1032微甲01－04班期末考解答和評分標準

1．(5%) Determine the statement is true (\bigcirc) or false (\times) ．
（a）If $f(x, y)$ is continuous on the rectangle $R=\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}$ except for finitely many points，then $f(x, y)$ is integrable on R and

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

（b）If $\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ and $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ on an open connected region D ，then \mathbf{F} is conservative on D ．
（c）If curl $\mathbf{F}=\operatorname{curl} \mathbf{G}$ on \mathbb{R}^{3} ，then $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \mathbf{G} \cdot d \mathbf{r}$ for all closed path C ．
（d）If \mathbf{F} and \mathbf{G} are vector fields and curl $\mathbf{F}=\operatorname{curl} \mathbf{G}$ ， $\operatorname{div} \mathbf{F}=\operatorname{div} \mathbf{G}$ ，then $\mathbf{F}-\mathbf{G}$ is a constant vector field．
（e）Let B be a rigid body rotating about the z－axis with constant angular speed ω ．If $\mathbf{v}(x, y, z)$ is the velocity at point $(x, y, z) \in B$ ，then curl \mathbf{v} is parallel to \mathbf{k} ．

Answer．（每小題各 1 分）

(a)	(b)	(c)	(d)	(e)
\times	\times	\times	\times	\bigcirc

2．(10%) Write the integral $\int_{0}^{1} \int_{\sqrt{x}}^{1} \int_{0}^{1-y} f(x, y, z) d z d y d x$ in 5 other orders．
Answer．（每小題錯一格扣 1 分，錯兩格以上全錯）
（a） $\int_{\frac{1}{0}}^{\frac{1}{0}} \int_{0}^{\boxed{y^{2}}} \sqrt{\boxed{1-y}} f(x, y, z) d z d x d y$
（b） $\int_{0}^{\frac{1}{0}} \int_{0}^{\frac{1-z}{0}} \int_{0}^{\boxed{y^{2}}} f(x, y, z) d x d y d z$
（c） $\int_{\boxed{0}}^{\frac{1}{0}} \sqrt[\int_{0}]{\frac{1-y}{0}} \int_{0}^{\boxed{y^{2}}} f(x, y, z) d x d z d y$
（d）$\sqrt{\frac{1}{0}} \sqrt{\frac{1-\sqrt{x}}{0}} \sqrt{\frac{1-z}{\sqrt{x}}} f(x, y, z) d y d z d x$
（e） $\int_{\frac{1}{0}}^{\frac{1}{0}} \sqrt{\frac{(1-z)^{2}}{\sqrt{x}}} \sqrt{1-z} f(x, y, z) d y d x d z$
3. (15\%) Evaluate the integrals.
(a) $\int_{0}^{1} \int_{\tan ^{-1} y}^{\frac{\pi}{4}} \cos x \cdot \tan (\cos x) d x d y$.
(b) $\int_{1}^{\sqrt{2}} \int_{0}^{\sqrt{2-y^{2}}} \frac{x+y}{x^{2}+y^{2}} d x d y+\int_{0}^{1} \int_{1-y}^{1} \frac{x+y}{x^{2}+y^{2}} d x d y+\int_{1}^{\sqrt{2}} \int_{0}^{\sqrt{2-x^{2}}} \frac{x+y}{x^{2}+y^{2}} d y d x$.

Solution:

(a)

