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1. (5%) Determine the statement is true (◯) or false (⨉).

(a) If f(x, y) is continuous on the rectangle R = {(x, y)∣ a ≤ x ≤ b, c ≤ y ≤ d} except for finitely many points, then
f(x, y) is integrable on R and

∬
R
f(x, y)dA = ∫

d

c
∫

b

a
f(x, y)dxdy = ∫

b

a
∫

d

c
f(x, y)dydx.

(b) If F(x, y) = P (x, y)i +Q(x, y)j and ∂P
∂y

=
∂Q
∂x

on an open connected region D, then F is conservative on D.

(c) If curl F=curl G on R3, then ∫C F ⋅ dr = ∫CG ⋅ dr for all closed path C.

(d) If F and G are vector fields and curl F=curl G, div F=div G, then F −G is a constant vector field.

(e) Let B be a rigid body rotating about the z-axis with constant angular speed ω. If v(x, y, z) is the velocity at
point (x, y, z) ∈ B, then curl v is parallel to k.

Answer. (每小題各 1 分)
(a) (b) (c) (d) (e)

⨉ ⨉ ⨉ ⨉ ◯

2. (10%) Write the integral ∫
1

0
∫

1

√

x
∫

1−y

0
f(x, y, z)dzdydx in 5 other orders.

Answer. (每小題錯一格扣 1 分，錯兩格以上全錯)

(a) ∫
1

0
∫

y2

0
∫

1 − y

0
f(x, y, z)dzdxdy

(b) ∫
1

0
∫

1 − z

0
∫

y2

0
f(x, y, z)dxdydz

(c) ∫
1

0
∫

1 − y

0
∫

y2

0
f(x, y, z)dxdzdy

(d) ∫
1

0
∫

1 −
√
x

0
∫

1 − z
√
x

f(x, y, z)dydzdx

(e) ∫
1

0
∫

(1 − z)2

0
∫

1 − z
√
x

f(x, y, z)dydxdz
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3. (15%) Evaluate the integrals.

(a) ∫
1

0
∫

π
4

tan−1 y
cosx ⋅ tan(cosx)dxdy.

(b) ∫

√

2

1
∫

√

2−y2

0

x + y

x2 + y2
dxdy + ∫

1

0
∫

1

1−y

x + y

x2 + y2
dxdy + ∫

√

2

1
∫

√

2−x2

0

x + y

x2 + y2
dydx.

Solution:

(a)

∫

1

0
∫

π
4

tan−1y
cosx tan (cosx)dxdy = ∫

π
4

0
∫

tanx

0
cosx tan (cosx)dydx (3pt)

= ∫

π
4

0
sinx tan (cosx)dx (Let u = cosx, du = − sinxdx)

= −∫

1√
2

1
tanudu

= ln (cosu)∣
1√
2

1 (2pt)

= ln (cos
1

√
2
) − ln (cos 1) (1pt)

(b)

∫

√

2

1
∫

√

2−y2 x + y

x2 + y2
dxdy + ∫

1

0
∫

1

1−y

x + y

x2 + y2
dxdy + ∫

√

2

1
∫

√

2−x2

0

x + y

x2 + y2
dydx

= ∬
D

x + y

x2 + y2
dA, where D is bounded by x2 + y2 = 2 and x + y = 1.

By polar coordinate, we have

∬
D

x + y

x2 + y2
dA = ∫

π
2

0
∫

√

2

1
cosθ+sinθ

r cos θ + r sin θ

r2
⋅ rdrdθ (4pt)

= ∫

π
2

0
∫

√

2

1
cosθ+sinθ

(cos θ + sin θ)drdθ

= ∫

π
2

0

√
2(cos θ + sin θ) − 1dθ

=
√

2(sin θ − cos θ)∣
π
2

0 −
π

2
(3pt)

= 2
√

2 −
π

2
(2pt)
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4. (10%) Let S be the surface x2 + y2 + z2 = a2, x ≥ 0, y ≥ 0, z ≥ 0 (a > 0), and let C be the boundary of S. Find the
centroid of C.

