1．(18%) Test the series for absolute convergence，conditional convergence or divergence．
（a）$\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n(\ln n)^{2}}$ ．
（b）$\sum_{n=1}^{\infty}(-1)^{n} \tan \frac{1}{n}$ ．
（c）$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}}}$

Solution：

（a）（Total： 6 points）
Step（1）：Apply Integral Test to $\sum_{n=2}^{\infty}\left|\frac{(-1)^{n}}{n(\ln n)^{2}}\right|=\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$（3 points）．
Step（2）：Correctly calculate the integral $\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} \mathrm{~d} x=\left.\frac{-1}{\ln x}\right|_{2} ^{\infty}=\frac{1}{\ln 2}$（3 points）．
Step（3）：Thus by Integral Test，$\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n(\ln n)^{2}}$ is absolutely convergent．

Grading Policies：

（1）As long as you applied Integral Test，you are granted 3 points regardless of the correctness of your calculation of the integral $\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} \mathrm{~d} x$ ．
（2）If your calculation of the integral $\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} \mathrm{~d} x$ is wrong， $\mathbf{1}$ or $\mathbf{2}$ points is granted depending on how many errors you make in that calculation．
（3）If you correctly proved that＂$\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n(\ln n)^{2}}$ is convergent＂by Alternating Series Test，you are also granted 3 points．However，these 3 points do not stack with points granted from Step（1）or Step（2）．
（b）（Total： 6 points）
Step（1）：Apply Limit Comparison Test to $\sum_{n=1}^{\infty}\left|(-1)^{n} \tan \frac{1}{n}\right|=\sum_{n=1}^{\infty} \tan \frac{1}{n}$ to compare it with $\sum_{n=1}^{\infty} \frac{1}{n}$（1 points）．
Step（2）：Correctly derive the limit： $\lim _{n \rightarrow \infty} \frac{\tan \frac{1}{n}}{\frac{1}{n}}=1$（1 points）．
Step（3）：Correctly state that $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent．（1 points）．
Step（4）：Thus by Limit Comparison Test，$\sum_{n=1}^{\infty} \tan \frac{1}{n}$ is divergent．
Step（5）：Apply Alternating Series Test to $\sum_{n=1}^{\infty}(-1)^{n} \tan \frac{1}{n}$ ．（1 points）．
Step（6）：Correctly state that： $\lim _{n \rightarrow \infty} \tan \frac{1}{n}=0$（1 points）．
Step（7）：Correctly state that： $\tan \frac{1}{n}$ is decreasing．（1 points）．
Step（8）：Thus by Alternating Series Test，$\sum_{n=1}^{\infty}(-1)^{n} \tan \frac{1}{n}$ is convergent．
Step（9）：Therefore，$\sum_{n=1}^{\infty}(-1)^{n} \tan \frac{1}{n}$ is conditionally convergent．

Grading Policies：

Step（1）to Step（4）can be replaced by the following：
Step（ 1^{\prime} ）：Apply Comparison Test to $\sum_{n=1}^{\infty} \tan \frac{1}{n}$ to compare it with $\sum_{n=1}^{\infty} \frac{1}{n}$（1 points）．
Step（2＇）：Correctly state that： $\tan \frac{1}{n}>\frac{1}{n}, \forall n$（1 points）．

Step (3'): Correctly state that $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent. (1 points).
Step (4'): Thus by Comparison Test, $\sum_{n=1}^{\infty} \tan \frac{1}{n}$ is divergent.
(c) (Total: 6 points)

Step (1): Correctly state that: $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}}} \neq 0$. (6 points). (For example, by p-series, $p=2>1$, we have $\lim _{n \rightarrow \infty}\left(\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}}\right)=\sum_{k=1}^{\infty} \frac{1}{k^{2}}$ is finite. So the above limit follows.)
Step (2): Thus by Test for Divergence, $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}}}$ is divergent.

Grading Policies:

(1) If you only correctly proved the divergence of $\sum_{n=1}^{\infty} \frac{1}{\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}}}$, you are granted $\mathbf{3}$ points.
(2) If you applied Alternating Series Test and claimed that "because $\lim _{n \rightarrow \infty} \frac{1}{\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}}} \neq 0$, i.e., the conditions for Alternating Series Test is not satisfied, therefore $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}}}$ is divergent", you will be deducted $\mathbf{3}$ points because the logic is incorrect.
2. (10%)
(a) Find the Maclaurin series for $\cos ^{-1} x$. (Write down the general term explicitly.)
(b) What is the radius of convergence of the series in (a).
(c) Let $f(x)=\cos ^{-1}\left(x^{2}\right)$. Find $f^{(10)}(0)$.

