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1. (18%) Test the series for absolute convergence, conditional convergence or divergence.

(a)
∞

∑
n=2

(−1)n

n(lnn)2
. (b)

∞

∑
n=1

(−1)n tan 1
n

. (c)
∞

∑
n=1

(−1)n

1
12
+ 1

22
+⋯+ 1

n2

Solution:

(a) (Total: 6 points)

Step (1): Apply Integral Test to
∞

∑
n=2

∣
(−1)n

n (lnn)
2
∣ =

∞

∑
n=2

1

n (lnn)
2

(3 points).

Step (2): Correctly calculate the integral ∫
∞

2

1

x (lnx)
2

dx =
−1

lnx
∣

∞

2

=
1

ln 2
(3 points).

Step (3): Thus by Integral Test,
∞

∑
n=2

(−1)n

n (lnn)
2

is absolutely convergent.

Grading Policies:

(1) As long as you applied Integral Test, you are granted 3 points regardless of the correctness of your

calculation of the integral ∫
∞

2

1

x (lnx)
2

dx.

(2) If your calculation of the integral ∫
∞

2

1

x (lnx)
2

dx is wrong, 1 or 2 points is granted depending on

how many errors you make in that calculation.

(3) If you correctly proved that “
∞

∑
n=2

(−1)n

n (lnn)
2

is convergent” by Alternating Series Test, you are also

granted 3 points. However, these 3 points do not stack with points granted from Step (1) or Step (2).

(b) (Total: 6 points)

Step (1): Apply Limit Comparison Test to
∞

∑
n=1

∣(−1)n tan
1

n
∣ =

∞

∑
n=1

tan
1

n
to compare it with

∞

∑
n=1

1

n
(1 points).

Step (2): Correctly derive the limit: lim
n→∞

tan 1
n

1
n

= 1 (1 points).

Step (3): Correctly state that
∞

∑
n=1

1

n
is divergent. (1 points).

Step (4): Thus by Limit Comparison Test,
∞

∑
n=1

tan
1

n
is divergent.

Step (5): Apply Alternating Series Test to
∞

∑
n=1

(−1)n tan
1

n
. (1 points).

Step (6): Correctly state that: lim
n→∞

tan
1

n
= 0 (1 points).

Step (7): Correctly state that: tan 1
n

is decreasing. (1 points).

Step (8): Thus by Alternating Series Test,
∞

∑
n=1

(−1)n tan
1

n
is convergent.

Step (9): Therefore,
∞

∑
n=1

(−1)n tan
1

n
is conditionally convergent.

Grading Policies:

Step (1) to Step (4) can be replaced by the following:

Step (1’): Apply Comparison Test to
∞

∑
n=1

tan
1

n
to compare it with

∞

∑
n=1

1

n
(1 points).

Step (2’): Correctly state that: tan 1
n
> 1
n
, ∀n (1 points).
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Step (3’): Correctly state that
∞

∑
n=1

1

n
is divergent. (1 points).

Step (4’): Thus by Comparison Test,
∞

∑
n=1

tan
1

n
is divergent.

(c) (Total: 6 points)

Step (1): Correctly state that: lim
n→∞

(−1)n

1
12
+ 1

22
+⋯ + 1

n2

≠ 0. (6 points). (For example, by p-series, p = 2 > 1, we

have lim
n→∞

(
1

12
+

1

22
+⋯ +

1

n2
) =

∞

∑
k=1

1

k2
is finite. So the above limit follows.)

Step (2): Thus by Test for Divergence,
∞

∑
n=1

(−1)n

1
12
+ 1

22
+⋯ + 1

n2

is divergent.

Grading Policies:

(1) If you only correctly proved the divergence of
∞

∑
n=1

1
1
12
+ 1

22
+⋯ + 1

n2

, you are granted 3 points.