Solution:

For a quarter circle of radius a (named C ′) on a plane, its centroid can be found to be at ( 2a
π
, 2a
π
) by either way:

(1) Parametrize the curve:
Parametrize C ′ by r(t) = ⟨a cos t, a sin t⟩, t ∈ [0, π

2
].

⇒ ∣r′(t)∣ = ∣⟨−a sin t, a cos t⟩∣ = a.
Arc length s = 1

4
⋅ 2πa = 1

2
πa.

x ⋅ s = ∫
C′
x ⋅ ds = ∫

π
2

0
x(t)∣r′(t)∣dt = ∫

π
2

0
a cos(t)adt = a2

∴x =
a2

1
2
πa

=
2a

π

By the symmetry of the arc, y = x = 2a
π

.

(2) Pappus’s Theorem:
Knowing that the surface area of a hemisphere of radius a is 2πa2 and the arc length of a quarter circle of radius
a is 1

2
πa, if the quarter circle is in the first quadrant and is rotated about the x-axis, Pappus’s Theorem gives

A = 2πy ⋅ s

⇒ 2πa2 = 2πy ⋅
πa

2

⇒ y =
2a

π

By the symmetry of the arc, x = y = 2a
π

.

(7 points up to this point.)

The curve C is composed of quarter circles C1, C2, and C3 on the xy-, yz-, and xz-planes, respectively. By
the above discussion, their centroids are ( 2a

π
, 2a
π
,0), (0, 2a

π
, 2a
π
), and ( 2a

π
,0, 2a

π
), respectively. Since they have

equal masses, the centroid of C is the average of them, namely ( 4a
3π
, 4a
3π
, 4a
3π

). (3 points)

(Note: if you misunderstood the problem but correctly calculated the centroid of the surface S to be at (a
2
, a
2
, a
2
),

you still get 4 points. But no points will be given if you calculated the centroid of the part of the volume inside
the sphere in the first octant.)
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5. (10%) Let C be the curve of intersection of x2 + y2 + z2 = 4, x2 + y2 = 2x, z ≥ 0, oriented C to be counterclockwise

when viewed from above. Evaluate ∫
C
y2dx + z2dy + x2dz.

Solution:

� Solution 1: Using line integral to solve this problem directly.
r(θ) =< 1 + cos θ, sin θ,2 sin θ

2
>, θ ∈ [0,2π]. (3 points)

The original equation =∫
2π
0 [− sin3 θ + sin2 θ

2
cos θ + (1 + cos θ)2 cos θ

2
] dθ (3 points)

By symmetry, the first and the third term will be zero in the end.
Therefore, the above equation will change as follows:
4 ∫

2π
0 sin2 θ

2
dθ

= 4 ∫
2π
0

1−cos θ
2

cos θ dθ
= −2π (4 points)

� Solution 2: Using Stokes’ Theorem to solve this problem.
F =< y2, z2, x2 >
∇ × F =< −2z,−2x,−2y > (2 points)

r(x, y) =< x, y,
√

4 − x2 − y2 >
rx =< 1,0, −x

√

4−x2
−y2

>

ry =< 0,1, −y
√

4−x2
−y2

>

rx × ry =<
x

√

4−x2
−y2

, y
√

4−x2
−y2

,1 > (2 points)

By Stokes’ Theorem,

∮c F ⋅ dr =∬S(∇ × F ) ⋅ dS

= ∬D < −2
√

4 − x2 − y2,−2x,−2y > ⋅ < x
√

4−x2
−y2

, y
√

4−x2
−y2

,1 > dA

= ∬D(−2x − 2xy
√

4−x2
−y2

− 2y) dA (3 points)

By symmetry, the second and the third term will be zero in the end.
Therefore, the above equation will change as follows:

−2 ∫
π
2
−π
2
∫

2 cos θ
0 r cos θrdrdθ

−2 ∫
π
2
−π
2

cos θ ( 1
3
r3) ∣2 cos θ0 rdrdθ

= −16
3 ∫

π
2
−π
2

cos4 θ dθ

= −32
3 ∫

π
2

0 cos4 θ dθ

= −32
3 ∫

π
2

0 ( cos 2θ−1
2

)2 dθ

= −8
3 ∫

π
2

0 (cos2 2θ − 2 cos 2θ + 1) dθ

By symmetry, the second term will be zero in the end.
Therefore, the above equation will change as follows:
= −8

3
⋅ 3
2
⋅ π
2

= −2π. (3 points)
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6. (20%) Let F =
(x−y)2y
(x2

+y2)2
i + −(x−y)2x

(x2
+y2)2

j.

