \ln 2 = 2 \ln 2 \\ \operatorname{Lien} \ln 2 = \ln 2 + \ln 2 = 2 \ln 2 \\ \operatorname{Lien} \ln 2 \\ \operatorname{Lien} \ln 2 = 2 \ln 2 \\ \operatorname{Lien} \ln 2 \\ \operatorname{Lien} \ln 2 \\ \operatorname{Lien} \ln 2 \\ \operatorname{Lien}$

2. (12%) Find the following indefinite integrals:

(a)
$$(6\%)$$
 $\int \frac{3t^2 + t + 4}{t^3 + t} dt$.

(b) (6%)
$$\int \cos \sqrt{x} \, dx$$

Solution:

(a)
$$\frac{3t^2 + t + 4}{t^3 + t} = \frac{A}{t} + \frac{Bt + C}{t^2 + 1}$$
(1 point)
$$\Rightarrow A = 4, B = -1, C = 1$$
(1 point)
$$\int \frac{4}{t} + \frac{-t + 1}{t^2 + 1} dt = 4 \ln|t| - \frac{1}{2} \ln(t^2 + 1) + \tan^{-1} t + c$$
(1 pointt for each)

(b) Let
$$\sqrt{x} = u, \Rightarrow dx = 2udu$$
.

$$\int \cos \sqrt{x} dx = 2 \int u \cos u du (2 \text{ points})$$

$$= 2 \int u d \sin u du = 2(u \sin u - \int \sin u du) (2 \text{ points})$$

$$= 2(u \sin u + \cos u) + c$$

$$= (2\sqrt{x} \sin \sqrt{x} + 2 \cos \sqrt{x}) + c(1 \text{ point for each})$$

- (a) (10%) Solve the initial-value problem: $\frac{dx}{dt} = (a-x)(b-x)$, where a > b > 0, for x = x(t) with x(0) = 0.
- (b) (2%) Find $\lim_{t\to\infty} x(t)$.

Solution:

(a)
$$\frac{dx}{(a-x)(b-x)} = dt$$

$$\Rightarrow \int \frac{dx}{(a-x)(b-x)} = \int 1 dt$$

$$\Rightarrow \frac{1}{b-a} \int (\frac{1}{a-x} - \frac{1}{b-x}) dx = t + C$$

$$\Rightarrow \frac{1}{b-a} (-\ln|a-x| + \ln|b-x|) = t + C$$

$$\Rightarrow \frac{1}{a-b} \ln \left| \frac{a-x}{b-x} \right| = t + C$$

$$\therefore x(0) = 0$$

$$\therefore C = \frac{1}{a-b} \ln \left| \frac{a}{b} \right| = \frac{1}{a-b} \ln \frac{a}{b}$$

$$\Rightarrow \ln \left| \frac{a-x}{b-x} \right| = (a-b)t + \ln \frac{a}{b}$$

$$\Rightarrow \frac{a-x}{b-x} = \frac{a}{b} e^{(a-b)t}$$

$$\Rightarrow abe^{(a-b)t} - ae^{(a-b)t} = ab - bx$$

$$\Rightarrow x(t) = \frac{ab(e^{(a-b)t} - 1)}{ae^{(a-b)t} - b}$$

(b)
$$\lim_{t \to \infty} x(t) = \lim_{t \to \infty} \frac{ab(e^{(a-b)t} - 1)}{ae^{(a-b)t} - b} = \lim_{t \to \infty} \frac{ab(a-b)e^{(a-b)t}}{a(a-b)e^{(a-b)t}} = b$$

評分標準

(a) 變數分離得 2 分

積分出來得 4 分

把 C 求出來得 2 分

帶回 C 並解出 x 得 2 分

(b) 沒過程不給分

- (a) (10%) Solve the initial-value problem: $xy' y = x^2 \sin x$, with $y(\pi) = 0$.
- (b) (2%) Find $\lim_{x\to 0^+} \frac{y(x)}{x^2}$.

