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1. (8%) Determine whether the series
∞
∑
n=1

(−1)n sin(
1

√
n
) ln(1 +

1
√
n
) is divergent, conditionally convergent or abso-

lutely convergent.

Solution:

Let an = sin(
1

√
n
) ln (1 +

1
√
n
)

Part1:

(1) lim
n→∞an = lim

n→∞ sin(
1

√
n
) ln (1 +

1
√
n
) = 0 (1pt)

(2) an is decreasing (1pt)

Thus the series
∞
∑
n=1

(−1)nan is convergent by the Alternation Series Test. (2pt)

Part2:

Consider the series
∞
∑
n=1

∣(−1)nan∣ =
∞
∑
n=1

sin(
1

√
n
) ln (1 +

1
√
n
)

We use the Limit Comparison Test with

an = sin(
1

√
n
) ln (1 +

1
√
n
), bn =

1

n

and obtain

lim
n→∞

an
bn

= lim
n→∞

sin( 1√
n
) ln (1 + 1√

n
)

1
n

= lim
n→∞

sin ( 1√
n
)

1√
n

ln (1 + 1√
n
)

1√
n

= 1 (2pt)

Since
∞
∑
n=1

1

n
is divergent, the series

∞
∑
n=1

∣(−1)nan∣ diverges by the Limit Comparison Test.

Hence the series
∞
∑
n=1

(−1)n sin(
1

√
n
) ln (1 +

1
√
n
) is conditionally convergent. (2pt)
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2. (8%) Find the sum of the series
∞
∑
n=0

x4n

2n + 1
.

Solution:

Define

f(x) =
∞
∑
n=0

x4n

2n + 1
, g(x) =

∞
∑
n=0

x2n+1

2n + 1

then f(0) = 1 and f(x) =
1

x2
g(x2) for x ≠ 0.

g′(x) =
∞
∑
n=0

x2n =
1

1 − x2
for ∣x2∣ < 1⇒ ∣x∣ < 1

g(x) = ∫
1

1 − x2
dx =

1

2
∫ [

1

1 − x
+

1

1 + x
]dx =

1

2
ln(

1 + x

1 − x
) +C

By g(0) = 0 we know that C = 0 such that g(x) =
1

2
ln(

1 + x

1 − x
).

Therefore,

f(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1

2x2
ln(

1 + x2

1 − x2
) 0 < ∣x∣ < 1

1 x = 0

Note that f(x) diverges when ∣x∣ ≥ 1 by the Ratio Test and the Limit Comparison Test with ∑
1

n
at the end

points.

(Another possible answer: since ∫
1

1 − x2
dx = tanh−1(x2)+C, we also have f(x) =

1

x2
tanh−1(x2) for 0 < ∣x∣ < 1.)

● Grading policy: 5 points for converting the sum into a function, 3 points for integration.
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3. (12%)

(a) Use a Riemann sum approximation of ∫
n

1
ln tdt to show that ln(n!) ≥ n lnn − n + 1.

(b) Find the interval of convergence of the power series
∞
∑
n=1

(2n)!

n2n
xn.

Solution:

(5 points for (a), 7 points for (b))
(a) f(t) = ln t is an increasing function:

From the figure, in [1, n] the upper sum (always taking the value on the right) is larger than the integral. Thus

we have ln 2 + ln 3 +⋯ + lnn ≥ ∫

n

1
ln t dt (2 points).

Since ln 1 = 0,

ln(n!) = ln 1 + ln 2 +⋯ + lnn = ln 2 +⋯ + lnn ≥ ∫

n

1
ln t dt = t ln t∣n1 − ∫

n

1
1dt = n lnn − n + 1

(3 points)

(b) Define an =
(2n)!

n2n
xn. Apply the Ratio Test:

lim
n→∞ ∣

an+1
an

∣ = lim
n→∞

(2n+2)!
(n+1)2n+2
(2n)!
n2n

∣x∣ = lim
n→∞

(2n + 2)(2n + 1)

(n + 1)(n + 1)
(

n

n + 1
)
2n

∣x∣ =
4

e2
∣x∣

in which (by using l’Hospital’s Rule)

lim
n→∞(

n

n + 1
)
2n

= exp[ lim
n→∞2n ln(1 −

1

n + 1
)] = exp[2 lim

n→∞

−1
(n+1)2
1− 1

n+1

− 1
n2

] = e−2.

Thus the radius of convergence is
e2

4
. (4 points)

At x =
e2

4
, with ln(n!)n ≥ lnn − n + 1⇒ n! ≥

nne

en
⇒ (2n)! ≥

(2n)2ne

e2n
,

an =
(2n)!

n2n
e2n

22n
= (2n)!

e2n

(2n)2n
≥

(2n)2ne

e2n
e2n

(2n)2n
= e ≠ 0

Since lim
n→∞an ≠ 0, ∑an diverges by the Test for Divergence.

