1042微甲01－04班期中考解答和評分標準

1．(8%) Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n} \sin \left(\frac{1}{\sqrt{n}}\right) \ln \left(1+\frac{1}{\sqrt{n}}\right)$ is divergent，conditionally convergent or abso－ lutely convergent．

Solution：

Let $a_{n}=\sin \left(\frac{1}{\sqrt{n}}\right) \ln \left(1+\frac{1}{\sqrt{n}}\right)$
Part1：
（1） $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \sin \left(\frac{1}{\sqrt{n}}\right) \ln \left(1+\frac{1}{\sqrt{n}}\right)=0(1 \mathrm{pt})$
（2）a_{n} is decreasing（ 1 pt ）
Thus the series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ is convergent by the Alternation Series Test．（2pt）
Part2：
Consider the series $\sum_{n=1}^{\infty}\left|(-1)^{n} a_{n}\right|=\sum_{n=1}^{\infty} \sin \left(\frac{1}{\sqrt{n}}\right) \ln \left(1+\frac{1}{\sqrt{n}}\right)$
We use the Limit Comparison Test with

$$
a_{n}=\sin \left(\frac{1}{\sqrt{n}}\right) \ln \left(1+\frac{1}{\sqrt{n}}\right), \quad b_{n}=\frac{1}{n}
$$

and obtain

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{1}{\sqrt{n}}\right) \ln \left(1+\frac{1}{\sqrt{n}}\right)}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{1}{\sqrt{n}}\right) \ln \left(1+\frac{1}{\sqrt{n}}\right)}{\frac{1}{\sqrt{n}}} \frac{\frac{1}{\sqrt{n}}}{1} \text { (2pt) }
$$

Since $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent，the series $\sum_{n=1}^{\infty}\left|(-1)^{n} a_{n}\right|$ diverges by the Limit Comparison Test．
Hence the series $\sum_{n=1}^{\infty}(-1)^{n} \sin \left(\frac{1}{\sqrt{n}}\right) \ln \left(1+\frac{1}{\sqrt{n}}\right)$ is conditionally convergent．（2pt）
2. (8%) Find the sum of the series $\sum_{n=0}^{\infty} \frac{x^{4 n}}{2 n+1}$.

Solution:

Define

$$
f(x)=\sum_{n=0}^{\infty} \frac{x^{4 n}}{2 n+1}, \quad g(x)=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{2 n+1}
$$

then $f(0)=1$ and $f(x)=\frac{1}{x^{2}} g\left(x^{2}\right)$ for $x \neq 0$.
$g^{\prime}(x)=\sum_{n=0}^{\infty} x^{2 n}=\frac{1}{1-x^{2}}$ for $\left|x^{2}\right|<1 \Rightarrow|x|<1$
$g(x)=\int \frac{1}{1-x^{2}} d x=\frac{1}{2} \int\left[\frac{1}{1-x}+\frac{1}{1+x}\right] d x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)+C$
By $g(0)=0$ we know that $C=0$ such that $g(x)=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$.
Therefore,

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{2 x^{2}} \ln \left(\frac{1+x^{2}}{1-x^{2}}\right) & 0<|x|<1 \\
1 & x=0
\end{array}\right.
$$

Note that $f(x)$ diverges when $|x| \geq 1$ by the Ratio Test and the Limit Comparison Test with $\sum \frac{1}{n}$ at the end points.
(Another possible answer: since $\int \frac{1}{1-x^{2}} d x=\tanh ^{-1}\left(x^{2}\right)+C$, we also have $f(x)=\frac{1}{x^{2}} \tanh ^{-1}\left(x^{2}\right)$ for $0<|x|<1$.)

- Grading policy: 5 points for converting the sum into a function, 3 points for integration.

3. (12%)
(a) Use a Riemann sum approximation of $\int_{1}^{n} \ln t d t$ to show that $\ln (n!) \geq n \ln n-n+1$.
(b) Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(2 n)!}{n^{2 n}} x^{n}$.