$$
\begin{aligned}
\int_{0}^{1} \int_{\tan ^{-1} y}^{\frac{\pi}{4}} \cos x \tan (\cos x) d x d y & =\int_{0}^{\frac{\pi}{4}} \int_{0}^{\tan x} \cos x \tan (\cos x) d y d x \quad \text { (3pt) } \\
& =\int_{0}^{\frac{\pi}{4}} \sin x \tan (\cos x) d x(\text { Let } u=\cos x, d u=-\sin x d x) \\
& =-\int_{1}^{\frac{1}{\sqrt{2}}} \tan u d u \\
& =\left.\ln (\cos u)\right|_{1} ^{\frac{1}{\sqrt{2}}}(2 \mathrm{pt}) \\
& =\ln \left(\cos \frac{1}{\sqrt{2}}\right)-\ln (\cos 1) \quad(1 \mathrm{pt})
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \int_{1}^{\sqrt{2}} \int^{\sqrt{2-y^{2}}} \frac{x+y}{x^{2}+y^{2}} d x d y+\int_{0}^{1} \int_{1-y}^{1} \frac{x+y}{x^{2}+y^{2}} d x d y+\int_{1}^{\sqrt{2}} \int_{0}^{\sqrt{2-x^{2}}} \frac{x+y}{x^{2}+y^{2}} d y d x \\
= & \iint_{D} \frac{x+y}{x^{2}+y^{2}} d A, \text { where } D \text { is bounded by } x^{2}+y^{2}=2 \text { and } x+y=1
\end{aligned}
$$

By polar coordinate, we have

$$
\begin{aligned}
\iint_{D} \frac{x+y}{x^{2}+y^{2}} d A & =\int_{0}^{\frac{\pi}{2}} \int_{\frac{1}{\cos \theta+\sin \theta}}^{\sqrt{2}} \frac{r \cos \theta+r \sin \theta}{r^{2}} \cdot r d r d \theta(4 \mathrm{pt}) \\
& =\int_{0}^{\frac{\pi}{2}} \int_{\frac{1}{\cos \theta+\sin \theta}}^{\sqrt{2}}(\cos \theta+\sin \theta) d r d \theta \\
& =\int_{0}^{\frac{\pi}{2}} \sqrt{2}(\cos \theta+\sin \theta)-1 d \theta \\
& =\left.\sqrt{2}(\sin \theta-\cos \theta)\right|_{0} ^{\frac{\pi}{2}}-\frac{\pi}{2}(3 \mathrm{pt}) \\
& =2 \sqrt{2}-\frac{\pi}{2}(2 \mathrm{pt})
\end{aligned}
$$

4. (10%) Let S be the surface $x^{2}+y^{2}+z^{2}=a^{2}, x \geq 0, y \geq 0, z \geq 0(a>0)$, and let C be the boundary of S. Find the centroid of C.

Solution:

For a quarter circle of radius a (named C^{\prime}) on a plane, its centroid can be found to be at $\left(\frac{2 a}{\pi}, \frac{2 a}{\pi}\right)$ by either way: (1) Parametrize the curve:

Parametrize C^{\prime} by $\mathbf{r}(t)=\langle a \cos t, a \sin t\rangle, t \in\left[0, \frac{\pi}{2}\right]$.
$\Rightarrow\left|\mathbf{r}^{\prime}(t)\right|=|\langle-a \sin t, a \cos t\rangle|=a$.
Arc length $s=\frac{1}{4} \cdot 2 \pi a=\frac{1}{2} \pi a$.

$$
\begin{aligned}
& \bar{x} \cdot s=\int_{C^{\prime}} x \cdot d s=\int_{0}^{\frac{\pi}{2}} x(t)\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{0}^{\frac{\pi}{2}} a \cos (t) a d t=a^{2} \\
& \therefore \bar{x}=\frac{a^{2}}{\frac{1}{2} \pi a}=\frac{2 a}{\pi}
\end{aligned}
$$

By the symmetry of the arc, $\bar{y}=\bar{x}=\frac{2 a}{\pi}$.
(2) Pappus's Theorem:

Knowing that the surface area of a hemisphere of radius a is $2 \pi a^{2}$ and the arc length of a quarter circle of radius a is $\frac{1}{2} \pi a$, if the quarter circle is in the first quadrant and is rotated about the x-axis, Pappus's Theorem gives

$$
\begin{aligned}
A & =2 \pi \bar{y} \cdot s \\
\Rightarrow 2 \pi a^{2} & =2 \pi \bar{y} \cdot \frac{\pi a}{2} \\
\Rightarrow \bar{y} & =\frac{2 a}{\pi}
\end{aligned}
$$

