1．（8\％）Find the limit

$$
\lim _{x \rightarrow 0} \frac{\tan ^{-1}(\sin (a x))}{\tan \left(\sin ^{-1}(b x)\right)}
$$

where a and b are constants，and $b \neq 0$ ．

Solution：

By L＇Hôpital Rule and Chain Rule，we have

$$
\lim _{x \rightarrow 0} \frac{\arctan (\sin (a x))}{\tan (\arcsin (b x))}=\lim _{x \rightarrow 0} \frac{\frac{1}{1+\sin ^{2}(a x)} \cos (a x) a}{\sec ^{2}(\arcsin (b x)) \frac{1}{\sqrt{1-(b x)^{2}}} b}=\frac{a}{b}
$$

［Method 2］
By trigonometric function，we know

$$
\tan (\arcsin (b x))=\frac{b x}{\sqrt{1-(b x)^{2}}}
$$

So we get

$$
=\lim _{x \rightarrow 0} \frac{\arctan (\sin (a x))}{\frac{b x}{\sqrt{1-(b x)^{2}}}}=\lim _{x \rightarrow 0} \frac{\frac{1}{1+\sin ^{2}(a x)} \cos (a x) a}{\frac{b \sqrt{1-(b x)^{2}}-\frac{b^{3} x^{2}}{\sqrt{1-(b x)^{2}}}}{1-(b x)^{2}}}=\frac{a}{b}
$$

［Method 3］

$$
=\lim _{x \rightarrow 0} \frac{\arctan (\sin (a x)}{\sin (a x)} \frac{\arcsin (b x)}{\tan (\arcsin (b x)} \frac{\sin (a x)}{a x} \frac{b x}{\arcsin (b x)} \frac{a x}{b x}=\frac{a}{b}
$$

Policy：
If you completely solve this problem，you can get 8 points．
If you use L＇Hôpital Rule but you don＇t use Chain Rule，you will lose 1 point to 4 points．
If you use L＇Hôpital Rule wrongly，you will lose 1 point to 3 points．
2. (10%) Figure 1 shows a circle with radius 1 inscribed in the parabola $y=2 x^{2}$. Find the center of the circle C, and find the tangent points P and Q.

Figure 1: A unit circle is inscribed in the parabola $y=2 x^{2}$.

Solution:

First, we set $C(0, c), P\left(a, 2 a^{2}\right), Q\left(-a, 2 a^{2}\right)$, where $a>0$. And we can know tangent line of P is $y-2 a^{2}=4 a(x-a)$. And we know two prependicular slope m_{1} and m_{2} satisfying $m_{1} m_{2}=-1$ So

$$
\frac{2 a^{2}-c}{a-0} \times 4 a=-1
$$

. So we have

$$
2 a^{2}-c=-\frac{1}{4}
$$

On the other hand, because the radius of the circle is 1 . So we have

$$
a^{2}+\left(2 a^{2}-c\right)^{2}=1
$$

so we have

$$
a^{2}+\left(\frac{1}{4}\right)^{2}=1
$$

so we get

$$
a=\frac{\sqrt{15}}{4}
$$

Therefore we can know

$$
c=2 a^{2}+\frac{1}{4}=2 \times\left(\frac{\sqrt{15}}{4}\right)^{2}+\frac{1}{4}=\frac{17}{8}
$$

So $C\left(0, \frac{17}{8}, P\left(\frac{\sqrt{15}}{4}, \frac{15}{8}\right), Q\left(-\frac{\sqrt{15}}{4}, \frac{15}{8}\right)\right.$

Policy:
If you completely solve this problem, you can get 10 points.
If your answer is correct, but you have no get C or P or Q , you will lose 1 point to 2 points.
If you have calculation error, you will lose 1 to 5 points.
If you have no or have less idea to deal this problem, you will get 0 point to 4 points.
3. (10%) Student A used some mathematical software to plot a dolphin-like curve as Figure 2.

Figure 2: Dolphin-like curve.

On the dolphin's back, he considered two functions:

$$
\begin{aligned}
f(x) & =-\frac{1}{8}\left(x-\frac{7}{2}\right)^{2}+\frac{65}{32}, & 0.7 & <x \leq 4 \\
g(x) & =\frac{a}{x-7}+b, & 4 & <x<6.3
\end{aligned}
$$

Find constants a and b such that the union of two functions $f(x)$ and $g(x)$ is differentiable on $(0.7,6.3)$.