Solution:

(a) Observe that $\frac{\mathrm{d} \cos ^{-1} x}{\mathrm{~d} x}=-\frac{1}{\sqrt{1-x^{2}}}$, so it suffices to find the Maclaurin series for $\frac{1}{\sqrt{1-x^{2}}}$.

$$
\begin{aligned}
\frac{1}{\sqrt{1-x^{2}}}= & \left(1-x^{2}\right)^{-1 / 2}=\sum_{n=0}^{\infty}\binom{\frac{-1}{2}}{n}\left(-x^{2}\right)^{n} \\
= & 1+\frac{\left(\frac{-1}{2}\right)}{1!}\left(-x^{2}\right)+\frac{\left(\frac{-1}{2}\right) \cdot\left(\frac{-3}{2}\right)}{2!}\left(-x^{2}\right)^{2}+\cdots+ \\
& \frac{\left(\frac{-1}{2}\right) \cdot\left(\frac{-3}{2}\right) \cdots \cdot\left(\frac{-1}{2}-n+1\right)}{n!}\left(-x^{2}\right)^{n}+\cdots \\
= & 1+\frac{1}{2 \cdot 1!} x^{2}+\frac{1 \cdot 3}{2^{2} \cdot 2!} x^{4}+\cdots+\frac{1 \cdot 3 \cdots \cdot(2 n-1)}{2^{n} \cdot n!} x^{2 n}+\cdots \\
= & 1+\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot \cdots \cdot(2 n-1)}{2^{n} \cdot n!} x^{2 n} \\
= & \sum_{n=0}^{\infty} \frac{(2 n)!}{\left(2^{n} \cdot n!\right)^{2}} x^{2 n} \quad(\text { another expression) }
\end{aligned}
$$

Thus

$$
\cos ^{-1} x=\int-\sum_{n=0}^{\infty} \frac{(2 n)!}{\left(2^{n} \cdot n!\right)^{2}} x^{2 n} \mathrm{~d} x=-\sum_{n=0}^{\infty} \frac{(2 n)!}{\left(2^{n} \cdot n!\right)^{2}(2 n+1)} x^{2 n+1}+C
$$

Now since $\cos ^{-1} 0=\frac{\pi}{2}$, we have $C=\frac{\pi}{2}$. Therefore

$$
\cos ^{-1} x=\frac{\pi}{2}-\sum_{n=0}^{\infty} \frac{(2 n)!}{\left(2^{n} \cdot n!\right)^{2}(2 n+1)} x^{2 n+1}
$$

(b) $R=1$
（c）By（a），we have $\cos ^{-1}\left(x^{2}\right)=\frac{\pi}{2}-\sum_{n=0}^{\infty} \frac{(2 n)!}{\left(2^{n} \cdot n!\right)^{2}(2 n+1)}\left(x^{2}\right)^{2 n+1}=\frac{\pi}{2}-\sum_{n=0}^{\infty} \frac{(2 n)!}{\left(2^{n} \cdot n!\right)^{2}(2 n+1)} x^{4 n+2}$ ．Thus $f^{(10)}(0)$ is obtained when $n=2$ ，and then $f^{(10)}(0)=-\frac{3}{40} \cdot 10$ ！．

評分標準

（1）三題配分分別是 6 分， 2 分和 2 分。
（2）組合數沒展開扣1分；忘了常數項 $\frac{\pi}{2}$ 扣 1 分。
（3）a小題微分微錯最多得 4 分。
（4）c小題須答案達一定程度才給分。

3．(8%) Find the interval of convergence of the series $\sum_{n=0}^{\infty}(n+3) x^{n}$ ，and compute the sum．