By the symmetry of the arc, $\bar{x}=\bar{y}=\frac{2 a}{\pi}$.
(7 points up to this point.)
The curve C is composed of quarter circles C_{1}, C_{2}, and C_{3} on the $x y$-, $y z$-, and $x z$-planes, respectively. By the above discussion, their centroids are $\left(\frac{2 a}{\pi}, \frac{2 a}{\pi}, 0\right),\left(0, \frac{2 a}{\pi}, \frac{2 a}{\pi}\right)$, and $\left(\frac{2 a}{\pi}, 0, \frac{2 a}{\pi}\right)$, respectively. Since they have equal masses, the centroid of C is the average of them, namely $\left(\frac{4 a}{3 \pi}, \frac{4 a}{3 \pi}, \frac{4 a}{3 \pi}\right)$. (3 points)
(Note: if you misunderstood the problem but correctly calculated the centroid of the surface S to be at $\left(\frac{a}{2}, \frac{a}{2}, \frac{a}{2}\right)$, you still get 4 points. But no points will be given if you calculated the centroid of the part of the volume inside the sphere in the first octant.)
5. (10%) Let C be the curve of intersection of $x^{2}+y^{2}+z^{2}=4, x^{2}+y^{2}=2 x, z \geq 0$, oriented C to be counterclockwise when viewed from above. Evaluate $\int_{C} y^{2} d x+z^{2} d y+x^{2} d z$.

Solution:

- Solution 1: Using line integral to solve this problem directly. $r(\theta)=<1+\cos \theta, \sin \theta, 2 \sin \frac{\theta}{2}>, \theta \in[0,2 \pi] . \quad$ (3 points)
The original equation $=\int_{0}^{2 \pi}\left[-\sin ^{3} \theta+\sin ^{2} \frac{\theta}{2} \cos \theta+(1+\cos \theta)^{2} \cos \frac{\theta}{2}\right] \mathrm{d} \theta \quad$ (3 points)
By symmetry, the first and the third term will be zero in the end.
Therefore, the above equation will change as follows:
$4 \int_{0}^{2 \pi} \sin ^{2} \frac{\theta}{2} \mathrm{~d} \theta$
$=4 \int_{0}^{2 \pi} \frac{1-\cos \theta}{2} \cos \theta \mathrm{~d} \theta$
$=-2 \pi$ (4 points)
- Solution 2: Using Stokes' Theorem to solve this problem.
$F=<y^{2}, z^{2}, x^{2}>$
$\nabla \times F=<-2 z,-2 x,-2 y>\quad$ (2 points)
$r(x, y)=<x, y, \sqrt{4-x^{2}-y^{2}}>$
$r_{x}=\left\langle 1,0, \frac{-x}{\sqrt{4-x^{2}-y^{2}}}>\right.$
$r_{y}=<0,1, \frac{-y}{\sqrt{4-x^{2}-y^{2}}}>$
$r_{x} \times r_{y}=<\frac{x}{\sqrt{4-x^{2}-y^{2}}}, \frac{y}{\sqrt{4-x^{2}-y^{2}}}, 1>\quad(2$ points)
By Stokes' Theorem,
$\oint_{c} F \cdot \mathrm{~d} r=\iint_{S}(\nabla \times F) \cdot \mathrm{d} S$
$=\iint_{D}<-2 \sqrt{4-x^{2}-y^{2}},-2 x,-2 y>\cdot<\frac{x}{\sqrt{4-x^{2}-y^{2}}}, \frac{y}{\sqrt{4-x^{2}-y^{2}}}, 1>\mathrm{d} A$
$=\iint_{D}\left(-2 x-\frac{2 x y}{\sqrt{4-x^{2}-y^{2}}}-2 y\right) \mathrm{d} A \quad(3$ points $)$
By symmetry, the second and the third term will be zero in the end.
Therefore, the above equation will change as follows:
$-2 \int_{\frac{-\pi}{\pi}}^{\frac{\pi}{2}} \int_{0}^{2 \cos \theta} r \cos \theta r \mathrm{~d} r \mathrm{~d} \theta$
$-\left.2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta\left(\frac{1}{3} r^{3}\right)\right|_{0} ^{2} \cos \theta r \mathrm{~d} r \mathrm{~d} \theta$
$=\frac{-16}{3} \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos ^{4} \theta \mathrm{~d} \theta$
$=\frac{-32}{3} \int_{0}^{\frac{\pi}{2}} \cos ^{4} \theta \mathrm{~d} \theta$
$=\frac{-32}{3} \int_{0}^{\frac{\pi}{2}}\left(\frac{\cos 2 \theta-1}{2}\right)^{2} \mathrm{~d} \theta$
$=\frac{-8}{3} \int_{0}^{\frac{\pi}{2}}\left(\cos ^{2} 2 \theta-2 \cos 2 \theta+1\right) \mathrm{d} \theta$
By symmetry, the second term will be zero in the end.
Therefore, the above equation will change as follows:
$=\frac{-8}{3} \cdot \frac{3}{2} \cdot \frac{\pi}{2}$
$=-2 \pi . \quad$ (3 points)