Solution:

(a) The linear differential equation is $y' - \frac{1}{x}y = x \sin x$. We multiply the integrating factor

$$\mathrm{e}^{\int -\frac{1}{x} \, \mathrm{d}x} = \mathrm{e}^{-\ln|x|} = x^{-1}$$
 (積分因子有算出來得 5 分,有錯整題最多給 2 分。)

on both sides of the differential equation and get

$$\frac{1}{x}y' - \frac{1}{x^2}y = \sin x \Rightarrow \frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{x}y\right) = \sin x \Rightarrow \frac{1}{x}y = \int \sin x \,\mathrm{d}x = -\cos x + C.$$

So $y(x) = x(-\cos x + C)$. (寫到這裡可得 8 分。) The initial condition $y(\pi) = 0$ implies $0 = \pi(1 + C)$ and we get C = -1, (解對積分常數再得 1 分。) so the solution of the differential equation is

$$y(x) = x(-\cos x - 1)$$
. (最後完整的函數寫出再得 1 分。)

(b) The limit is

$$\lim_{x \to 0^+} \frac{y(x)}{x^2} = \lim_{x \to 0^+} \frac{x(-\cos x - 1)}{x^2} = \lim_{x \to 0^+} \frac{-\cos x - 1}{x} = -\infty.$$

• 注意到,若用以上觀察,寫「 $-\infty$ 」或「不存在」或「發散」都可以算對,得 2 分。 若是用羅巡達法則計算該極限,最後的答案只能寫「 $-\infty$ 」,而不能寫「不存在」或「發散」。 因為使用羅巡達法則後,若分子、分母各自微分後的極限「不存在」或「發散」,並不能對原極限下結論; 於是判定你對羅巡達法則使用錯誤或是沒有正確理解,無法給分。 課本第 302 頁指出,使用羅巡達後,唯有「極限存在」或是「 $\pm\infty$ 」這種狀況可以反推原極限的結果。

5. (10%) Evaluate $\lim_{x\to 0} \frac{1}{x} \int_0^x (1-\tan t)^{1/t} dt$.

First, note that $\lim_{x\to 0} \frac{\int_0^x (1-\tan t)^{\frac1t}\,dt}{x}$ is of the form $\frac00$. We can use l'Hospital's rule to evaluate the limit.

 $\lim_{x\to 0} \frac{\int_0^x (1-\tan t)^{\frac{1}{t}} dt}{x} = \lim_{x\to 0} (1-\tan x)^{\frac{1}{x}}$ By fundamental theorem of calculus. (5 pts)

Then we take log to evaluate the last limit.

$$\lim_{x\to 0} \frac{\ln(1-\tan x)}{x} \text{ is of the form } \frac{0}{0}$$

$$= \lim_{x\to 0} \frac{-\sec^2 x}{1-\tan x} = -1 \text{ by l'Hospital's rule}$$

Thus we have $\lim_{x\to 0} \frac{\int_0^x (1-\tan t)^{\frac{1}{t}} dt}{x} = e^{-1} = \frac{1}{e}$ (5 pts)

Note
$$\lim_{x\to 0} \frac{\int_0^x (1-\tan t)^{\frac{1}{t}} dt}{x} \neq f'(0)$$

where
$$f(x) = \int_0^x (1 - \tan t)^{\frac{1}{t}} dt$$

where
$$f(x) = \int_0^x (1 - \tan t)^{\frac{1}{t}} dt$$

FTC:If $f(x) = \int_0^x g(t) dt$ for $x \in [0, a]$
then $f'(x) = g(x)$ for $x \in (0, a)$ but **not** for $x = 0, a$

- (a) (4%) Show that the area of an ellipse with the semi-major axis of length a and the semi-minor axis of length bis $ab\pi$. See Figure 1(a).
- (b) (8%) A toothpaste tube is modeled in Figure 1(b).

Figure 1: (a) The area of an ellipse is $ab\pi$. (b) Find the volume of the modeled toothpaste tube.

- One side is flat and is located at $-\pi \le x \le \pi, y = 0, z = 0$.
- The other side is a circle with radius 2, so the equation of the circle is $x^2 + y^2 = 4$, z = 20.
- Each cross-section for 0 < z < 20 is an ellipse with the semi-major axis of length a and the semi-minor axis of length b, where

$$a = \pi + (2 - \pi) \frac{z}{20}$$
 and $b = \frac{1}{10}z$.

Find the volume of the modeled toothpaste tube with $0 \le z \le 20$.

Solution:

Ellipse equation:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 = \ensuremath{\natural} \ y = \pm b \sqrt{1 - \frac{x^2}{a^2}} \ (1\%)$$