Solution：

We can use the ratio test to find the radius of convergence（1 point），since

$$
\lim _{n \rightarrow \infty} \frac{n+4}{n+3}=1
$$

the radius is 1 （1 point）．To get the inteval of convergence，we need to check the end points， 1 and -1 ．Since

$$
\lim _{n \rightarrow \infty}(n+3)
$$

and

$$
\lim _{n \rightarrow \infty}(-1)^{n}(n+3)
$$

are both nonzero，the series is not convergent at -1 and 1 ．So the inteval of convergence is $[-1,1]$（2 points）． To get the sum，we can find what $\Sigma_{n=0}^{\infty} 3 x^{n}$ and $\sum_{n=0}^{\infty} n x^{n}$ are．Since $\Sigma_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$（1 point），

$$
\Sigma_{n=0}^{\infty} 3 x^{n}=\frac{3}{1-x}
$$

And if we put $S=\sum_{n=0}^{\infty} n x^{n}$ ，

$$
\begin{gathered}
(1-x) S=x+x^{2}+x^{3}+\cdots=\frac{x}{1-x} \\
S=\frac{x}{(1-x)^{2}}(2 \text { points }) .
\end{gathered}
$$

So the sum of the series is

$$
\frac{3}{1-x}+\frac{x}{(1-x)^{2}} \text { (1 point). }
$$

4．(8%) Compute the sum of the series

$$
S=(1)\left(\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)\left(\frac{1}{2}\right)^{3}+\left(1-\frac{1}{3}+\frac{1}{5}\right)\left(\frac{1}{2}\right)^{5}+\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\right)\left(\frac{1}{2}\right)^{7}+\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}\right)\left(\frac{1}{2}\right)^{9}+\cdots
$$

（Hint：imitate the method of deriving the sum of a geometric series．）

Solution：

Let the sum be S ，then

$$
\left(1-\frac{1}{4}\right) S=\frac{3}{4} S=\frac{1}{2}-\frac{1}{3}\left(\frac{1}{2}\right)^{3}+\frac{1}{5}\left(\frac{1}{2}\right)^{5}-\frac{1}{7}\left(\frac{1}{2}\right)^{7}+\frac{1}{9}\left(\frac{1}{2}\right)^{9}-\cdots(2 \text { points }) .
$$

Let

$$
f(x)=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}+\frac{1}{9} x^{9}-\cdots
$$

$$
f^{\prime}(x)=1-x^{2}+x^{4}-x^{6}+x^{8}-\cdots=\frac{1}{1+x^{2}} \text { (2 points). }
$$

Then

$$
f(x)=\int f^{\prime}(x) \mathrm{d} x=\arctan x+C
$$

where the constant C is clearly 0 (2 points). So

$$
S=\frac{4}{3} \arctan \frac{1}{2} \text { (2 points). }
$$

5. (8\%) A curve consists of two pieces of curves:
$C_{1}: \mathbf{r}(t)=\left(t^{2}+3 t\right) \mathbf{i}+\left(t^{3}-4 t+1\right) \mathbf{j}, t \leq 0$,
$C_{2}: y=p(x), x>0$, where $p(x)$ is a polynomial of degree 2 .
Find the polynomial $p(x)$ so that this curve is continuous and has continuous slope and continuous curvature.

Solution:

Let $p(x)=a x^{2}+b x+c$ for some parameters a, b, and c to be specified.
Consider $x=0$ when $t=0$, this curve is continuous.

$$
\begin{equation*}
\mathbf{r}(t=0)=\left\langle 0^{2}+3 \times 0,0^{3}-4 \times 0+1\right\rangle=\langle 0,1\rangle \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle x=0, y=p(x=0)>=<0, a 0^{2}+b 0+c>=<0, c\right\rangle . \tag{2}
\end{equation*}
$$

Let (1) equals (2), we get $c=1$.
Get 1 points with (1) or the conclusion $c=1$.
Consider $x=0$ when $t=0$, this curve has continuous slope.

$$
\begin{equation*}
\left.\frac{d y}{d x}\right|_{t=0}=\left.\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\right|_{t=0}=\left.\frac{3 t^{2}-4}{2 t+3}\right|_{t=0}=\frac{-4}{3} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\frac{d y}{d x}\right|_{x=0}=2 a x^{2}+\left.b\right|_{x=0}=b \tag{4}
\end{equation*}
$$

Let (3) equals (4), we get $b=-\frac{4}{3}$.
Get 1 points with (3) or $r^{\prime}(0)=\langle 3,-4\rangle$.
Get 1 points with the conclusion $b=-\frac{4}{3}$.
Consider $x=0$ when $t=0$, this curve has continuous curvature.