6. (20%) Let $\mathbf{F}=\frac{(x-y)^{2} y}{\left(x^{2}+y^{2}\right)^{2}} \mathbf{i}+\frac{-(x-y)^{2} x}{\left(x^{2}+y^{2}\right)^{2}} \mathbf{j}$.
(a) Verify that \mathbf{F} is conservative on the right half plane $x>0$. Find a potential function of \mathbf{F} on the right half plane.
(b) Evaluate $\oint_{C_{1}} \mathbf{F} \cdot d \mathbf{r}$ where C_{1} is the ellipse $\frac{x^{2}}{4}+(y-2)^{2}=1$.
(c) Evaluate $\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$ where C_{2} is the curve with polar equation $r=e^{|\theta|},-\frac{9 \pi}{4} \leq \theta \leq \frac{9 \pi}{4}$.

Solution:

(a) $(6 \%) \partial_{y} f=\frac{-(x-y)^{2} x}{\left(x^{2}+y^{2}\right)^{2}} \Longrightarrow f=\frac{-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}-\tan ^{-1}\left(\frac{y}{x}\right)+g(x)$
$\Longrightarrow \partial_{x} f=\frac{-2 x y^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{y}{\left(x^{2}+y^{2}\right)^{2}}+g^{\prime}(x)=\frac{(x-y)^{2} y}{\left(x^{2}+y^{2}\right)^{2}}+g^{\prime}(x)=\frac{(x-y)^{2} y}{\left(x^{2}+y^{2}\right)^{2}}$
$\Longrightarrow g^{\prime}(x)=0 \Longrightarrow g$ is constant
$\Longrightarrow f=\frac{-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}-\tan ^{-1}\left(\frac{y}{x}\right)$ or $1+\frac{-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}-\tan ^{-1}\left(\frac{y}{x}\right)=\frac{y^{2}}{\left(x^{2}+y^{2}\right)^{2}}-\tan ^{-1}\left(\frac{y}{x}\right)$
Other point: $P_{y}=Q_{x}=\frac{x^{4}-4 x^{3} y+4 x y^{3}-y^{4}}{\left(x^{2}+y^{2}\right)^{3}}(2 \%) ; \quad " P_{y}=Q_{x} "$ implies f is conservative (1\%)
(b) (4\%) Since $\{y>0\}$ is simple connected, \mathbf{F} is conservative on $\{y>0\}$.