(a) Verify that F is conservative on the right half plane x > 0. Find a potential function of F on the right half plane.

(b) Evaluate ∮
C1

F ⋅ dr where C1 is the ellipse x2

4
+ (y − 2)2 = 1.

(c) Evaluate ∫
C2

F ⋅ dr where C2 is the curve with polar equation r = e∣θ∣, − 9π
4
≤ θ ≤ 9π

4
.

x

y

Solution:

(a) (6%) ∂yf =
−(x−y)2x
(x2

+y2)2
Ô⇒ f = −x2

(x2
+y2)2

− tan−1( y
x
) + g(x)

Ô⇒ ∂xf =
−2xy2

(x2
+y2)2

+
y

(x2
+y2)2

+ g′(x) = (x−y)2y
(x2

+y2)2
+ g′(x) = (x−y)2y

(x2
+y2)2

Ô⇒ g′(x) = 0 Ô⇒ g is constant

Ô⇒ f = −x2

(x2
+y2)2

− tan−1( y
x
) or 1 + −x2

(x2
+y2)2

− tan−1( y
x
) =

y2

(x2
+y2)2

− tan−1( y
x
) (6%)

Other point: Py = Qx =
x4
−4x3y+4xy3−y4

(x2
+y2)3

(2%); ”Py = Qx” implies f is conservative (1%)

(b) (4%) Since {y > 0} is simple connected, F is conservative on {y > 0}.
On the other hand, C1 is closed curve on y > 0 (1%); therefore, ∮C1

F ⋅ dr = 0 (3%)

(c) (10%) ”method 1”
the integral on C2 is equal to the integral on unit circle times two and integral on the tail.

∫D F ⋅ dr = ∫
2π
0 −(cos θ − sin θ)2dθ = −2π (4%), where D is unit circle.

The integral on tail is independent of path, which equals to
f(cos 9π

4
e

9π
4 , sin 9π

4
e

9π
4 ) − f(cos −9π

4
e
−9π
4 , sin −9π

4
e
−9π
4 ) = −π

2
(2%), where f is potential function of F

Therefore, ∫C2
F ⋅ dr = −4π − π

2
= − 9π

2
(2%)

”method2”

∫C2
F ⋅ dr = ∫γ1 F ⋅ dr + ∫γ2 F ⋅ dr, where γ1 is the ”θ ≥ 0” part of C2, γ2 is ”θ < 0” part of C2,

in which x(θ) and y(θ) is differentiable.

∫C2
F ⋅ dr = ∫

9π
4

0 −(cos θ − sin θ)2dθ + ∫
0
−

9π
4
−(cos θ − sin θ)2dθ (4%)

= ∫
9π
4

−
9π
4

−(cos θ − sin θ)2dθ = − 9π
2

(6%) (the answer worth 2 point)
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7. (10%) Evaluate ∫
C
(y+ sin3 x)dx+(z2+cos4 y)dy+(x3+ tan5 z)dz where C is the curve r(t) = sin t i+cos t j+ sin 2t k,

0 ≤ t ≤ 2π. [Hint : C lies on the surface z = 2xy.]