$$
\begin{align*}
\kappa=\frac{\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|}{\left|\mathbf{r}^{\prime}\right|^{3}} & =\frac{\left|<2 t+3,3 t^{2}-4,0>\times<2,6 t, 0>\right|}{\left|<2 t+3,3 t^{2}-4,0>\right|^{3}} \tag{5}\\
& =\frac{\left|12 t^{2}+18 t-6 t^{2}+8\right|}{\left(4 t^{2}+12 t+9+9 t^{4}-24 t^{2}+16\right)^{\frac{3}{2}}} \tag{6}
\end{align*}
$$

Then,

$$
\begin{equation*}
\left.\kappa\right|_{t=0}=\frac{8}{25^{\frac{3}{2}}}=\frac{8}{125} \tag{7}
\end{equation*}
$$

and
Get 2 points with (7).

$$
\begin{equation*}
\left.\kappa\right|_{x=0}=\left.\frac{\left|p^{\prime \prime}(x)\right|}{\left(1+p^{\prime}(x)^{2}\right)^{\frac{3}{2}}}\right|_{x=0}=\left.\frac{|2 a|}{\left(1+(2 a x+b)^{2}\right)^{\frac{3}{2}}}\right|_{x=0}=\frac{|2 a|}{\left(1+b^{2}\right)^{\frac{3}{2}}} \tag{8}
\end{equation*}
$$

Let (7) equals (8), we get $|a|=\left(\frac{8}{125}\right)\left(\frac{125}{27}\right)\left(\frac{1}{2}\right)=\frac{4}{27}$.
Get 2 points with (8).
Two polynomials of degree 2 are our solutions.

$$
\begin{align*}
& p_{1}(x)=\frac{4}{27} x^{2}-\frac{4}{3} x+1 \tag{9}\\
& p_{2}(x)=-\frac{4}{27} x^{2}-\frac{4}{3} x+1 \tag{10}
\end{align*}
$$

Get 1 points with two solutions.
6. (12%) Find the limit, if it exists, or show that the limit does not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{5}+x^{2} y^{3}}{x^{4}+y^{6}}$.
(b) $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{e^{x y z}-1}{x^{2}+y^{2}+z^{2}}$.

Solution:

(a) The limit does not exist, because the limit approaches different values along with $x=0$ and $x^{2}=y^{3}$.

Along with $x=0$,

$$
\begin{equation*}
\lim _{y \rightarrow 0} \frac{0^{5}+0^{2} y^{3}}{0^{4}+y^{6}}=\lim _{y \rightarrow 0} \frac{0}{y^{6}}=0 \tag{11}
\end{equation*}
$$

for all $y \neq 0$.
Get 3 points with one of limit value like equation (11).
Along with $x^{2}=y^{3}$,

$$
\begin{array}{r}
f(x, y)=f\left(y^{3 / 2}, y\right)=\frac{y^{15 / 2}+y^{6}}{y^{6}+y^{6}}=\frac{y^{3 / 2}+1}{2} \\
\lim _{y \rightarrow 0} \frac{y^{3 / 2}+1}{2}=\frac{0+1}{2}=\frac{1}{2} \tag{13}
\end{array}
$$

Get another 3 points with another limit value like equation (13).
(b) The limit approaches to zero.

Case 1: $x y z=0$. Because $(x, y, z) \rightarrow(0,0,0)$ means $(x, y, z) \neq(0,0,0)$ and $x^{2}+y^{2}+z^{2} \neq 0$. Then,

$$
\begin{equation*}
f(x, y, z)=\frac{e^{0}-1}{x^{2}+y^{2}+z^{2}}=0 . \tag{14}
\end{equation*}
$$

Case 2: $x y z \neq 0$.
Transfer Cartesian coordinates to spherical coordinate.

$$
\begin{align*}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \\
& z=r \cos \theta \tag{15}
\end{align*}
$$

where $r>0$ because of $x y z \neq 0$. Then,

$$
\begin{equation*}
f(x, y, z)=\frac{\exp \left\{r^{3} \delta\right\}-1}{r^{2}} \tag{16}
\end{equation*}
$$

where $\delta=\sin ^{2} \theta \cos \phi \sin \phi \cos \theta$. By L'Hospital's Rule,