(2) If you applied Alternating Series Test and claimed that “because lim
n→∞

1
1
12
+ 1

22
+⋯ + 1

n2

≠ 0, i.e., the

conditions for Alternating Series Test is not satisfied, therefore
∞

∑
n=1

(−1)n

1
12
+ 1

22
+⋯ + 1

n2

is divergent”, you

will be deducted 3 points because the logic is incorrect.

2. (10%)

(a) Find the Maclaurin series for cos−1 x. (Write down the general term explicitly.)

(b) What is the radius of convergence of the series in (a).

(c) Let f(x) = cos−1(x2). Find f (10)(0).

Solution:

(a) Observe that dcos−1 x
dx

= − 1
√
1−x2

, so it suffices to find the Maclaurin series for 1
√
1−x2

.

1
√

1 − x2
= (1 − x2)

−1/2
=

∞

∑
n=0

(

−1
2

n
)(−x2)

n

=1 +
(−1

2
)

1!
(−x2) +

(−1
2
) ⋅ (−3

2
)

2!
(−x2)

2
+⋯+

(−1
2
) ⋅ (−3

2
) ⋅ ⋯ ⋅ (−1

2
− n + 1)

n!
(−x2)

n
+⋯

=1 +
1

2 ⋅ 1!
x2 +

1 ⋅ 3

22 ⋅ 2!
x4 +⋯ +

1 ⋅ 3 ⋅ ⋯ ⋅ (2n − 1)

2n ⋅ n!
x2n +⋯

=1 +
∞

∑
n=1

1 ⋅ 3 ⋅ ⋯ ⋅ (2n − 1)

2n ⋅ n!
x2n

=
∞

∑
n=0

(2n)!

(2n ⋅ n!)
2
x2n (another expression)

Thus

cos−1 x = ∫ −
∞

∑
n=0

(2n)!

(2n ⋅ n!)
2
x2ndx = −

∞

∑
n=0

(2n)!

(2n ⋅ n!)
2
(2n + 1)

x2n+1 +C

Now since cos−1 0 = π
2

, we have C = π
2

. Therefore

cos−1 x =
π

2
−

∞

∑
n=0

(2n)!

(2n ⋅ n!)
2
(2n + 1)

x2n+1

(b) R = 1
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(c) By (a), we have cos−1 (x2) = π
2
−

∞

∑
n=0

(2n)!

(2n⋅n!)2(2n+1)
(x2)

2n+1
= π

2
−

∞

∑
n=0

(2n)!

(2n⋅n!)2(2n+1)
x4n+2. Thus f (10)(0) is

obtained when n = 2, and then f (10)(0) = − 3
40
⋅ 10!.

評分標準

(1) 三題配分分別是6分、2分和2分。

(2) 組合數沒展開扣1分;忘了常數項π
2
扣1分。

(3) a小題微分微錯最多得4分。

(4) c小題須答案達一定程度才給分。

3. (8%) Find the interval of convergence of the series
∞

∑
n=0

(n + 3)xn, and compute the sum.

Solution:

We can use the ratio test to find the radius of convergence (1 point), since

lim
n→∞

n + 4

n + 3
= 1,

the radius is 1 (1 point). To get the inteval of convergence , we need to check the end points, 1 and −1. Since

lim
n→∞

(n + 3)

and
lim
n→∞

(−1)
n
(n + 3)

are both nonzero, the series is not convergent at −1 and 1. So the inteval of convergence is [−1,1] (2 points).

To get the sum, we can find what Σ∞
n=03xn and Σ∞

n=0nx
n are. Since Σ∞

n=0x
n = 1

1−x
(1 point),

Σ∞
n=03xn =

3

1 − x
.

And if we put S = Σ∞
n=0nx

n,

(1 − x)S = x + x2 + x3 +⋯ =
x

1 − x

S =
x

(1 − x)
2
(2 points).

So the sum of the series is
3

1 − x
+

x

(1 − x)
2
(1 point).