Solution:

(5 points for (a), 7 points for (b))
(a) $f(t)=\ln t$ is an increasing function:

From the figure, in $[1, n]$ the upper sum (always taking the value on the right) is larger than the integral. Thus we have $\ln 2+\ln 3+\cdots+\ln n \geq \int_{1}^{n} \ln t d t$ (2 points).
Since $\ln 1=0$,

$$
\ln (n!)=\ln 1+\ln 2+\cdots+\ln n=\ln 2+\cdots+\ln n \geq \int_{1}^{n} \ln t d t=\left.t \ln t\right|_{1} ^{n}-\int_{1}^{n} 1 d t=n \ln n-n+1
$$

(3 points)
(b) Define $a_{n}=\frac{(2 n)!}{n^{2 n}} x^{n}$. Apply the Ratio Test:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\frac{(2 n+2)!}{(n+1)^{2 n+2}}}{\frac{(2 n)!}{n^{2 n}}}|x|=\lim _{n \rightarrow \infty} \frac{(2 n+2)(2 n+1)}{(n+1)(n+1)}\left(\frac{n}{n+1}\right)^{2 n}|x|=\frac{4}{e^{2}}|x|
$$

in which (by using l'Hospital's Rule)

$$
\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{2 n}=\exp \left[\lim _{n \rightarrow \infty} 2 n \ln \left(1-\frac{1}{n+1}\right)\right]=\exp \left[2 \lim _{n \rightarrow \infty} \frac{\frac{\frac{-1}{(n+1)^{2}}}{1-\frac{1}{n+1}}}{-\frac{1}{n^{2}}}\right]=e^{-2} .
$$

Thus the radius of convergence is $\frac{e^{2}}{4}$. (4 points)
At $x=\frac{e^{2}}{4}$, with $\ln (n!) n \geq \ln n-n+1 \Rightarrow n!\geq \frac{n^{n} e}{e^{n}} \Rightarrow(2 n)!\geq \frac{(2 n)^{2 n} e}{e^{2 n}}$,

$$
a_{n}=\frac{(2 n)!}{n^{2 n}} \frac{e^{2 n}}{2^{2 n}}=(2 n)!\frac{e^{2 n}}{(2 n)^{2 n}} \geq \frac{(2 n)^{2 n} e}{e^{2 n}} \frac{e^{2 n}}{(2 n)^{2 n}}=e \neq 0
$$

Since $\lim _{n \rightarrow \infty} a_{n} \neq 0, \sum a_{n}$ diverges by the Test for Divergence.
At $x=-\frac{e^{2}}{4}, \lim _{n \rightarrow \infty} a_{n}$ does not exist (alternating with absolute values larger than e), thus the series also diverges. In conclusion, the interval of convergence is $\left(-\frac{e^{2}}{4}, \frac{e^{2}}{4}\right)$. (3 points)
4. (8\%) Find the Maclaurin series expansion of the function $\ln \left(1+3 x+2 x^{2}\right)$. Write out the general terms. What is the radius of convergence?

Solution:

Recall that, $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots$ for $|x|<1$
$\ln \left(1+3 x+2 x^{2}\right)=\ln (1+x)+\ln (1+2 x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}+\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(2 x)^{n}}{n}=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{2^{n}+1}{n} x^{n}$
(6 points)
Because the radiu of convergence of $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(2 x)^{n}}{n}$ is $\frac{1}{2}$, and the radiu of convergence of $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(x)^{n}}{n}$ is
1, the radiu of convergence of $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{2^{n}+1}{n} x^{n}$ is $\frac{1}{2}$ (2 points)
5. (12%)
(a) Find the Maclaurin series for $\sinh ^{-1} x$.
(b) Find $\lim _{x \rightarrow 0} \frac{\sinh ^{-1}\left(x^{2}\right)-x^{2}}{x^{6}}$.