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{\exp \left\{r^{3} \delta\right\}-1}{r^{2}}=\lim _{r \rightarrow 0} \frac{\exp \left\{r^{3} \delta\right\} 3 r^{2} \delta}{2 r}=\lim _{r \rightarrow 0} r\left(\frac{3 \delta \exp \left\{r^{3} \delta\right\}}{2}\right)=0 \tag{17}
\end{equation*}
$$

for all δ is finite.
Get 1 point if you conclude the limit 0 only through a specific direction like $x=0, y=0$, $x=z=0$, or $x=y=z, \ldots$
Get 5 points if you proof the limit 0 by transforming spherical coordinate but with only wrong spherical expression.
Get 0 point if you try to proof the limit 0 with wrong logical derivations.
7. (10%) Let $f(x, y)= \begin{cases}\frac{x^{3}-y^{3}}{x^{2}+y^{2}}, & \text { for }(x, y) \neq(0,0) \\ 0, & \text { for }(x, y)=(0,0) .\end{cases}$
(a) Find $f_{x}(x, y)$ and $f_{y}(x, y)$.
(b) Are the functions f_{x} and f_{y} continuous at $(0,0)$?

Solution:

(a) (3pts) For $(x, y) \neq(0,0)$,

$$
\begin{aligned}
& f_{x}(x, y)=\frac{3 x^{2}}{x^{2}+y^{2}}-\frac{2 x\left(x^{3}-y^{3}\right)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{4}+3 x^{2} y^{2}+2 x y^{3}}{\left(x^{2}+y^{2}\right)^{2}}, \\
& f_{y}(x, y)=\frac{-3 y^{2}}{x^{2}+y^{2}}-\frac{2 y\left(x^{3}-y^{3}\right)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{-y^{4}-3 x^{2} y^{2}-2 y x^{3}}{\left(x^{2}+y^{2}\right)^{2}} .
\end{aligned}
$$

(3pts) For $(x, y)=(0,0)$,

$$
\begin{gathered}
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{h^{3}}{h^{2}} \cdot \frac{1}{h}=1, \\
f_{y}(0,0)=\lim _{k \rightarrow 0} \frac{f(0, k)-f(0,0)}{k}=\lim _{k \rightarrow 0}-\frac{k^{3}}{k^{3}} \cdot \frac{1}{k}=-1 .
\end{gathered}
$$

(b) (4pts) If f_{x}, f_{y} is continuous at $(0,0)$, then $\lim _{(x, y) \rightarrow(0,0)} f_{x}$ and $\lim _{(x, y) \rightarrow(0,0)} f_{y}$ exist and their values equal 1 and -1 respectively. But along $x=0$,

$$
\lim _{(x, y) \rightarrow(0,0)} f_{x}(x, y)=\lim _{a \rightarrow 0} f_{x}(0, a)=\lim _{a \rightarrow 0} \frac{0}{a^{4}}=0,
$$

which conflicts to $f_{x}(0,0)$ computed in (a). Similarily along $y=0$,

$$
\lim _{(x, y) \rightarrow(0,0)} f_{y}(x, y)=\lim _{b \rightarrow 0} f_{y}(b, 0)=\lim _{b \rightarrow 0} \frac{0}{b^{4}}=0,
$$

which isn't equal to $-1\left(=f_{y}(0,0)=-1\right)$.
8. (8\%) Find the tangent plane of the surface

$$
\frac{4}{\pi} \arctan \frac{z}{2}=x^{2}+\int_{x y}^{z} x y \sqrt{1+t^{3}} d t
$$

at the point $(1,2,2)$.

Solution:

Let $F(x, y, z)=x^{2}+x y \int_{x y}^{z} \sqrt{1+t^{3}} d t-\frac{4}{\pi} \arctan \frac{z}{2}$. Note that $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ is normal to the point $\left(x_{0}, y_{0}, z_{0}\right)$ on the surface $F(x, y, z)=0$. Thus we compute ∇F at first,

$$
\begin{gathered}
F_{x}=2 x+y \int_{x y}^{z} \sqrt{1+t^{3}} d t+x y\left(\sqrt{1+(x y)^{3}} \cdot(-y)\right), \quad(2 \mathrm{pts}) \\
F_{y}=x \int_{x y}^{z} \sqrt{1+t^{3}} d t+x y\left(\sqrt{1+(x y)^{3}} \cdot(-x)\right), \quad(2 \mathrm{pts}) \\
F_{z}=x y \sqrt{1+z^{3}}-\frac{4}{\pi} \cdot \frac{1}{2} \cdot \frac{1}{1+\left(\frac{z}{2}\right)^{2}} . \quad(2 \mathrm{pts})
\end{gathered}
$$

Hence, $\nabla F(1,2,2)=\left(2+0-4 \sqrt{1+2^{3}},-2 \sqrt{1+2^{3}}, 2 \sqrt{1+2^{3}}-\frac{2}{\pi}\left(\frac{1}{1+1}\right)\right)=\left(-10,-6,6-\frac{1}{\pi}\right) \quad$ (1pt), and the tangent plane at $(1,2,2)$ is $-10(x-1)-6(y-2)+\left(6-\frac{1}{\pi}\right)(z-2)=0$. (1pt)
9. (8%) Find all points at which the direction of fastest change of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}-2 x-4 y-6 z$ is $\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$.