Aera
$$= 4 \int_{0}^{a} b \sqrt{1 - \frac{x^{2}}{a^{2}}} dx \ (1\%) = \frac{4b}{a} \int_{0}^{a} \sqrt{a^{2} - x^{2}} dx$$

$$= 4ab \int_{0}^{\frac{\pi}{2}} \cos^{2} \theta d\theta \ (\text{let } x = a \sin \theta, \ dx = a \cos \theta d\theta) \ (1\%)$$

$$= 2ab \int_{0}^{\frac{\pi}{2}} (1 + \cos 2\theta) d\theta \ (1\%)$$

$$= 2ab(\theta + \frac{1}{2} \sin 2\theta)|_{0}^{\frac{\pi}{2}}$$

$$= ab\pi \ (1\%)$$
(b)
Volume

Volume
$$= \int_{0}^{20} \pi (\pi + (2 - \pi) \frac{z}{20}) \frac{1}{10} z dz \ (4\%)$$

$$= \int_{0}^{20} \frac{1}{10} \pi^{2} z + \pi (2 - \pi) \frac{z^{2}}{200} dz$$

$$= (\frac{\pi^{2}}{20} z^{2} + \frac{\pi (2 - \pi)}{600} z^{3})|_{0}^{20} \ (2\%)$$

$$= \frac{20}{3} \pi^{2} + \frac{80}{3} \pi \ (2\%)$$

(a) (3%) Find all intersection points of the two curves $r = \sqrt{2} \sin \theta$ and $r^2 = \cos 2\theta$ in their polar equations.

Figure 2: (a) Find all intersection points of the two curves. (b) Find the area of the shaded region.

(b) (9%) Find the area of the shaded region in Figure 2.

Solution:

(a). If we solve the equations $r = \sqrt{2} \sin \theta$ and $r^2 = \cos 2\theta$, we get

$$\begin{cases} r = \sqrt{2} \sin \theta \\ r^2 = \cos 2\theta \end{cases}$$

$$\Rightarrow 2 \sin^2 \theta = \cos 2\theta = 1 - 2 \sin^2 \theta$$

$$\Rightarrow \theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$$

$$\Rightarrow r = \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}$$

We have found two points of intersection:

$$(r,\theta) = (\frac{1}{\sqrt{2}}, \frac{\pi}{6})$$
 (1pt)
 $(r,\theta) = (\frac{1}{\sqrt{2}}, \frac{5\pi}{6})$ (1pt)

However, if we plug $\theta=0$ into $r=\sqrt{2}\sin\theta$ and $\theta=\pi/4$ into $r^2=\cos2\theta$,we can find one more point of intersection:

$$r = 0$$
 (1pt)

(**b**).

$$A = 2\left(\frac{1}{2}\int_{0}^{\frac{\pi}{6}}(\sqrt{2}\sin\theta)^{2}d\theta + \frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{4}}\cos 2\theta d\theta\right)$$
 (6pts)
$$= \int_{0}^{\frac{\pi}{6}}(1-\cos 2\theta)d\theta + \int_{\frac{\pi}{6}}^{\frac{\pi}{4}}\cos 2\theta d\theta$$

$$= \left(\theta - \frac{1}{2}\sin 2\theta\right)\Big|_{0}^{\frac{\pi}{6}} + \frac{1}{2}\sin 2\theta\Big|_{\frac{\pi}{6}}^{\frac{\pi}{4}}$$
 (2pts)
$$= \frac{\pi}{6} + \frac{1}{2} - \frac{\sqrt{3}}{2}$$
 (1pt)

8. (16%) The front door of a school bus is designed as in Figure 3. It is a folding door with $\overline{AB} = \overline{BO} = \frac{1}{2}$. The door is opened or closed by rotating \overline{OB} about z-axis, while A is moving along y-axis.

Figure 3: (a) Find the enclosed area by the curve $\gamma(t)$ and two axes. (b) Find the length of the curve $\gamma(t)$.

The region swept out by the bus door on the xy-plane is enclosed by the two axes and the curve $\gamma(t)$ parametrized by

$$\gamma(t) = (x(t), y(t)) = \begin{cases} (\sin^3 t, \cos^3 t) & \text{if } 0 \le t \le \frac{\pi}{4} \\ \left(\frac{1}{2}\sin t, \frac{1}{2}\cos t\right) & \text{if } \frac{\pi}{4} \le t \le \frac{\pi}{2}, \end{cases}$$

where $0 \le t \le \frac{\pi}{2}$ denotes the angle between the positive y-axis and \overline{OB} .

- (a) (10%) Find the area of this region.
- (b) (6%) Find the length of the curve $\gamma(t)$.

Solution:

The curve consists of two parts: a half of a branch of an astroid (for $0 \le t \le \frac{\pi}{4}$), and one-eighth of a circle (for $\frac{\pi}{4} \le t \le \frac{\pi}{2}$).