Solution:

$\left(\sinh ^{-1}(x)\right)^{\prime}=\left(1+x^{2}\right)^{\frac{-1}{2}}$
By binomial expansion, $\left(1+x^{2}\right)^{\frac{-1}{2}}=\sum_{n=0}^{\infty}\binom{\frac{-1}{2}}{n}\left(x^{2}\right)^{n}$

$$
\binom{\frac{-1}{2}}{n}=\frac{\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right) \ldots\left(\frac{-1}{2}-n+1\right)}{n!}=\frac{\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right) \ldots\left(-\frac{2 n-1}{2}\right)}{n!}=(-1)^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2}}
$$

We can find the Maclaurin series of

$$
\sinh ^{-1}(x)=C+\int \sum_{n=0}^{\infty}(-1)^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2}} x^{2 n} d x=C+\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2}(2 n+1)} x^{2 n+1}
$$

Because $\sinh ^{-1}(0)=0 \Rightarrow C=0 \Rightarrow$ the Maclaurin series of $\sinh ^{-1}(x)$ is $\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2}(2 n+1)} x^{2 n+1}$ (8 points)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sinh ^{-1}\left(x^{2}\right)-x^{2}}{x^{6}}=\lim _{x \rightarrow 0} \frac{\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2}(2 n+1)} x^{4 n+2}-x^{2}}{x^{6}} \\
& =\lim _{x \rightarrow 0} \frac{x^{2}+\frac{-1}{6} x^{6}+\sum_{n=2}^{\infty}(-1)^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2}(2 n+1)} x^{4 n+2}-x^{2}}{x^{6}}=\frac{-1}{6} \quad(4 \text { points })
\end{aligned}
$$

6. (12%) Consider the curve $C: x=t^{3}, y=3 t, z=t^{4}$.
(a) Find the curvature of C at the point $(-1,-3,1)$.
(b) Is there a point on the curve C where the osculating plane is parallel to the plane $x+y+z=1$?

Solution:

(a) Let $\mathbf{r}(t)=t^{3} \mathbf{i}+3 t \mathbf{j}+t^{4} \mathbf{k}$
$\mathbf{r}^{\prime}(t)=3 t^{2} \mathbf{i}+3 \mathbf{j}+4 t^{3} \mathbf{k} \quad \Rightarrow \quad \mathbf{r}^{\prime}(-1)=3 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k}(1 \mathrm{pt})$
$\mathbf{r}^{\prime \prime}(t)=6 t \mathbf{i}+0 \mathbf{j}+12 t^{2} \mathbf{k} \quad \Rightarrow \quad \mathbf{r}^{\prime \prime}(-1)=-6 \mathbf{i}+0 \mathbf{j}+12 \mathbf{k}(1 \mathrm{pt})$
$\mathbf{r}^{\prime}(-1) \times \mathbf{r}^{\prime \prime}(-1)=36 \mathbf{i}-12 \mathbf{j}+18 \mathbf{k}(1 \mathrm{pt})$
$\left|\mathbf{r}^{\prime}(-1)\right|=\sqrt{3^{2}+3^{2}+(-4)^{2}}=\sqrt{34}(1 \mathrm{pt})$
$\left|\mathbf{r}^{\prime}(-1) \times \mathbf{r}^{\prime \prime}(-1)\right|=\sqrt{36^{2}+(-12)^{2}+18^{2}}=42(1 \mathrm{pt})$
Hence $\kappa(-1)=\frac{\left|\mathbf{r}^{\prime}(-1) \times \mathbf{r}^{\prime \prime}(-1)\right|}{\left|\mathbf{r}^{\prime}(-1)\right|^{3}}=\frac{21}{17 \sqrt{34}}=\frac{21 \sqrt{34}}{578}(1 \mathrm{pt})$
(b)
$\mathbf{N}(t)=\frac{\mathbf{r}^{\prime \prime}(t)\left|\mathbf{r}^{\prime}(t)\right|^{2}-\mathbf{r}^{\prime}(t)\left(\mathbf{r}^{\prime \prime}(t) \cdot \mathbf{r}^{\prime}(t)\right)}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}$
$=\mathbf{r}^{\prime \prime}(t)\left(\frac{1}{\left|\mathbf{r}^{\prime}(t)\right|}\right)-\mathbf{r}^{\prime}(t)\left(\frac{\mathbf{r}^{\prime \prime}(t) \cdot \mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}\right)(2 \mathrm{pt})$
Since $<1,1,1\rangle \perp \mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}$ and $\langle 1,1,1\rangle \perp \mathbf{N}(t)$
$\Rightarrow<1,1,1>\perp \mathbf{r}^{\prime}(t)$ and $<1,1,1>\perp \mathbf{r}^{\prime \prime}(t)$
$\Rightarrow\left\{\begin{array}{lll}<1,1,1>\cdot \mathbf{r}^{\prime}(t)=0 & \Rightarrow 3 t^{2}+3+4 t^{3}=0 & \ldots(1) \\ <1,1,1>\cdot \mathbf{r}^{\prime \prime}(t)=0 & \Rightarrow 6 t+12 t^{2}=0 & \ldots(2)\end{array}(1 \mathrm{pt})\right.$
by (2) we have $t=0$ or $-\frac{1}{2}$ and take it into (1)
$\Rightarrow\left\{\begin{array}{l}3 \cdot 0+3+4 \cdot 0 \neq 0 \\ 3 \cdot\left(-\frac{1}{2}\right)^{2}+3+4 \cdot\left(-\frac{1}{2}\right)^{3} \neq 0\end{array} \quad(1 \mathrm{pt})\right.$
Hence there is no point on the curve C such that the osculating plane is parallel to the plane $x+y+z=1$. (2pt)
7. (12%) Let $f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \frac{1}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{cases}$
(a) Is f_{x} continuous at $(0,0)$?
(b) Write down the linear approximation $L(x, y)$ of f at $(0,0)$.
(c) Find the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-L(x, y)}{\sqrt{x^{2}+y^{2}}}$.