Solution:

$f(4)=\frac{-1}{8}\left(4-\frac{7}{2}\right)^{2}+\frac{65}{32}=2 \quad(1$ point $)$
$g(4):=\lim _{x \rightarrow 4^{+}} g(x)=-\frac{1}{3} a+b \quad$ (1 point)
$f(4)=g(4) \Rightarrow-\frac{1}{3} a+b=2 \quad$ (Because we want $f(x)$ and $g(x)$ to be continuous, we set $f(4)=g(4)$.) (2 points)
$\lim _{\delta \rightarrow 0^{+}} \frac{f(4-\delta)-f(4)}{-\delta}=\frac{-1}{8} \quad$ (1 point)
$\lim _{\delta \rightarrow 0^{+}} \frac{g(4+\delta)-g(4)}{\delta}=\frac{-1}{9} a \quad$ (1 point)
$\frac{-1}{8}=\frac{-1}{9} a$ (Because we want $f(x)$ and $g(x)$ to be differentiable, we set that left limit equal to right limit.) (2 points)
We solve the simultaneous equations, and we can get $a=\frac{9}{8}, b=\frac{19}{8}$. (2 points)
4. (10%) A rectangle has vertices $(-x, 0),(x, 0),(x, y),(-x, y)$, where $y \geq 0$ and where $x^{2}+y^{2}=1$. Suppose that x is changing with the time t in the way $x(t)=t^{2},-1<t<1$.
(a) (5%) Find the rate of change of $y(t)$ with respect to t.
(b) (5%) Find the rate of change of the area of the rectangle with respect to t.

Solution:

(a)
method1:
$x^{2}+y^{2}=1 \& x(t)=t^{2}$
$\Rightarrow y(t)=\sqrt{1-t^{4}} \quad(2 \%)$
$\Rightarrow y^{\prime}(t)=\frac{-2 t^{3}}{\sqrt{1-t^{4}}}(3 \%)$
method2:
$x^{2}+y^{2}=1$
$\Rightarrow 2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0 \quad(3 \%)$
substitute $x(t)=t^{2}, x^{\prime}(t)=2 t, y(t)=\sqrt{1-t^{4}}$
$\Rightarrow y^{\prime}(t)=\frac{-2 t^{3}}{\sqrt{1-t^{4}}}(2 \%)$
(b)
method1:
area $A(t)=2 x(t) y(t)=2 t^{2} \sqrt{1-t^{4}} \quad(2 \%)$
$\Rightarrow A^{\prime}(t)=4 t \sqrt{1-t^{4}}+\frac{-4 t^{5}}{\sqrt{1-t^{4}}}=\frac{4 t-8 t^{5}}{\sqrt{1-t^{4}}}$
method2:
area $A(t)=2 x(t) y(t)$
$\Rightarrow A^{\prime}(t)=2 \frac{d x}{d t} y+2 x \frac{d y}{d t}$
substitute $x(t)=t^{2}, x^{\prime}(t)=2 t, y(t)=\sqrt{1-t^{4}}, y^{\prime}(t)=\frac{-2 t^{3}}{\sqrt{1-t^{4}}}$
$\Rightarrow A^{\prime}(t)=4 t \sqrt{1-t^{4}}+\frac{-4 t^{5}}{\sqrt{1-t^{4}}}=\frac{4 t-8 t^{5}}{\sqrt{1-t^{4}}}$

5．Let $f(x)=\frac{-x^{2}+3 x-1}{x^{2}+1}$ ．Answer the following questions by filling each blank below．Show your work（computations and reasoning）in the space following．Put None in the blank if the item asked does not exist．
（a）The function is increasing on the interval（s） \qquad and decreasing on the interval（s）
\qquad ．$(6 \%$ total $)$

The local maximal point（ s$)(x, y)=$ \qquad ．(2%)

The local minimal point（s）$(x, y)=$ \qquad ．(2%)

Reason：

Solution：

$f^{\prime}(x)=\frac{(-2 x+3)\left(x^{2}+1\right)-\left(-x^{2}+3 x-1\right) 2 x}{\left(x^{2}+1\right)^{2}}=\frac{-3 x^{2}+3}{\left(x^{2}+1\right)^{2}}$
（2 points。式子最後化簡錯扣1分）
$f^{\prime}(x)=0 \Longleftrightarrow x= \pm 1$

	$x<-1$	$-1<x<1$	$x>1$
f^{\prime}	-	+	-
f	\searrow	\nearrow	\searrow

f is increasing on $(-1,1)$
f is decreasing on $(-\infty,-1) \cup(1, \infty)$ （2 points）
f has local maximum $(1, f(1))=\left(1, \frac{1}{2}\right)$
（2 points）
f has local minimum $(1, f(-1))=\left(-1, \frac{-5}{2}\right)$
（2 points）
（b）The function is concave upward on the interval（s） \qquad and concave downward on the interval（s） \qquad ．$(4 \%$ total $)$