4. (8%) Compute the sum of the series

S = (1)(
1

2
) + (1 −

1

3
)(

1

2
)
3
+ (1 −

1

3
+

1

5
)(

1

2
)
5
+ (1 −

1

3
+

1

5
−

1

7
)(

1

2
)
7
+ (1 −

1

3
+

1

5
−

1

7
+

1

9
)(

1

2
)
9
+⋯.

(Hint: imitate the method of deriving the sum of a geometric series.)

Solution:

Let the sum be S, then

(1 −
1

4
)S =

3

4
S =

1

2
−

1

3
(

1

2
)

3

+
1

5
(

1

2
)

5

−
1

7
(

1

2
)

7

+
1

9
(

1

2
)

9

−⋯ (2 points).

Let

f(x) = x −
1

3
x3 +

1

5
x5 −

1

7
x7 +

1

9
x9 −⋯
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,

f ′(x) = 1 − x2 + x4 − x6 + x8 −⋯ =
1

1 + x2
(2 points).

Then
f(x) = ∫ f ′(x)dx = arctanx +C

where the constant C is clearly 0 (2 points). So

S =
4

3
arctan

1

2
(2 points).

5. (8%) A curve consists of two pieces of curves:

C1 ∶ r(t) = (t2 + 3t)i + (t3 − 4t + 1)j, t ≤ 0,

C2 ∶ y = p(x), x > 0, where p(x) is a polynomial of degree 2.

Find the polynomial p(x) so that this curve is continuous and has continuous slope and continuous curvature.

Solution:

Let p(x) = ax2 + bx + c for some parameters a, b, and c to be specified.

Consider x = 0 when t = 0, this curve is continuous.

r(t = 0) =< 02 + 3 × 0,03 − 4 × 0 + 1 >=< 0,1 >, (1)

and

< x = 0, y = p(x = 0) >=< 0, a02 + b0 + c >=< 0, c > . (2)

Let (1) equals (2), we get c = 1.

Get 1 points with (1) or the conclusion c = 1.

Consider x = 0 when t = 0, this curve has continuous slope.

dy

dx
∣
t=0

=

dy
dt
dx
dt

∣
t=0

=
3t2 − 4

2t + 3
∣
t=0

=
−4

3
(3)

and

dy

dx
∣
x=0

= 2ax2 + b∣
x=0

= b (4)

Let (3) equals (4), we get b = − 4
3
.

Get 1 points with (3) or r′(0) =< 3,−4 >.

Get 1 points with the conclusion b = − 4
3
.

Consider x = 0 when t = 0, this curve has continuous curvature.

κ =
∣r′ × r′′∣

∣r′∣3
=

∣ < 2t + 3,3t2 − 4,0 > × < 2,6t,0 > ∣

∣ < 2t + 3,3t2 − 4,0 > ∣3
(5)

=
∣12t2 + 18t − 6t2 + 8∣

(4t2 + 12t + 9 + 9t4 − 24t2 + 16)
3
2

(6)

Then,

κ∣
t=0

=
8

25
3
2

=
8

125
(7)

and

Get 2 points with (7).

κ∣
x=0

=
∣p′′(x)∣

(1 + p′(x)2)
3
2

∣
x=0

=
∣2a∣

(1 + (2ax + b)2)
3
2

∣
x=0

=
∣2a∣

(1 + b2)
3
2

(8)
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Let (7) equals (8), we get ∣a∣ = ( 8
125

)( 125
27

)( 1
2
) = 4

27
.

Get 2 points with (8).

Two polynomials of degree 2 are our solutions.

p1(x) =
4

27
x2 −

4

3
x + 1 (9)

p2(x) = −
4

27
x2 −

4

3
x + 1 (10)

Get 1 points with two solutions.

6. (12%) Find the limit, if it exists, or show that the limit does not exist.

(a) lim
(x,y)→(0,0)

x5
+x2y3

x4+y6
. (b) lim

(x,y,z)→(0,0,0)

exyz
−1

x2+y2+z2
.

Solution:

(a) The limit does not exist, because the limit approaches different values along with x = 0 and x2 = y3.