Solution:

(a)

For $(x, y) \neq(0,0), f_{x}(x, y)=2 x \sin \left(\frac{1}{x^{2}+y^{2}}\right)-\frac{2 x}{x^{2}+y^{2}} \cos \left(\frac{1}{x^{2}+y^{2}}\right)$
$\because \lim _{t \rightarrow 0} f_{x}\left(t^{2}, 0\right)=\lim _{t \rightarrow 0} 2 t^{2} \sin \left(\frac{1}{t^{4}}\right)-\frac{2 t^{2}}{t^{4}} \cos \left(\frac{1}{t^{4}}\right)=0-\lim _{t \rightarrow 0} \frac{2}{t^{2}} \cos \left(\frac{1}{t^{4}}\right)$

$$
=-2 \lim _{u \rightarrow 0^{+}} \frac{1}{u} \cos \left(\frac{1}{u^{2}}\right)=-2 \lim _{v \rightarrow \infty} v \cos \left(v^{2}\right)
$$

$\lim _{v \rightarrow \infty} v \cos \left(v^{2}\right)$ does not exists.
$\therefore f_{x}$ is not continuous at $(0,0)$.
(b)
$L(x, y)=f(0,0)+f_{x}(0,0) \Delta x+f_{y}(0,0) \Delta y$
$\begin{aligned} \because f_{x}(0,0) & =\lim _{t \rightarrow 0} \frac{f(t, 0)-f(0,0)}{t}=\lim _{t \rightarrow 0} \frac{t^{2} \sin \left(1 / t^{2}\right)-0}{t}=\lim _{t \rightarrow 0} t \sin \left(\frac{1}{t^{2}}\right) \\ & =0 \text { (2) }\end{aligned}$
$\begin{aligned} f_{y}(0,0) & =\lim _{t \rightarrow 0} \frac{f(0, t)-f(0,0)}{t}=\lim _{t \rightarrow 0} \frac{t^{2} \sin \left(1 / t^{2}\right)-0}{t}=\lim _{t \rightarrow 0} t \sin \left(\frac{1}{t^{2}}\right) \\ & =0\end{aligned}$
$\therefore L(x, y)=0+0 \Delta x+0 \Delta y=0$
(c)
$\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-L(x, y)}{\sqrt{x^{2}+y^{2}}}=\lim _{(x, y) \rightarrow(0,0)} \sqrt{x^{2}+y^{2}} \sin \left(\frac{1}{x^{2}+y^{2}}\right)$
Let $x=r \cos \theta$ and $y=r \sin \theta$, then we have:
$\lim _{(x, y) \rightarrow(0,0)} \sqrt{x^{2}+y^{2}} \sin \left(\frac{1}{x^{2}+y^{2}}\right)=\lim _{r \rightarrow 0^{+}} \sqrt{r} \sin \left(\frac{1}{r}\right)$
$\because-\sqrt{r} \leq \sqrt{r} \sin \left(\frac{1}{r}\right) \leq \sqrt{r}$ and $\lim _{r \rightarrow 0+} \sqrt{r}=0$
$\therefore \lim _{r \rightarrow 0^{+}} \sqrt{r} \sin \left(\frac{1}{r}\right)=0$ by the squeeze theorem
Hence $\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-L(x, y)}{\sqrt{x^{2}+y^{2}}}=0$
8. (12%) Let $f(x, y)= \begin{cases}\frac{\sin \left(x^{3}\right)-\sin \left(y^{3}\right)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{cases}$
(a) Calculate $\nabla f(0,0)$.
(b) Use the definition of directional derivative to calculate $D_{\mathbf{u}} f(0,0)$, where $\mathbf{u}=\frac{1}{\sqrt{2}}(\mathbf{i}-\mathbf{j})$.
(c) Is $f(x, y)$ differentiable at $(0,0)$?