The inflection point（s）$(x, y)=$ \qquad ．(3%)

Reason：

Solution：

$$
\begin{aligned}
f^{\prime \prime}(x) & =-3 \times \frac{2 x\left(x^{2}+1\right)^{2}-\left(x^{2}-1\right) 2\left(x^{2}+1\right) 2 x}{\left(x^{2}+1\right)^{4}} \\
& =-3 \times \frac{2 x\left(-x^{2}+3\right)}{\left(x^{2}+1\right)^{3}}=\frac{6 x\left(x^{2}-3\right)}{\left(x^{2}+1\right)^{3}}
\end{aligned}
$$

（2 points。式子最後化簡錯扣1分）
$f^{\prime \prime}(x)=0 \Leftrightarrow x=0, \pm \sqrt{3}$

$$
\begin{array}{c|c|c|c|c}
& x<-\sqrt{3} & -\sqrt{3}<x<0 & 0<x<\sqrt{3} & x>\sqrt{3} \\
\hline f^{\prime \prime} & - & + & - & +
\end{array}
$$

f concaves up on $(-\sqrt{3}, 0) \cup(\sqrt{3}, \infty)$
f concaves down on $(-\infty,-\sqrt{3}) \cup(0, \sqrt{3})$
inflection points $(0,1),\left(-\sqrt{3}, \frac{-3 \sqrt{3}-4}{4}\right),\left(\sqrt{3}, \frac{3 \sqrt{3}-4}{4}\right)$
（c）The vertical asymptotes lines of the function are \qquad －．

The horizontal asymptotes lines are \qquad ．$(3 \%$ total $)$

Reason：

Solution：

vertical asymptote：

Because f is continuous on real line，there is no vertical asymptote．

horizontal asymptote：

$\lim _{x \rightarrow \infty} \frac{-x^{2}+3 x-1}{x^{2}+1}=-1$
$\lim _{x \rightarrow-\infty} \frac{-x^{2}+3 x-1}{x^{2}+1}=-1$
$\Rightarrow y=-1$ is the horizontal asymptote．

其中一項的原因跟答案正確給 2 分，剩下的為 1 分。
（d）Sketch the graph of the function．Indicate，if any，where it is increasing／decreasing，where it concaves up－ ward／downward，all relative maxima／minima，inflection points and asymptotic line（s）（if any）．（4\％）

Solution：

horizontal asymptote：
1 point
local maximum and local minimum： total 1 point
兩端反曲性：
2 points

6．（ 12% ）An elliptic billiard table（橢圓形撞球桌）is shaped by the equation

$$
\frac{x^{2}}{4}+y^{2}=1
$$

A billiard ball is located at the $Q(1,0)$ ．Find all points P on the boundary of the elliptic billiard table such that the billiard ball will roll from Q to P and bounce back to Q again．（We assume that the angle of incidence is equal to the angle of bouncing back．）

Solution：

Let point P is $P(x, y) \Rightarrow$ The slope of $\overline{P Q}=\frac{y-0}{x-1}=\frac{y}{x-1}$ ．（1 point）
From $\frac{x^{2}}{4}+y^{2}=1$ ，we differentiate both sides with respect to x ．
Then，we get $\frac{x}{2}+2 y \cdot y^{\prime}=0$ ．
Therefore，we find that the slope of P is $y^{\prime}=\frac{-x}{4 y}$ ．（3 points）
Case 1：$x \neq 1, y \neq 0$
Then，$\frac{y}{x-1} \cdot \frac{-x}{4 y}=-1$ ．（1 point）
$\Rightarrow-x=-4 x+4 \Rightarrow x=\frac{4}{3}$
We put $x=\frac{4}{3}$ back to $\frac{x^{2}}{4}+y^{2}=1 \Rightarrow y= \pm \frac{\sqrt{5}}{3}$ ．
The points are $\left(\frac{4}{3}, \frac{\sqrt{5}}{3}\right)$ and $\left(\frac{4}{3},-\frac{\sqrt{5}}{3}\right)$ ．（4 points）
Case 2．$x=1$
From $\frac{x^{2}}{4}+y^{2}=1, y= \pm \frac{\sqrt{3}}{2}$ ．（1 point）
However，under $x=1$ ，the slope $y^{\prime}=\frac{-1}{4 y} \neq 0 \Rightarrow$ Two lines are NOT orthogonal．
Case 3．$y=0$
From $\frac{x^{2}}{4}+y^{2}=1, x= \pm 2$ ．
$\overline{P Q}=0$ ，the tangent lines of point P are vertical lines $\quad \Rightarrow \quad$ There are orthogonal to each other． The points are $(2,0)$ and $(-2,0)$ ．（2 points）