Along with x = 0,

lim
y→0

05 + 02y3

04 + y6
= lim
y→0

0

y6
= 0, (11)

for all y ≠ 0.

Get 3 points with one of limit value like equation (11).

Along with x2 = y3,

f(x, y) = f(y3/2, y) =
y15/2 + y6

y6 + y6
=
y3/2 + 1

2
(12)

lim
y→0

y3/2 + 1

2
=

0 + 1

2
=

1

2
(13)

Get another 3 points with another limit value like equation (13).

(b) The limit approaches to zero.

Case 1: xyz = 0. Because (x, y, z)→ (0,0,0) means (x, y, z) ≠ (0,0,0) and x2 + y2 + z2 ≠ 0. Then,

f(x, y, z) =
e0 − 1

x2 + y2 + z2
= 0. (14)

Case 2: xyz ≠ 0.

Transfer Cartesian coordinates to spherical coordinate.

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ, (15)

where r > 0 because of xyz ≠ 0. Then,

f(x, y, z) =
exp{r3δ} − 1

r2
, (16)

where δ = sin2 θ cosφ sinφ cos θ. By L’Hospital’s Rule,

lim
r→0

exp{r3δ} − 1

r2
= lim
r→0

exp{r3δ}3r2δ

2r
== lim

r→0
r(

3δ exp{r3δ}

2
) = 0, (17)

for all δ is finite.

Get 1 point if you conclude the limit 0 only through a specific direction like x = 0, y = 0,
x = z = 0, or x = y = z, ...

Get 5 points if you proof the limit 0 by transforming spherical coordinate but with only wrong
spherical expression.

Get 0 point if you try to proof the limit 0 with wrong logical derivations.
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7. (10%) Let f(x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x3 − y3

x2 + y2
, for (x, y) ≠ (0,0)

0, for (x, y) = (0,0).

(a) Find fx(x, y) and fy(x, y).

(b) Are the functions fx and fy continuous at (0,0)?

Solution:

(a) (3pts) For (x, y) ≠ (0,0),

fx(x, y) =
3x2

x2 + y2
−

2x(x3 − y3)

(x2 + y2)2
=
x4 + 3x2y2 + 2xy3

(x2 + y2)2
,

fy(x, y) =
−3y2

x2 + y2
−

2y(x3 − y3)

(x2 + y2)2
=
−y4 − 3x2y2 − 2yx3

(x2 + y2)2
.

(3pts) For (x, y) = (0,0),

fx(0,0) = lim
h→0

f(h,0) − f(0,0)

h
= lim
h→0

h3

h2
⋅

1

h
= 1,

fy(0,0) = lim
k→0

f(0, k) − f(0,0)

k
= lim
k→0

−
k3

k2
⋅

1

k
= −1.

(b) (4pts) If fx, fy is continuous at (0,0), then lim
(x,y)→(0,0)

fx and lim
(x,y)→(0,0)

fy exist and their values equal 1 and

−1 respectively. But along x = 0,

lim
(x,y)→(0,0)

fx(x, y) = lim
a→0

fx(0, a) = lim
a→0

0

a4
= 0,

which conflicts to fx(0,0) computed in (a). Similarily along y = 0,

lim
(x,y)→(0,0)

fy(x, y) = lim
b→0

fy(b,0) = lim
b→0

0

b4
= 0,

which isn’t equal to −1(= fy(0,0) = −1).

8. (8%) Find the tangent plane of the surface

4

π
arctan

z

2
= x2 + ∫

z

xy
xy

√
1 + t3dt

at the point (1,2,2).