Solution:

(a)
$f_{x}(0,0)=\lim _{t \rightarrow 0} \frac{f(t, 0)-f(0,0)}{t}=\lim _{t \rightarrow 0} \frac{\sin \left(t^{3}\right)}{t^{3}}=1$
$f_{y}(0,0)=\lim _{t \rightarrow 0} \frac{f(0, t)-f(0,0)}{t}=\lim _{t \rightarrow 0}-\frac{\sin \left(t^{3}\right)}{t^{3}}=-1$
$\therefore \nabla f(0,0)=(1,-1)$
(b)

$$
\begin{align*}
D_{u}(0,0) & =\lim _{t \rightarrow 0} \frac{f\left(0+\frac{1}{\sqrt{2}} t, 0-\frac{1}{\sqrt{2}} t\right)-f(0,0)}{t} \tag{1}\\
& =\lim _{t \rightarrow 0} \frac{\sin \left(\frac{t^{3}}{2 \sqrt{2}}\right)-\sin \left(-\frac{t^{3}}{2 \sqrt{2}}\right)}{t^{3}}=\frac{2}{2 \sqrt{2}} \lim _{t \rightarrow 0} \frac{\sin \left(\frac{t^{3}}{2 \sqrt{2}}\right)}{\frac{t^{3}}{2 \sqrt{2}}}=\frac{1}{\sqrt{2}} \tag{2}
\end{align*}
$$

(c)

If $f(x, y)$ is differentiable at $(0,0)$, then $D_{u}(0,0)=\nabla f(0,0) \cdot u$.
However,
$\because D_{u}(0,0)=\frac{1}{\sqrt{2}}$ and $\nabla f(0,0) \cdot u=(1,-1) \cdot\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=\sqrt{2}$
$\therefore D_{u}(0,0) \neq \nabla f(0,0) \cdot u$, i.e $f(x, y)$ is not differentiable.
9. (12%) Suppose that x, y, z satisfy the relation $x^{2}+2 y^{2}+3 z^{2}+x y-z=9$. Find $\frac{\partial^{2} z}{\partial x^{2}}, \frac{\partial^{2} z}{\partial x \partial y}$ and $\frac{\partial^{2} z}{\partial y^{2}}$.

Solution:

Let $F(x, y, z)=x^{2}+2 y^{2}+z^{2}+x y-z-9=0$

Then
$\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}=-\frac{2 x+y}{6 z-1}(3$ points $)$
And
$\frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}=-\frac{x+4 y}{6 z-1}(3$ points $)$
Therefore