On the other hand, C_{1} is closed curve on $y>0 \quad(1 \%)$; therefore, $\oint_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=0$
(c) (10%) "method $1 "$
the integral on C_{2} is equal to the integral on unit circle times two and integral on the tail.
$\int_{D} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi}-(\cos \theta-\sin \theta)^{2} d \theta=-2 \pi(4 \%)$, where D is unit circle.
The integral on tail is independent of path, which equals to
$f\left(\cos \frac{9 \pi}{4} e^{\frac{9 \pi}{4}}, \sin \frac{9 \pi}{4} e^{\frac{9 \pi}{4}}\right)-f\left(\cos \frac{-9 \pi}{4} e^{\frac{-9 \pi}{4}}, \sin \frac{-9 \pi}{4} e^{\frac{-9 \pi}{4}}\right)=-\frac{\pi}{2}(2 \%)$, where f is potential function of \mathbf{F}
Therefore, $\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=-4 \pi-\frac{\pi}{2}=-\frac{9 \pi}{2}(2 \%)$
"method2"
$\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=\int_{\gamma_{1}} \mathbf{F} \cdot d \mathbf{r}+\int_{\gamma_{2}} \mathbf{F} \cdot d \mathbf{r}$, where γ_{1} is the " $\theta \geq 0$ " part of C_{2}, γ_{2} is " $\theta<0$ " part of C_{2}, in which $x(\theta)$ and $y(\theta)$ is differentiable.
$\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{\frac{9 \pi}{4}}-(\cos \theta-\sin \theta)^{2} d \theta+\int_{-\frac{9 \pi}{4}}^{0}-(\cos \theta-\sin \theta)^{2} d \theta$
$=\int_{-\frac{9 \pi}{4}}^{\frac{9 \pi}{4}}-(\cos \theta-\sin \theta)^{2} d \theta=-\frac{9 \pi}{2} \quad(6 \%)$ (the answer worth 2 point)
7. (10%) Evaluate $\int_{C}\left(y+\sin ^{3} x\right) d x+\left(z^{2}+\cos ^{4} y\right) d y+\left(x^{3}+\tan ^{5} z\right) d z$ where C is the curve $\mathbf{r}(t)=\sin t \mathbf{i}+\cos t \mathbf{j}+\sin 2 t \mathbf{k}$, $0 \leq t \leq 2 \pi$. [Hint: C lies on the surface $z=2 x y$.]

Solution:

First observe that $r(t)=\sin t \boldsymbol{i}+\cos t \boldsymbol{j}+\sin 2 t \boldsymbol{k}$ is negative oriented.
Thus by Stoke's theorem:

$$
\int_{C}\left(y+\sin ^{3} x\right) d x+\left(z^{2}+\cos ^{4} y\right) d y+\left(x^{3}+\tan ^{5} z\right) d z=-\iint_{S} \nabla F \cdot d S
$$

where S is the surface $z=2 x y$ bounded by $D=\left\{x^{2}+y^{2} \leq 1\right\}$

$$
\begin{align*}
& \nabla F=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y+\sin ^{3} x & z^{2}+\cos ^{4} y & x^{3}+\tan ^{5} z
\end{array}\right|=-2 z \boldsymbol{i}-3 x^{2} \boldsymbol{j}-\boldsymbol{k} \\
& \begin{aligned}
\vec{n}=\left(-\frac{\partial z}{\partial x},-\frac{\partial z}{\partial y}, 1\right) /\left\|\left(-\frac{\partial z}{\partial x},-\frac{\partial z}{\partial y}, 1\right)\right\|=(-2 y,-2 x, 1) /\|(-2 y,-2 x, 1)\| \\
\begin{aligned}
\iint_{S} \nabla F \cdot d S & =\iint_{D}\left(-2 z,-3 x^{2},-1\right) \cdot(-2 y,-2 x, 1) d A \\
& =\iint_{D} 4 y z+6 x^{3}-1 d A \\
& =\iint_{D} 8 x^{2} y+6 x^{3}-1 d A \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(8 r^{3} \cos \theta \sin ^{2} \theta+6 r^{3} \cos ^{3} \theta-1\right) r d r d \theta \\
& \vdots \\
& =-\pi
\end{aligned} \\
\int_{C}\left(y+\sin ^{3} x\right) d x+\left(z^{2}+\cos ^{4} y\right) d y+\left(x^{3}+\tan ^{5} z\right) d z=\pi
\end{aligned}
\end{align*}
$$

8. (10\%) Evaluate $\iint_{S} x d S$ where S is the part of the cone $z=\sqrt{2\left(x^{2}+y^{2}\right)}$ that lies below the plane $z=1+x$.