Points P are $\left(\frac{4}{3}, \frac{\sqrt{5}}{3}\right),\left(\frac{4}{3},-\frac{\sqrt{5}}{3}\right),(2,0)$ and $(-2,0)$ ．

7．（ 14% ）A circular cone frustum－shaped lampcover（正圓錐台形狀的燈罩）is made from an annulus piece of paper by cutting out some part of it and joining the edges $\overline{A B}$ and $\overline{C D}$ as Figure 3．Find the maximum enclosed volume of such a lampcover．

Figure 3：Make a frustum－shaped lampcover，where $\overline{O A}=10 \mathrm{~cm}$ and $\overline{A B}=10 \mathrm{~cm}$ ．
Remark that the volume of a circular cone frustum is $V=\frac{\pi h}{3}\left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right)$ ，where h is the height of the frustum， and r_{1}, r_{2} are the radii of the two bases．

Solution 1．See Figure 4．The similarity tells us that $r_{2}=2 r_{1}$ and $r_{1}^{2}+h^{2}=10^{2}$ ．

Figure 4：Find relations between r_{1}, r_{2} ，and h ．
So the volume of a circular cone frustum is

$$
\begin{aligned}
V(h) & =\frac{\pi h}{3}\left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right)=\frac{\pi h}{3}\left(r_{1}^{2}+r_{1} \cdot 2 r_{1}+\left(2 r_{1}\right)^{2}\right) \\
& =\frac{\pi h}{3} \cdot 7 r_{1}^{2}=\frac{7 \pi}{3} h\left(10^{2}-h^{2}\right)=\frac{7 \pi}{3}\left(100 h-h^{3}\right),
\end{aligned}
$$

where $h \in[0,10]$ ．In order to find the maximum volume of $V(h)$ ，we compute

$$
V^{\prime}(h)=\frac{7 \pi}{3}\left(100-3 h^{2}\right)=0 \Rightarrow h=\frac{10}{\sqrt{3}} .
$$

We compare the following values：

$$
V(0)=0, \quad V(10)=10, \quad V\left(\frac{10}{\sqrt{3}}\right)=\frac{7 \pi}{3} \cdot \frac{10}{\sqrt{3}}\left(10^{2}-\frac{10^{2}}{3}\right)=\frac{14000 \pi}{9 \sqrt{3}} .
$$

Hence the maximum volume is $\frac{14000 \pi}{9 \sqrt{3}} \mathrm{~cm}^{3}$ ．
Solution 2．See Figure 5．The similarity tells us that $r_{2}=2 r_{1}$ and $r_{1}^{2}+h^{2}=10^{2} \Rightarrow h=\sqrt{10^{2}-r_{1}^{2}}=\sqrt{100-r_{1}^{2}}$ ．
So the volume of a circular cone frustum is

$$
\begin{aligned}
V\left(r_{1}\right) & =\frac{\pi h}{3}\left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right)=\frac{\pi}{3} \sqrt{100-r_{1}^{2}}\left(r_{1}^{2}+r_{1}\left(2 r_{1}\right)+\left(2 r_{1}\right)^{2}\right) \\
& =\frac{7 \pi}{3} r_{1}^{2} \sqrt{100-r_{1}^{2}}
\end{aligned}
$$

Figure 5: Find relations between r_{1}, r_{2}, and h.
where $r_{1} \in[0,10]$. In order to find the maximum volume of $V\left(r_{1}\right)$, we compute

$$
\begin{aligned}
V^{\prime}\left(r_{1}\right) & =\frac{7 \pi}{3}\left(2 r_{1} \sqrt{100-r_{1}^{2}}+r_{1}^{2} \cdot \frac{-2 r_{1}}{2 \sqrt{100-r_{1}^{2}}}\right) \\
& =\frac{7 \pi}{3}\left(\frac{2 r_{1}\left(100-r_{1}^{2}\right)-r_{1}^{3}}{\sqrt{100-r_{1}^{2}}}\right)=\frac{7 \pi}{3}\left(\frac{r_{1}\left(-3 r_{1}^{2}+200\right)}{\sqrt{100-r_{1}^{2}}}\right)=0
\end{aligned}
$$

then we get the critical points are $r_{1}=0$ and $r_{1}=\sqrt{\frac{200}{3}}=\frac{10}{3} \sqrt{6}$. We compare the following values:

$$
V(0)=0, \quad V(10)=0, \quad V\left(\frac{10}{3} \sqrt{6}\right)=\frac{7 \pi}{3} \cdot \frac{200}{3} \sqrt{100-\frac{200}{3}}=\frac{14000 \pi}{9 \sqrt{3}}
$$