Solution:

First observe that r(t) = sin t i + cos t j + sin 2t k is negative oriented.
Thus by Stoke’s theorem:

∫
C
(y + sin3 x) dx + (z2 + cos4 y) dy + (x3 + tan5 z) dz = −∬

S
∇F ⋅ dS (2%)

where S is the surface z = 2xy bounded by D = {x2 + y2 ≤ 1}

∇F =

RRRRRRRRRRRRRR

i j k
∂
∂x

∂
∂y

∂
∂z

y + sin3 x z2 + cos4 y x3 + tan5 z

RRRRRRRRRRRRRR

= −2z i − 3x2 j − k (2%)

n⃗ = (−
∂z

∂x
,−
∂z

∂y
,1)/∥(−

∂z

∂x
,−
∂z

∂y
,1)∥ = (−2y,−2x,1)/∥(−2y,−2x,1)∥ (2%)

∬
S
∇F ⋅ dS =∬

D
(−2z,−3x2,−1) ⋅ (−2y,−2x,1)dA

=∬
D

4yz + 6x3 − 1dA

=∬
D

8x2y + 6x3 − 1dA

= ∫

2π

0
∫

1

0
(8r3 cos θ sin2 θ + 6r3 cos3 θ − 1)r dr dθ

⋮

= −π (4%)

∫
C
(y + sin3 x) dx + (z2 + cos4 y) dy + (x3 + tan5 z) dz = π
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8. (10%) Evaluate ∬
S
xdS where S is the part of the cone z =

√
2(x2 + y2) that lies below the plane z = 1 + x.

Solution:

Step1.

Find the projection onto the xy-plane of the curve of intersection of the cone z =
√

2(x2 + y2) and the plane
z = 1 + x.

{
z =

√
2(x2 + y2)

z = 1 + x

⇒ 2(x2 + y2) = (x + 1)2

⇒ (
x − 1
√

2
)

2

+ y2 = 1 (1pt)

Step2.

If we regard x and y as parameters, then we can write the parametric equations of S as

x = x y = y z =
√

2(x2 + y2) (1pt)

where

1 −
√

2(1 − y2) ≤ x ≤ 1 +
√

2(1 − y2) , −1 ≤ y ≤ 1 (1pt)

and the vector equation is

r(x, y) = xi + yj +
√

2(x2 + y2)k

Step3.

Find ∣rx × ry ∣.

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

rx = 1i + 0j +
√

2x
√

x2
+y2

k

ry = 0i + 1j +
√

2y
√

x2
+y2

k

⇒ rx × ry =
−
√

2x
√
x2 + y2

i +
−
√

2y
√
x2 + y2

j + 1k (2pts)

⇒ ∣rx × ry ∣ =
√

3 (1pt)

Step4.

Evaluate ∬S xdS.

∬
S
xdS = ∬

D
x ⋅ ∣rx × ry ∣dxdy (2pts)

=
√

3∫
1

−1
∫

1+
√

2(1−y2)

1−
√

2(1−y2)
xdxdy

=
√

3 ⋅ 2
√

2∫
1

−1

√
1 − y2dy

= 2
√

6 ⋅
π

2

=
√

6π (2pts)
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9. (10%) Let S be the surface of the solid bounded by x2 + y2 + z2 = 1 and z ≥ 1
2
. Find the total flux of F(x, y, z) =

x2i + y2j + z2k across S.

Solution:

(Method I)
Let V = {(x, y, z) ∈ R3∣x2 + y2 + z2 ≤ 1, z ≥ 1

2
}, then by Divergence Theorem,

Flux of F =∬

S

F ⋅ dS =∭

V

divF dS =∭

V

2(x + y + z) dS (3%)

From the symmetry of V , we have ∭
V

x dS = ∭
V

y dS = 0.

Therefore, ∭
V

divF dS = ∭
V

2z dS = 2 ∫
2π
0 ∫

π
3

0 ∫
1
1
2 secφ ρ cosφρ2 sinφdρdφdθ

∫

2π

0
∫

π
3

0
∫

1

1
2 secφ

ρ cosφρ2 sinφdρdφdθ =
1

4
∫

2π

0
∫

π
3

0
ρ4 cosφ sinφ∣

1

1
2 secφ

dφdθ

=
2π

4
∫

π
3

0
cosφ sinφ −

1

16
tanφ sec2 φ dφ =

2π

4
(

1

2
sin2 φ −

1

32
tan2 φ)