Solution:

Step1.

Find the projection onto the $x y$-plane of the curve of intersection of the cone $z=\sqrt{2\left(x^{2}+y^{2}\right)}$ and the plane $z=1+x$.

$$
\left.\begin{array}{rl}
& \left\{\begin{array}{l}
z=\sqrt{2\left(x^{2}+y^{2}\right)} \\
z=1+x
\end{array}\right. \\
\Rightarrow \quad & 2\left(x^{2}+y^{2}\right)=(x+1)^{2}
\end{array}\right] \quad \begin{aligned}
& \left(\frac{x-1}{\sqrt{2}}\right)^{2}+y^{2}=1 \quad(\mathbf{1} \mathbf{p t})
\end{aligned}
$$

Step2.

If we regard x and y as parameters, then we can write the parametric equations of S as

$$
x=x \quad y=y \quad z=\sqrt{2\left(x^{2}+y^{2}\right)} \quad(\mathbf{1} \mathbf{p t})
$$

where

$$
1-\sqrt{2\left(1-y^{2}\right)} \leq x \leq 1+\sqrt{2\left(1-y^{2}\right)} \quad, \quad-1 \leq y \leq 1 \quad(\mathbf{1} \mathbf{p t})
$$

and the vector equation is

$$
\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}+\sqrt{2\left(x^{2}+y^{2}\right)} \mathbf{k}
$$

Step3.

Find $\left|\mathbf{r}_{x} \times \mathbf{r}_{y}\right|$.

$$
\begin{array}{ll}
& \left\{\begin{array}{l}
\mathbf{r}_{x}=1 \mathbf{i}+0 \mathbf{j}+\frac{\sqrt{2} x}{\sqrt{x^{2}+y^{2}}} \mathbf{k} \\
\mathbf{r}_{y}=0 \mathbf{i}+1 \mathbf{j}+\frac{\sqrt{2} y}{\sqrt{x^{2}+y^{2}}} \mathbf{k}
\end{array}\right. \\
\Rightarrow \quad & \mathbf{r}_{x} \times \mathbf{r}_{y}=\frac{-\sqrt{2} x}{\sqrt{x^{2}+y^{2}}} \mathbf{i}+\frac{-\sqrt{2} y}{\sqrt{x^{2}+y^{2}}} \mathbf{j}+1 \mathbf{k} \tag{2pts}\\
\Rightarrow \quad & \left|\mathbf{r}_{x} \times \mathbf{r}_{y}\right|=\sqrt{3} \quad(\mathbf{1} \mathbf{p t})
\end{array}
$$

Step4.

Evaluate $\iint_{S} x d S$.

$$
\begin{aligned}
\iint_{S} x d S & =\iint_{D} x \cdot\left|\mathbf{r}_{x} \times \mathbf{r}_{y}\right| d x d y \quad(\mathbf{2 p t s}) \\
& =\sqrt{3} \int_{-1}^{1} \int_{1-\sqrt{2\left(1-y^{2}\right)}}^{1+\sqrt{2\left(1-y^{2}\right)}} x d x d y \\
& =\sqrt{3} \cdot 2 \sqrt{2} \int_{-1}^{1} \sqrt{1-y^{2}} d y \\
& =2 \sqrt{6} \cdot \frac{\pi}{2} \\
& =\sqrt{6} \pi \quad(\mathbf{2 p t s})
\end{aligned}
$$

9. (10%) Let S be the surface of the solid bounded by $x^{2}+y^{2}+z^{2}=1$ and $z \geq \frac{1}{2}$. Find the total flux of $\mathbf{F}(x, y, z)=$ $x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}$ across S.