$$
\begin{aligned}
& \frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial}{\partial x}\left(-\frac{2 x+y}{6 z-1}\right)=\frac{(-2)(6 z-1)+(2 x+y)\left(6 z_{x}\right)}{(6 z-1)^{2}}=\frac{-2}{6 z-1}-6 \frac{(2 x+y)^{2}}{(6 z-1)^{3}}(2 \text { points }) \\
& \frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial}{\partial y}\left(-\frac{2 x+y}{6 z-1}\right)=\frac{(-1)(6 z-1)+(2 x+y)\left(6 z_{y}\right)}{(6 z-1)^{2}}=\frac{-1}{6 z-1}-6 \frac{(2 x+y)(x+4 y)}{(6 z-1)^{3}}(2 \text { points }) \\
& \frac{\partial^{2} z}{\partial y^{2}}=\frac{\partial}{\partial y}\left(-\frac{x+4 y}{6 z-1}\right)=\frac{(-4)(6 z-1)+(x+4 y)\left(6 z_{y}\right)}{(6 z-1)^{2}}=\frac{-4}{6 z-1}-6 \frac{(x+4 y)^{2}}{(6 z-1)^{3}}(2 \text { points })
\end{aligned}
$$

10. (12%) Find all critical points of the function $f(x, y)=x y e^{-x^{2}-y^{2}}$ and classify them.

Solution:

$f_{x}(x, y)=\left(1-2 x^{2}\right) y e^{-x^{2}-y^{2}}$ (1 points)
$f_{y}(x, y)=\left(1-2 y^{2}\right) x e^{-x^{2}-y^{2}}$ (1 points)
\Longrightarrow critical points are $(0,0),\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right),\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),\left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)(2$ points $)$
$f_{x x}(x, y)=\left(-6 x y-4 x^{3} y\right) e^{-x^{2}-y^{2}}$
$f_{y y}(x, y)=\left(-6 x y-4 x y^{3}\right) e^{-x^{2}-y^{2}}$
$f_{x y}(x, y)=\left(1-2 x^{2}-2 y^{2}+4 x^{2} y^{2}\right) e^{-x^{2}-y^{2}}(2$ points $)$
$\Delta(0,0)=-1<0$
$\Delta\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=\frac{4}{e^{2}}>0$ and $f_{x x}\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=\frac{-2}{e}<0$
$\Delta\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)=\frac{4}{e^{2}}>0$ and $f_{x x}\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)=\frac{2}{e}>0$
$\Delta\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=\frac{4}{e^{2}}>0$ and $f_{x x}\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=\frac{2}{e}>0$
$\Delta\left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)=\frac{4}{e^{2}}>0$ and $f_{x x}\left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)=\frac{-2}{e}<0$ (4 points)
Hence
$(0,0)$ is a saddle point
$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),\left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ are local maximum points
$\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right),\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ are local minimum points (2 points)
11. (12%) Among all planes that are tangent to the surface $x^{2} y z=1$, are there the ones that are nearest or farthest from the origin? Find such tangent planes if they exist.

Solution:

Preliminaries Let $f(x, y, z)=x^{2} y z$, and let T_{r} be the tangent plane of a point $r=\langle a, b, c\rangle$ on the surface. The gradient of f on r is

$$
\nabla f(r)=\left\langle 2 a b c, a^{2} c, a^{2} b\right\rangle=\left\langle\frac{2}{a}, \frac{1}{b}, \frac{1}{c}\right\rangle
$$

Note that here we use the condition $a^{2} b c=1$ since r is a point on the surface. Since $\nabla f(r)$ is also the normal vector of T_{r}, the equation of T_{r} is

$$
\frac{2}{a} x+\frac{1}{b} y+\frac{1}{c} z=4
$$

The distance between T_{r} and the origin is

$$
d\left(T_{r}, 0\right)=\frac{\left|\frac{2}{a} \cdot 0+\frac{1}{b} \cdot 0+\frac{1}{c} \cdot 0-4\right|}{\sqrt{\left(\frac{2}{a}\right)^{2}+\left(\frac{1}{b}\right)^{2}+\left(\frac{1}{c}\right)^{2}}}=\frac{4}{\sqrt{\frac{4}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}} .
$$

Now, let

$$
g(a, b, c)=\frac{4}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}
$$

and find the maxima and minima subject to the constraint $a^{2} b c=1$. The maxima of g correspond to the nearest tangent planes, and the minima correspond the farthest. We will use several methods to solve this optimization problem.