Hence the maximum volume is $\frac{14000 \pi}{9 \sqrt{3}} \mathrm{~cm}^{3}$.
Solution 3. See Figure 6. The similarity tells us that $r_{1}=\frac{1}{2} r_{2}$ and $r_{2}^{2}+(2 h)^{2}=20^{2} \Rightarrow h=\frac{\sqrt{20^{2}-r_{2}^{2}}}{2}=\frac{\sqrt{400-r_{2}^{2}}}{2}$.

Figure 6: Find relations between r_{1}, r_{2}, and h.
So the volume of a circular cone frustum is

$$
\begin{aligned}
V\left(r_{2}\right) & =\frac{\pi h}{3}\left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right)=\frac{\pi}{3} \cdot \frac{\sqrt{400-r_{2}^{2}}}{2}\left(\left(\frac{1}{2} r_{2}\right)^{2}+\left(\frac{1}{2} r_{2}\right) r_{2}+r_{2}^{2}\right) \\
& =\frac{\pi}{3} \cdot \frac{\sqrt{400-r_{2}^{2}}}{2} \cdot \frac{7 r_{2}^{2}}{4}=\frac{7 \pi}{24} r_{2}^{2} \sqrt{400-r_{2}^{2}}
\end{aligned}
$$

where $r_{2} \in[0,20]$. In order to find the maximum volume of $V\left(r_{2}\right)$, we compute

$$
\begin{aligned}
V^{\prime}\left(r_{2}\right) & =\frac{7 \pi}{24}\left(2 r_{2} \sqrt{400-r_{1}^{2}}+r_{2}^{2} \cdot \frac{-2 r_{2}}{2 \sqrt{400-r_{1}^{2}}}\right) \\
& =\frac{7 \pi}{24}\left(\frac{2 r_{2}\left(400-r_{2}^{2}\right)-r_{2}^{3}}{\sqrt{400-r_{2}^{2}}}\right)=\frac{7 \pi}{24}\left(\frac{r_{2}\left(-3 r_{2}^{2}+800\right)}{\sqrt{400-r_{2}^{2}}}\right)=0
\end{aligned}
$$

then we get the critical points are $r_{2}=0$ and $r_{2}=\sqrt{\frac{800}{3}}=\frac{20}{3} \sqrt{6}$. We compare the following values:

$$
V(0)=0, \quad V(20)=0, \quad V\left(\frac{20}{3} \sqrt{6}\right)=\frac{7 \pi}{24} \cdot \frac{800}{3} \sqrt{400-\frac{800}{3}}=\frac{14000 \pi}{9 \sqrt{3}}
$$

Hence the maximum volume is $\frac{14000 \pi}{9 \sqrt{3}} \mathrm{~cm}^{3}$.
Solution 4. See Figure 7. Let θ be the angle of the annulus papers, then we know that

$$
\begin{aligned}
& 2 r_{1} \pi=10 \theta \Rightarrow r_{1}=\frac{5 \theta}{\pi} \\
& 2 r_{2} \pi=20 \theta \Rightarrow r_{2}=\frac{10 \theta}{\pi} \\
& h^{2}+r_{1}^{2}=10^{2} \Rightarrow h=\sqrt{10^{2}-r_{1}^{2}}=\sqrt{100-\frac{25 \theta^{1}}{\pi^{2}}}=\frac{5}{\pi} \sqrt{4 \pi-\theta^{2}}
\end{aligned}
$$