Solution:

(Method I)
Let $V=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2} \leq 1, z \geq \frac{1}{2}\right\}$, then by Divergence Theorem,

$$
\text { Flux of } \mathbf{F}=\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{V} \operatorname{div} \mathbf{F} d \mathbf{S}=\iiint_{V} 2(x+y+z) d \mathbf{S}
$$

From the symmetry of V, we have $\iiint_{V} x d \mathbf{S}=\iiint_{V} y d \mathbf{S}=0$.
Therefore, $\iiint_{V} \operatorname{div} \mathbf{F} d \mathbf{S}=\iiint_{V} 2 z d \mathbf{S}=2 \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{3}} \int_{\frac{1}{2} \sec \phi}^{1} \rho \cos \phi \rho^{2} \sin \phi d \rho d \phi d \theta$

$$
\begin{align*}
\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{3}} \int_{\frac{1}{2} \sec \phi}^{1} \rho \cos \phi \rho^{2} \sin \phi d \rho d \phi d \theta & =\left.\frac{1}{4} \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{3}} \rho^{4} \cos \phi \sin \phi\right|_{\frac{1}{2} \sec \phi} ^{1} d \phi d \theta \\
= & \frac{2 \pi}{4} \int_{0}^{\frac{\pi}{3}} \cos \phi \sin \phi-\frac{1}{16} \tan \phi \sec ^{2} \phi d \phi
\end{align*}=\frac{2 \pi}{4}\left(\frac{1}{2} \sin ^{2} \phi-\frac{1}{32} \tan ^{2} \phi\right)_{0}^{\frac{\pi}{3}}=\frac{9 \pi}{64}, ~ l
$$

$\Rightarrow \iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{V} 2 z d \mathbf{S}=2 \cdot \frac{9 \pi}{64}=\frac{9}{32} \pi$
(Method II)
Let $S_{1}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1, z \geq \frac{1}{2}\right\}$ and $S_{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \left\lvert\, x^{2}+y^{2} \leq \frac{3}{4}\right., z=\frac{1}{2}\right\}$

$$
\begin{align*}
\text { Flux of } \mathbf{F} & =\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{1}}\left(x^{2}, y^{2}, z^{2}\right) \cdot d \mathbf{S}+\iint_{S_{2}}\left(x^{2}, y^{2}, z^{2}\right) \cdot d \mathbf{S} \\
& =\iint_{S_{1}}\left(x^{2}, y^{2}, z^{2}\right) \cdot(x, y, z) d S+\iint_{S_{2}}\left(x^{2}, y^{2}, z^{2}\right) \cdot(0,0,-1) d S \\
& =\iint_{S_{1}} x^{3}+y^{3}+z^{3} d S-\iint_{S_{2}} z^{2} d S=\iint_{S_{1}} x^{3}+y^{3}+z^{3} d S-\frac{1}{4} \operatorname{Area}\left(S_{2}\right) .
\end{align*}
$$

From the symmetry of S_{1}, we have $\iint_{S_{1}} x^{3} d S=\iint_{S_{1}} y^{3} d S=0$.
Thus, we only need to calculate $\iint_{S_{1}} z^{3} d S$, then by Spherical coordinate

$$
\iint_{S_{1}} z^{3} d S=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{3}} \cos \phi^{3} \sin \phi d \phi d \theta=2 \pi \cdot\left(\frac{-1}{4} \cos ^{4} \phi\right)_{0}^{\frac{\pi}{3}}=\frac{-\pi}{2}\left[\left(\frac{1}{2}\right)^{4}-1\right]=\frac{15}{32} \pi .
$$

$\Rightarrow \iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{1}} z^{3} d S-\frac{1}{4} \operatorname{Area}\left(S_{2}\right)=\frac{15 \pi}{32}-\frac{1}{4} \cdot\left(\frac{\sqrt{3}}{2}\right)^{2} \pi=\frac{9}{32} \pi$
10. (10%) Solve the differential equation

$$
y^{\prime \prime}+y=x^{2} e^{x}+\tan x, \quad x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) .
$$