Solution：

When $\nabla f=2(x-1, y-2, z-3)$ is parallel to $(1,2,3)[1 \mathrm{pt}]$
correct ans：$\left\{\begin{array}{l}\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3} \\ \{(t, 2 t, 3 t): t \in \mathbb{R}\} \quad[8 \mathrm{pts}] \\ \{(t, 2 t, 3 t): t \in \mathbb{R} \backslash\{1\}\}\end{array}\right.$

Note，＂fastest＂means increasing or decreasing most drastically．
Thus if you only consider the case：
$\left\{\begin{array}{l}\{(t, 2 t, 3 t): t \in \mathbb{R}, t \geq 0\} \\ \{(t, 2 t, 3 t): t \in \mathbb{R} \backslash\{1\}, t \geq 0\}\end{array} \quad\right.$ you＇ll get［7 pts］
If you only write one or two points，such as $(1,2,3)$ ，you＇ll get［ 2 pts ］

10．(10%) Let $g(x, y)=4 x^{3}-13 y^{3}+6 x^{2} y+3 x y^{2}-12 x^{2}-12 x y-30 y^{2}$ ．Find the critical points of $g(x, y)$ ，and classify them．

Solution：

$\nabla f=0 \quad[1 \mathrm{pt}]$
critical points：$(0,0),(2,0),\left(\frac{2}{3}, \frac{-4}{3}\right),\left(\frac{8}{3}, \frac{-4}{3}\right) \quad[1 \mathrm{pt}$ for each］
If you mentioned $D(x, y) \quad[1 \mathrm{pt}]$
$\begin{cases}(0,0), D(0,0)>0, g_{x x}<0, \text { local maximum } & \\ (2,0), D(2,0)<0, \text { saddle point } & \text {［1 pt for each］} \\ \left(\frac{2}{3}, \frac{-4}{3}\right), D\left(\frac{2}{3}, \frac{-4}{3}\right)<0, \text { saddle point } \\ \left(\frac{8}{3}, \frac{-4}{3}\right), D\left(\frac{8}{3}, \frac{-4}{3}\right)>0, g_{x x}>0, \text { local minimum } & \end{cases}$

11．(10%) Find the points on the intersection of the plane $x+y+2 z=2$ and the paraboloid $z=x^{2}+y^{2}$ that are nearest to and farthest from the origin．

Solution：

Set

$$
\begin{aligned}
& f(x, y, z)=x^{2}+y^{2}+z^{2} \\
& g(x, y, z)=x+y+2 z-2 \\
& h(x, y, z)=x^{2}+y^{2}-z
\end{aligned}
$$

Assume that $\nabla f+\lambda_{1} \nabla g+\lambda_{2} \nabla h=0$ ．Then we obtain

$$
\begin{array}{r}
2 x+\lambda_{1}+2 \lambda_{2} x=0 \\
2 y+\lambda_{1}+2 \lambda_{2} y=0 \\
2 z+2 \lambda_{1}-\lambda_{2}=0 .
\end{array}
$$

We also have

$$
\begin{array}{r}
x+y+2 z=2 \\
x^{2}+y^{2}-z=0
\end{array}
$$

Hence we can yield critical points are $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ and $(-1,-1,2)$ ．Since $f\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=\frac{3}{4}$ and $f(-1,-1,2)=6$ ，we can conclude that $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ is the point on the intersection nearest to the origin and $(-1,-1,2)$ is the point on the intersection farthest to the origin．

評分標準：函數假設寫好以及 Largrange＇s multiplier 的使用方式有做說明，這裡佔 4% ，方程式列出，解方程部份基本上不看過程（但必須要寫），不過中間若有明顯錯誤便會扣分（依錯的程度來斟酌），最後要說明哪個點為最大値點，哪個點為最小値點，此處必須解釋原因，只有寫下結論者扣 4% ，解釋不夠詳細會斟酌扣分，而筆墨分為 2% ，但空白者與不相干的過程皆不給分。