(1) Formulation

$$A = \int y dx = \int_0^{\frac{\pi}{4}} y(t)x'(t)dt + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} y(t)x'(t)dt = \int_0^{\frac{\pi}{4}} \cos^3 t \cdot 3\sin^2 t \cos t dt + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{2}\cos t \cdot \frac{1}{2}\cos t dt$$
$$= \int_0^{\frac{\pi}{4}} 3\cos^4 t \sin^2 t dt + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{4}\cos^2 t dt$$

Or, noting that as y goes from 0 to 1, t varies from $\frac{\pi}{2}$ to 0,

$$A = \int x dy = \int_{\frac{\pi}{4}}^{0} x(t)y'(t)dt + \int_{\frac{\pi}{2}}^{\frac{\pi}{4}} x(t)y'(t)dt$$
$$= \int_{0}^{\frac{\pi}{4}} 3\cos^{2}t \sin^{4}t dt + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{4}\sin^{2}t dt$$

Alternatively, if polar coordinates are to be used (letting the polar axis be in the +y direction and θ be in the clockwise direction), $\theta = t$ for the circle part, while $\theta = \tan^{-1}(\frac{\sin^3 t}{\cos^3 t}) = \tan^{-1}(\tan^3 t)$, such that

$$A = \int \frac{1}{2}r^2 d\theta = \int_0^{\frac{\pi}{4}} \frac{1}{2}r^2(t) \frac{d\theta}{dt} dt + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{2}r^2(t) dt$$
$$= \int_0^{\frac{\pi}{4}} \frac{1}{2} (\sin^6 t + \cos^6 t) \frac{3 \tan^2 t \sec^2 t}{1 + \tan^6 t} dt + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{4} dt$$
$$= \int_0^{\frac{\pi}{4}} \frac{3}{2} \sin^2 t \cos^2 t dt + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{4} dt$$

(2) Integration and evaluation:

$$\int \cos^4 t \sin^2 t dt = \int (\frac{1 + \cos 2t}{2})(\frac{1}{4}\sin^2 2t)dt$$

$$= \frac{1}{8} \int (\frac{1 - \cos 4t}{2} + \sin^2 2t \cos 2t)dt$$

$$= \frac{1}{16}(t - \frac{1}{4}\sin 4t + \frac{1}{3}\sin^3 t)$$

$$\int \cos^2 t dt = \int (\frac{1 + \cos 2t}{2})dt = \frac{1}{2}t + \frac{1}{4}\sin 2t$$

$$A = \int y dx = \int_0^{\frac{\pi}{4}} 3\cos^4 t \sin^2 t dt + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{4} \cos^2 t dt$$
$$= 3 \cdot \frac{1}{16} (\frac{\pi}{4} - 0 + \frac{1}{3}) + \frac{1}{4} (\frac{\pi}{8} - \frac{1}{4}) = (\frac{3}{64} \pi + \frac{1}{16}) + (\frac{1}{32} \pi - \frac{1}{16}) = \frac{5}{64} \pi$$

(For your reference, the other methods yields $\int ydx = (\frac{3}{64}\pi - \frac{1}{16}) + (\frac{1}{32}\pi + \frac{1}{16}) = \frac{5}{64}\pi$ and $\int \frac{1}{2}r^2d\theta = \frac{3}{64}\pi + \frac{1}{32}\pi = \frac{5}{64}\pi$ respectively.)

- Grading policy: for the astroid part: 3% for formulation, 3% for integration and 2% for evaluation; 2% in total for the one-eighth circle part.
- (b)

(1) For the astroid part:

$$L_{1} = \int ds = \int_{0}^{\frac{\pi}{4}} \sqrt{(\frac{dx}{dt})^{2} + (\frac{dy}{dt})^{2}} dt = \int_{0}^{\frac{\pi}{4}} \sqrt{(3\sin^{2}t\cos t)^{2} + (-3\cos^{2}t\sin t)^{2}} dt$$

$$= \int_{0}^{\frac{\pi}{4}} 3|\sin t\cos t| \sqrt{\sin^{2}t + \cos^{2}t} dt = 3\left[\frac{1}{2}\sin^{2}t\right]_{0}^{\frac{\pi}{4}} = \frac{4}{3}$$

$$(2\%)$$

(2) For the circle part:

$$L_2 = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sqrt{(\frac{1}{2}\cos t)^2 + (-\frac{1}{2}\sin t)^2} dt = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{2} dt = \frac{\pi}{8}$$
 (1%)

Or directly $L_2 = \frac{1}{8}(2 \cdot \pi \cdot \frac{1}{2}) = \frac{\pi}{8}$ since it is one-eighth of a circle.

Thus the total length is $L = L_1 + L_2 = \frac{3}{4} + \frac{\pi}{8}$.