Solution:

Complementary equation: $y^{\prime \prime}+y=0$.
Auxiliary equation: $r^{2}+1=0 \Rightarrow r= \pm i \Rightarrow y_{c}=c_{1} \sin x+c_{2} \cos x$. (2 points)
For the particular solution:
(1) For $y^{\prime \prime}+y=x^{2} e^{x}$ it's a better idea to use the method of undetermined coefficients:

Let $y_{p_{1}}=\left(A x^{2}+B x+C\right) e^{x}$,
$y_{p_{1}}^{\prime}=\left[A x^{2}+(2 A+B) x+(B+C)\right] e^{x}$,
$y_{p_{1}}^{\prime \prime}=\left[A x^{2}+(4 A+B) x+(2 A+2 B+C)\right] e^{x}$.
$y_{p_{1}}^{\prime \prime}+y_{p_{1}}=\left[2 A x^{2}+(4 A+2 B) x+(2 A+2 B+2 C)\right] e^{x} \equiv x^{2} e^{x}$
$\Rightarrow A=\frac{1}{2}, B=-1, C=\frac{1}{2}$
$\therefore y_{p_{1}}=\left(\frac{1}{2} x^{2}-x+\frac{1}{2}\right) e^{x}$.
(2 points for the formulation, 2 points for solving the coefficients.)
(2) For $y^{\prime \prime}+y=\tan x$ we use the method of variation of parameters:

Let $y_{p_{2}}=u_{1} \sin x+u_{2} \cos x, y_{p_{2}}^{\prime}=\left(u_{1}^{\prime} \sin x+u_{2}^{\prime} \cos x\right)+u_{1} \cos x-u_{2} \sin x$.
Setting $u_{1}^{\prime} \sin x+u_{2}^{\prime} \cos x=0$ (equation 1), we have $y_{p_{2}}^{\prime \prime}=u_{1}^{\prime} \cos x-u_{2}^{\prime} \sin x-u_{1} \sin x-u_{2} \cos x$. $\Rightarrow y_{p_{2}}^{\prime \prime}+y_{p_{2}}=u_{1}^{\prime} \cos x-u_{2}^{\prime} \sin x \equiv \tan x$ (equation 2).

Solving the system of equations 1 and 2 , we have

$$
\begin{aligned}
& \left\{\begin{array}{llc}
u_{1}^{\prime} \sin x+u_{2}^{\prime} \cos x & = & 0 \\
u_{1}^{\prime} \cos x-u_{2}^{\prime} \sin x & = & \tan x
\end{array}\right. \\
& \Rightarrow \begin{cases}u_{1}^{\prime}(x) & =\sin x, \\
u_{2}^{\prime}(x) & = \\
-\tan x \sin x & =-\frac{\sin ^{2} x}{\cos x}=\frac{\cos ^{2} x-1}{\cos x}=\cos x-\sec x\end{cases} \\
& \Rightarrow\left\{\begin{array}{lll}
u_{1}(x) & = & -\cos x, \\
u_{2}(x) & = & \sin x-\ln |\sec x+\tan x|=\sin x-\ln (\sec x+\tan x)
\end{array} \text { for } x \in\left(-\frac{\pi}{2},-\frac{\pi}{2}\right)\right. \\
& \Rightarrow y_{p_{2}}(x)=u_{1} \sin x+u_{2} \cos x=-(\cos x) \ln (\sec x+\tan x)
\end{aligned}
$$

(2 points for the system of equations, 2 points for solving and integrating them.)
Combining the above results, we have the general solution

$$
y(x)=c_{1} \sin x+c_{2} \cos x+\left(\frac{1}{2} x^{2}-x+\frac{1}{2}\right) e^{x}-(\cos x) \ln (\sec x+\tan x)
$$