π
3

0
=

9π

64

⇒∬
S

F ⋅ dS = ∭
V

2z dS = 2 ⋅ 9π
64

= 9
32
π (7 %)

(Method II)
Let S1 = {(x, y, z) ∈ R3∣x2 + y2 + z2 = 1, z ≥ 1

2
} and S2 = {(x, y, z) ∈ R3∣x2 + y2 ≤ 3

4
, z = 1

2
}

Flux of F = ∬

S

F ⋅ dS =∬

S1

(x2, y2, z2) ⋅ dS +∬
S2

(x2, y2, z2) ⋅ dS

= ∬

S1

(x2, y2, z2) ⋅ (x, y, z) dS +∬
S2

(x2, y2, z2) ⋅ (0,0,−1) dS.

= ∬

S1

x3 + y3 + z3 dS −∬
S2

z2 dS =∬

S1

x3 + y3 + z3 dS −
1

4
Area(S2). (3%)

From the symmetry of S1, we have ∬
S1

x3dS = ∬
S1

y3dS = 0.

Thus, we only need to calculate ∬
S1

z3 dS, then by Spherical coordinate

∬

S1

z3 dS = ∫

2π

0
∫

π
3

0
cosφ3 sinφ dφdθ = 2π ⋅ (

−1

4
cos4 φ)

π
3

0
=
−π

2
[(

1

2
)

4

− 1] =
15

32
π.

⇒∬
S

F ⋅ dS = ∬
S1

z3 dS − 1
4
Area(S2) =

15π
32

− 1
4
⋅ (
√

3
2

)
2
π = 9

32
π (7 %)
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10. (10%) Solve the differential equation

y′′ + y = x2ex + tanx, x ∈ (−
π

2
,
π

2
) .

Solution:

Complementary equation: y′′ + y = 0.
Auxiliary equation: r2 + 1 = 0⇒ r = ±i⇒ yc = c1 sinx + c2 cosx. (2 points)

For the particular solution:
(1) For y′′ + y = x2ex it’s a better idea to use the method of undetermined coefficients:
Let yp1 = (Ax2 +Bx +C)ex,
y′p1 = [Ax2 + (2A +B)x + (B +C)]ex,

y′′p1 = [Ax2 + (4A +B)x + (2A + 2B +C)]ex.

y′′p1 + yp1 = [2Ax2 + (4A + 2B)x + (2A + 2B + 2C)]ex ≡ x2ex

⇒ A = 1
2
,B = −1,C = 1

2

∴yp1 = ( 1
2
x2 − x + 1

2
)ex.

(2 points for the formulation, 2 points for solving the coefficients.)

(2) For y′′ + y = tanx we use the method of variation of parameters:
Let yp2 = u1 sinx + u2 cosx, y′p2 = (u′1 sinx + u′2 cosx) + u1 cosx − u2 sinx.
Setting u′1 sinx + u′2 cosx = 0 (equation 1), we have y′′p2 = u

′

1 cosx − u′2 sinx − u1 sinx − u2 cosx.
⇒ y′′p2 + yp2 = u

′

1 cosx − u′2 sinx ≡ tanx (equation 2).

Solving the system of equations 1 and 2, we have

{
u′1 sinx + u′2 cosx = 0
u′1 cosx − u′2 sinx = tanx

⇒{
u′1(x) = sinx,

u′2(x) = − tanx sinx = − sin2 x
cosx

= cos2 x−1
cosx

= cosx − secx

⇒{
u1(x) = − cosx,
u2(x) = sinx − ln ∣ secx + tanx∣ = sinx − ln(secx + tanx) for x ∈ (−π

2
,−π

2
)

⇒yp2(x) = u1 sinx + u2 cosx = −(cosx) ln(secx + tanx)

(2 points for the system of equations, 2 points for solving and integrating them.)

Combining the above results, we have the general solution

y(x) = c1 sinx + c2 cosx + (
1

2
x2 − x +

1

2
)ex − (cosx) ln(secx + tanx)
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