Method 1 Applying the AM-GM inequality,

$$
g(a, b, c)=\frac{2}{a^{2}}+\frac{2}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}} \geq 4 \sqrt{\frac{2}{a^{2}} \cdot \frac{2}{a^{2}} \cdot \frac{1}{b^{2}} \cdot \frac{1}{c^{2}}}=4 \sqrt{\frac{4}{a^{4} b^{2} c^{2}}}=8
$$

The maxima does not exist since $g \rightarrow \infty$ when $a \rightarrow 0$. And the minima of g occurs when $2 / a^{2}=1 / b^{2}=1 / c^{2}$; that is, $a^{2}=2 b^{2}=2 c^{2}$. By $a^{2} b c=1$, we have

$$
a= \pm \sqrt[4]{2} \quad \text { and } \quad b=c= \pm \frac{1}{\sqrt[4]{2}}
$$

Method 2 Applying the Lagrange multiplier,

$$
\nabla g+\lambda(f-1)=0
$$

that is,

$$
-\frac{8}{a^{3}}+\lambda \frac{2}{a}=0, \quad-\frac{2}{b^{3}}+\lambda \frac{1}{b}=0, \quad \text { and } \quad-\frac{2}{c^{3}}+\lambda \frac{1}{c}=0 .
$$

Therefore, the extrema occurs when $\lambda=4 / a^{2}=2 / b^{2}=2 / c^{2}$; that is, $a^{2}=2 b^{2}=2 c^{2}$. It follows that $g(a, b, c)=8$. Also, the extrema occurs when the derivative of g does not exist; that is, $a=0$ or $b=0$. Since $g \rightarrow \infty$ when $a \rightarrow 0$ or $b \rightarrow 0$, these does are not exist, and we can guarantee that those extrema with $g=8$ are global minima.

Method 3 Replacing c by $1 / a^{2} b$,

$$
g(a, b)=\frac{4}{a^{2}}+\frac{1}{b^{2}}+a^{4} b^{2}
$$

The first order partial derivatives are

$$
g_{a}=-\frac{8}{a^{3}}+4 a^{3} b^{2} \quad \text { and } \quad g_{b}=-\frac{2}{b^{3}}+2 a^{4} b
$$

and the second order partial derivatives are

$$
g_{a a}=\frac{24}{a^{4}}+12 a^{2} b^{2}, \quad g_{a b}=g_{b a}=8 a^{3} b, \quad \text { and } \quad g_{b b}=\frac{6}{b^{4}}+2 a^{4} .
$$

Therefore, the extrema occurs when $g_{a}=0$ and $g_{b}=0$; that is,

$$
a= \pm \sqrt[4]{2} \quad \text { and } \quad b=c= \pm \frac{1}{\sqrt[4]{2}}
$$

It follows that

$$
D=g_{a a} g_{b b}-g_{a b}^{2}=24 \cdot 16-(\pm 8 \sqrt{2})=384-128=256>0 ;
$$

that is, these extrema are local minima. Also, the extrema occurs when derivative of g does not exist; that is, $a=0$ or $b=0$. Since $g \rightarrow \infty$ when $a \rightarrow 0$ or $b \rightarrow 0$, these does are not exist, and we can guarantee that those local minima are global minima.

Results After solving the optimization problem, we find the farthest tangent planes

$$
\begin{aligned}
2^{3 / 4} x+2^{1 / 4} y+2^{1 / 4} z & =1 \\
2^{3 / 4} x-2^{1 / 4} y-2^{1 / 4} z & =1 \\
-2^{3 / 4} x+2^{1 / 4} y+2^{1 / 4} z & =1 \\
-2^{3 / 4} x-2^{1 / 4} y-2^{1 / 4} z & =1
\end{aligned}
$$

The nearest tangent plane does not exist since g has no maxima.

Points

- (2%) Find $\nabla f(r)$.
- (2\%) Find equation of T_{r}.
- (2%) Find the distance between T_{r} and the origin.
- (2%) Find the extrema of g.
- (2%) Find farthest tangent planes.
- (2%) Show that the nearest tangent plane does not exist.