Figure 7: Find relations between θ, r_{1}, r_{2}, and h.
So the volume of a circular cone frustum is

$$
\begin{aligned}
V(\theta) & =\frac{\pi h}{3}\left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right)=\frac{\pi}{3} \cdot \frac{5}{\pi} \sqrt{4 \pi^{2}-\theta^{2}} \cdot 7 r_{1}^{2} \\
& =\frac{\pi}{3} \cdot \frac{5}{\pi} \sqrt{4 \pi^{2}-\theta^{2}} \cdot 7\left(\frac{5 \theta}{\pi}\right)^{2}=\frac{875 \theta^{2}}{3 \pi^{2}} \sqrt{4 \pi-\theta^{2}}
\end{aligned}
$$

where $\theta \in[0,2 \pi]$. In order to find the maximum volume of $V(\theta)$, we compute

$$
\begin{aligned}
V^{\prime}(\theta) & =\frac{875}{3 \pi^{2}}\left(2 \theta \sqrt{4 \pi^{2}-\theta^{2}}+\theta^{2} \cdot \frac{-2 \theta}{2 \sqrt{4 \pi^{2}-\theta^{2}}}\right)=\frac{875}{3 \pi^{2}}\left(\frac{2 \theta\left(4 \pi^{2}-\theta^{2}\right)-\theta^{3}}{\sqrt{4 \pi^{2}-\theta^{2}}}\right) \\
& =\frac{875}{3 \pi^{2}}\left(\frac{-\theta\left(3 \theta^{2}-8 \pi^{2}\right)}{\sqrt{4 \pi^{2}-\theta^{2}}}\right)=0
\end{aligned}
$$

then we get the critical points are $\theta=0$, and $\theta=\sqrt{\frac{8}{3} \pi^{2}}=\frac{2}{3} \sqrt{6} \pi$. We compare the following values:

$$
\begin{aligned}
& V(0)=0, \quad V(20)=0 \\
& V\left(\frac{2}{3} \sqrt{6} \pi\right)=\frac{875}{3 \pi^{2}} \cdot \frac{8}{3} \pi^{2} \sqrt{4 \pi-\frac{8}{3} \pi^{2}}=\frac{875 \cdot 8}{9} \cdot \frac{2 \pi}{\sqrt{3}}=\frac{14000 \pi}{9 \sqrt{3}}
\end{aligned}
$$

Hence the maximum volume is $\frac{14000 \pi}{9 \sqrt{3}} \mathrm{~cm}^{3}$.
Solution 5. See Figure 8. Let ϕ be the cutting angle of the annulus paper, then we know that

$$
\begin{aligned}
& 2 r_{1} \pi=10(2 \pi-\phi) \Rightarrow r_{1}=\frac{5(2 \pi-\theta)}{\pi}=5\left(2-\frac{\phi}{\pi}\right)=10-\frac{5 \phi}{\pi} \\
& 2 r_{2} \pi=20(2 \pi-\phi) \Rightarrow r_{2}=\frac{10(2 \pi-\theta)}{\pi}=10\left(2-\frac{\phi}{\pi}\right)=20-\frac{10 \phi}{\pi} \\
& h^{2}+r_{1}^{2}=10^{2} \Rightarrow h=\sqrt{10^{2}-r_{1}^{2}}=\sqrt{100-\left(10-\frac{5 \phi}{\pi}\right)^{2}}=\frac{5}{\pi} \sqrt{4 \pi \phi-\phi^{2}}
\end{aligned}
$$

Figure 8：Find relations between ϕ, r_{1}, r_{2} ，and h ．

So the volume of a circular cone frustum is

$$
\begin{aligned}
V(\phi) & =\frac{\pi h}{3}\left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right)=\frac{\pi}{3} \cdot \frac{5}{\pi} \sqrt{4 \pi \phi-\phi^{2}} \cdot 7\left(\frac{5}{\pi}(2 \pi-\phi)\right)^{2} \\
& =\frac{875}{3 \pi^{2}} \sqrt{\phi(4 \phi-\phi)}(2 \pi-\phi)^{2}=\frac{875}{3 \pi^{2}} \sqrt{4 \pi \phi-\phi^{2}}(2 \pi-\phi)^{2}
\end{aligned}
$$

where $\theta \in[0,2 \pi]$ ．In order to find the maximum volume of $V(\theta)$ ，we compute

$$
\begin{aligned}
V^{\prime}(\theta) & =\frac{875}{3 \pi^{2}}\left(\frac{1}{2} \frac{4 \pi-2 \phi}{\sqrt{4 \pi \phi-\phi^{2}}}(2 \pi-\phi)^{2}+\sqrt{4 \pi \phi-\phi^{2}}(-4 \pi+2 \phi)\right) \\
& =\frac{875}{3 \pi^{2}} \frac{(2 \pi-\phi)}{\sqrt{4 \pi \phi-\phi^{2}}}\left((2 \pi-\phi)^{2}-2\left(4 \pi \phi-\phi^{2}\right)\right) \\
& =\frac{875}{3 \pi^{2}} \frac{(2 \pi-\phi)}{\sqrt{4 \pi \phi-\phi 2}}\left(4 \pi^{2}-12 \pi \phi+3 \phi^{2}\right) .
\end{aligned}
$$