Solution:

Let F (x, y, z) = x2 +xy ∫
z
xy

√
1 + t3 dt− 4

π
arctan z

2
. Note that ∇F (x0, y0, z0) is normal to the point (x0, y0, z0) on

the surface F (x, y, z) = 0. Thus we compute ∇F at first,

Fx = 2x + y∫
z

xy

√
1 + t3 dt + xy(

√
1 + (xy)3 ⋅ (−y)), (2pts)

Fy = x∫
z

xy

√
1 + t3 dt + xy(

√
1 + (xy)3 ⋅ (−x)), (2pts)

Fz = xy
√

1 + z3 −
4

π
⋅
1

2
⋅

1

1 + ( z
2
)2
. (2pts)

Hence, ∇F (1,2,2) = (2 + 0 − 4
√

1 + 23,−2
√

1 + 23,2
√

1 + 23 − 2
π
( 1
1+1

)) = (−10,−6,6 − 1
π
) (1pt), and the tangent

plane at (1,2,2) is −10(x − 1) − 6(y − 2) + (6 − 1
π
)(z − 2) = 0. (1pt)

9. (8%) Find all points at which the direction of fastest change of the function f(x, y, z) = x2 + y2 + z2 − 2x − 4y − 6z is
i + 2j + 3k.
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Solution:

When ∇f = 2(x − 1, y − 2, z − 3) is parallel to (1,2,3)[ 1 pt ]

correct ans:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x−1
1

=
y−2
2

= z−3
3

{(t,2t,3t) ∶ t ∈ R}

{(t,2t,3t) ∶ t ∈ R/{1}}

[ 8 pts ]

Note, “fastest” means increasing or decreasing most drastically.

Thus if you only consider the case:
⎧⎪⎪
⎨
⎪⎪⎩

{(t,2t,3t) ∶ t ∈ R, t ≥ 0}

{(t,2t,3t) ∶ t ∈ R/{1}, t ≥ 0}
you’ll get [7 pts]

If you only write one or two points, such as (1,2,3), you’ll get [ 2 pts ]

10. (10%) Let g(x, y) = 4x3 − 13y3 + 6x2y + 3xy2 − 12x2 − 12xy − 30y2. Find the critical points of g(x, y), and classify
them.

Solution:

∇f = 0 [ 1 pt ]
critical points: (0,0), (2,0), ( 2

3
, −4

3
), ( 8

3
, −4

3
) [ 1 pt for each]

If you mentioned D(x, y) [ 1 pt ]
⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(0,0),D(0,0) > 0, gxx < 0, local maximum

(2,0),D(2,0) < 0, saddle point

( 2
3
, −4

3
),D( 2

3
, −4

3
) < 0, saddle point

( 8
3
, −4

3
),D( 8

3
, −4

3
) > 0, gxx > 0, local minimum

[ 1 pt for each]

11. (10%) Find the points on the intersection of the plane x + y + 2z = 2 and the paraboloid z = x2 + y2 that are nearest
to and farthest from the origin.

Solution:
Set

f(x, y, z) = x2 + y2 + z2

g(x, y, z) = x + y + 2z − 2

h(x, y, z) = x2 + y2 − z.

Assume that ∇f + λ1∇g + λ2∇h = 0. Then we obtain

2x + λ1 + 2λ2x = 0

2y + λ1 + 2λ2y = 0

2z + 2λ1 − λ2 = 0.

We also have

x + y + 2z = 2

x2 + y2 − z = 0.

Hence we can yield critical points are ( 1
2
, 1
2
, 1
2
) and (−1,−1,2). Since f( 1

2
, 1
2
, 1
2
) = 3

4
and f(−1,−1,2) = 6, we

can conclude that ( 1
2
, 1
2
, 1
2
) is the point on the intersection nearest to the origin and (−1,−1,2) is the point on the

intersection farthest to the origin.
評分標準：函數假設寫好以及 Largrange’s multiplier 的使用方式有做說明，這裡佔4%，方程式列出，解方程部份基本

上不看過程(但必須要寫)，不過中間若有明顯錯誤便會扣分(依錯的程度來斟酌)，最後要說明哪個點為最大值點，哪個點為最

小值點，此處必須解釋原因，只有寫下結論者扣4%，解釋不夠詳細會斟酌扣分，而筆墨分為2%，但空白者與不相干的過程皆

不給分。
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