then we get the critical point is $\phi=\frac{12 \pi-\sqrt{144 \pi^{2}-48 \pi^{2}}}{6}=2 \pi-\frac{2}{3} \sqrt{6}$ ．We compare the following values：

$$
\begin{aligned}
& V(0)=0, \quad V(20)=0 \\
& V\left(2 \pi-\frac{2}{3} \sqrt{6}\right)=\frac{875}{3 \pi^{2}} \sqrt{\left(2 \pi-\frac{2}{3} \sqrt{6} \pi\right)\left(2 \pi+\frac{2}{3} \sqrt{6} \pi\right)}\left(\frac{8}{3} \pi\right)^{2}=\frac{14000 \pi}{9 \sqrt{3}}
\end{aligned}
$$

Hence the maximum volume is $\frac{14000 \pi}{9 \sqrt{3}} \mathrm{~cm}^{3}$ ．

評分標準

Let $\theta=\angle A O C$ be the angle of the major sector and $\phi=2 \pi-\theta$ ．
Let α be the angle between $\overline{A B}$ and the base of the lampcover．
a．［4pt］Relationship between r_{1}, r_{2} and h
（a）［2pt］$r_{2}=2 r_{1}$ or $r_{1}=\frac{5 \theta}{\pi}, r_{2}=\frac{10 \theta}{\pi}$ or $r_{1}=\frac{5}{\pi}(2 \pi-\phi), r_{2}=\frac{10}{\pi}(2 \pi-\phi)$ or $r_{1}=10 \cos \alpha, r_{2}=20 \cos \alpha$
（b）$[2 \mathrm{pt}] h^{2}+\left(r_{2}-r_{1}\right)^{2}=10^{2}$ or $h=\frac{5}{\pi} \sqrt{4 \pi^{2}-\theta^{2}}$ or $h=\frac{5}{\pi} \sqrt{4 \pi \phi-\phi^{2}}$ or $h=10 \sin \alpha$
b．［2pt］Form the target function V
（a）$V=\frac{7 \pi}{3} \sqrt{100-r_{1}^{2}} \cdot r_{1}^{2}$
（b）$V=\frac{7 \pi}{24} \sqrt{400-r_{2}^{2}} \cdot r_{2}^{2}$
（c）$V=\frac{7 \pi}{3} h\left(100-h^{2}\right)$
（d）$V=\frac{875 \theta^{2}}{3 \pi} \sqrt{4-\frac{\theta^{2}}{\pi^{2}}}$
（e）$V=\frac{875}{3 \pi^{2}} \sqrt{4 \pi \phi-\phi^{2}} \cdot(2 \pi-\phi)^{2}$
(f) $V=\frac{7000 \pi}{3}\left(\sin \alpha-\sin ^{3} \alpha\right)$
c. $[3 \mathrm{pt}]$ Take derivative
(a) $\frac{d V}{d r_{1}}=\frac{7 \pi}{3}\left(\frac{-r_{1}^{3}}{\sqrt{100-r_{1}^{2}}}+2 r_{1} \sqrt{100-r_{1}^{2}}\right)$
(b) $\frac{d V}{d r_{2}}=\frac{7 \pi}{24}\left(\frac{-r_{2}^{3}}{\sqrt{400-r_{2}^{2}}}+2 r_{2} \sqrt{400-r_{2}^{2}}\right)$
(c) $\frac{d V}{d h}=\frac{7 \pi}{3}\left(100-3 h^{2}\right)$
(d) $\frac{d V}{d \theta}=\frac{875 \theta}{3 \pi^{2}} \cdot \frac{8 \pi^{2}-3 \theta^{2}}{\sqrt{4 \pi^{2}-\theta^{2}}}$
(e) $\frac{d V}{d \phi}=\frac{875}{3 \pi^{2}} \cdot \frac{(2 \pi-\phi)\left(3 \phi^{2}-12 \pi \phi+4 \pi^{2}\right)}{\sqrt{2 \pi \phi-\phi^{2}}}$
(f) $\frac{d V}{d \alpha}=\frac{7000 \pi}{3}\left(\cos \alpha-3 \sin ^{2} \alpha \cos \alpha\right)$
d. $[2 \mathrm{pt}]$ Solve $V^{\prime}=0$
(a) $r_{1}=\frac{10}{3} \sqrt{6}$
(b) $r_{2}=\frac{20}{3} \sqrt{6}$
(c) $h=\frac{10}{3} \sqrt{3}$
(d) $\theta=\sqrt{\frac{8}{3}} \pi$
(e) $\phi=2 \pi\left(1-\sqrt{\frac{2}{3}}\right)$
(f) $\alpha=\sin ^{-1} \sqrt{\frac{1}{3}}$
e. $[2 \mathrm{pt}]$ Check: volume $=\max$
f. $[1 \mathrm{pt}]$ Calculate: $V_{\max }=\frac{14000 \pi}{9 \sqrt{3}}$

Note: If $r_{1}=10$ is assumed (which is wrong, of course), one can get 7 points at most.

8．(12%) An object at rest with mass m is dragged along a horizontal plane by a force acting along a rope attached to the object so that the object remains at rest as Figure 9.

Figure 9：Drag an object with $0 \leq \theta \leq \frac{\pi}{2}$ ．
If the rope makes an angle θ with a plane，where $0 \leq \theta \leq \frac{\pi}{2}$ ，then the magnitude of the force F will satisfy the equation

$$
\mu(m g-F \sin \theta)=F \cos \theta
$$

where μ is a positive constant called the coefficient of static friction and g is the gravitational constant．For what value of θ is F smallest？

Solution：

Solution 1．Since $F=F(\theta)$ ，we implicit differentiation the equation with respect to θ and get

$$
\begin{equation*}
\mu\left(-F^{\prime}(\theta) \sin \theta-F(\theta) \cos \theta\right)=F^{\prime}(\theta) \cos \theta-F(\theta) \sin \theta . \quad(4 \text { points }) \tag{1}
\end{equation*}
$$

We will solve θ such that $F^{\prime}(\theta)=0$ ，which means

$$
\mu(-F(\theta) \cos \theta)=-F(\theta) \sin \theta \Rightarrow F(\theta)(-\mu \cos \theta+\sin \theta)=0 .
$$

Since $F(\theta) \neq 0$ ，we have $\mu \cos \theta=\sin \theta \Rightarrow \tan \theta=\mu \Rightarrow \theta=\tan ^{-1} \mu$ ．（5 points）
From（1），we get

$$
\begin{equation*}
F^{\prime}(\theta)(\cos \theta+\mu \sin \theta)=F(\theta)(\sin \theta-\mu \cos \theta) \Rightarrow F^{\prime}(\theta)=\frac{F(\theta)(\sin \theta-\mu \cos \theta)}{\cos \theta+\mu \sin \theta} \tag{2}
\end{equation*}
$$

－If $\theta<\tan ^{-1} \mu$ ，then $\tan \theta=\frac{\sin \theta}{\cos \theta}<\mu \Rightarrow \sin \theta-\mu \cos \theta<0$ ．From（2），we know that $F^{\prime}(\theta)<0$ ．
－If $\theta>\tan ^{-1} \mu$ ，then $\tan \theta=\frac{\sin \theta}{\cos \theta}>\mu \Rightarrow \sin \theta-\mu \cos \theta>0$ ．From（2），we know that $F^{\prime}(\theta)>0$ ．
Hence $\theta=\tan ^{-1} \mu$ will attain the local（and hence global）minimum value of $F(\theta)$ ．（3 points）
Solution 2．Since $\mu(m g-F \sin \theta)=F \cos \theta \Rightarrow F(\mu \sin \theta+\cos \theta)=\mu m g$ ，we know that

$$
F(\theta)=\frac{\mu m g}{\mu \sin \theta+\cos \theta} .(4 \text { points })
$$

We compute

$$
F^{\prime}(\theta)=-\frac{\mu m g}{(\mu \sin \theta+\cos \theta)^{2}} \cdot(\mu \cos \theta-\sin \theta)
$$

We solve $F^{\prime}(\theta)=0$ and get $\tan \theta=\mu \Rightarrow \theta=\tan ^{-1} \mu$ ．（5 points）
－If $\theta<\tan ^{-1} \mu$ ，then $\tan \theta=\frac{\sin \theta}{\cos \theta}<\mu \Rightarrow \mu \cos \theta-\sin \theta>0$. We know that $F^{\prime}(\theta)<0$ ．
－If $\theta>\tan ^{-1} \mu$ ，then $\tan \theta=\frac{\sin \theta}{\cos \theta}>\mu \Rightarrow \mu \cos \theta-\sin \theta<0$ ．We know that $F^{\prime}(\theta)>0$ ．
Hence $\theta=\tan ^{-1} \mu$ will attain the local（and hence global）minimum value of $F(\theta)$ ．（3 points）注意：如果沒有說明為何 $\theta=\tan ^{-1} \mu$ 為極小値扣兩分