At x = −
e2

4
, lim
n→∞an does not exist (alternating with absolute values larger than e), thus the series also diverges.

In conclusion, the interval of convergence is (−
e2

4
,
e2

4
). (3 points)
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4. (8%) Find the Maclaurin series expansion of the function ln(1+ 3x+ 2x2). Write out the general terms. What is the
radius of convergence?

Solution:

Recall that, ln (1 + x) = x −
x2

2
+
x3

3
−
x4

4
+ ... for ∣x∣ < 1

ln (1 + 3x + 2x2) = ln (1 + x) + ln (1 + 2x) =
∞
∑
n=1

(−1)n−1
xn

n
+

∞
∑
n=1

(−1)n−1
(2x)n

n
=

∞
∑
n=1

(−1)n−1
2n + 1

n
xn

(6 points)

Because the radiu of convergence of
∞
∑
n=1

(−1)n−1
(2x)n

n
is

1

2
, and the radiu of convergence of

∞
∑
n=1

(−1)n−1
(x)n

n
is

1, the radiu of convergence of
∞
∑
n=1

(−1)n−1
2n + 1

n
xn is

1

2
(2 points)
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5. (12%)

(a) Find the Maclaurin series for sinh−1 x.

(b) Find lim
x→0

sinh−1(x2) − x2

x6
.

Solution:

(sinh−1(x))′ = (1 + x2)
−1
2

By binomial expansion, (1 + x2)
−1
2 =

∞
∑
n=0

(

−1
2

n
)(x2)n

(

−1
2

n
) =

(−1
2
)(−3

2
)...(−1

2
− n + 1)

n!
=

(−1
2
)(−3

2
)...(− 2n−1

2
)

n!
= (−1)n

(2n)!

22n(n!)2

We can find the Maclaurin series of

sinh−1(x) = C + ∫

∞
∑
n=0

(−1)n
(2n)!

22n(n!)2
x2ndx = C +

∞
∑
n=0

(−1)n
(2n)!

22n(n!)2(2n + 1)
x2n+1

Because sinh−1(0) = 0⇒ C = 0 ⇒ the Maclaurin series of sinh−1(x) is
∞
∑
n=0

(−1)n
(2n)!

22n(n!)2(2n + 1)
x2n+1

(8 points)

lim
x→0

sinh−1(x2) − x2

x6
= lim

x→0

∑
∞
n=0(−1)n (2n)!

22n(n!)2(2n+1)x
4n+2 − x2

x6

= lim
x→0

x2 + −1
6
x6 +∑

∞
n=2(−1)n (2n)!

22n(n!)2(2n+1)x
4n+2 − x2

x6
=
−1

6
(4 points)
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6. (12%) Consider the curve C ∶ x = t3, y = 3t, z = t4.

(a) Find the curvature of C at the point (−1,−3,1).

(b) Is there a point on the curve C where the osculating plane is parallel to the plane x + y + z = 1?

Solution:

(a) Let r(t) = t3i + 3tj + t4k

r′(t) = 3t2i + 3j + 4t3k ⇒ r′(−1) = 3i + 3j − 4k (1pt)
r′′(t) = 6ti + 0j + 12t2k ⇒ r′′(−1) = −6i + 0j + 12k (1pt)
r′(−1) × r′′(−1) = 36i − 12j + 18k (1pt)

∣r′(−1)∣ =
√

32 + 32 + (−4)2 =
√

34 (1pt)

∣r′(−1) × r′′(−1)∣ =
√

362 + (−12)2 + 182 = 42 (1pt)

Hence κ(−1) =
∣r′(−1) × r′′(−1)∣

∣r′(−1)∣3
=

21

17
√

34
=

21
√

34

578
(1pt)

(b)

N(t) =
r′′(t)∣r′(t)∣2 − r′(t)(r′′(t) ⋅ r′(t))

∣r′(t)∣3

= r′′(t)(
1

∣r′(t)∣
) − r′(t)(

r′′(t) ⋅ r′(t)
∣r′(t)∣3

) (2pt)

Since < 1,1,1 >⊥ T(t) =
r′(t)
∣r′(t)∣

and < 1,1,1 >⊥N(t)

⇒< 1,1,1 >⊥ r′(t) and < 1,1,1 >⊥ r′′(t)

⇒ {
< 1,1,1 > ⋅r′(t) = 0 ⇒ 3t2 + 3 + 4t3 = 0 . . . (1)
< 1,1,1 > ⋅r′′(t) = 0 ⇒ 6t + 12t2 = 0 . . . (2)

(1pt)

by (2) we have t = 0 or −
1

2
and take it into (1)

⇒

⎧⎪⎪
⎨
⎪⎪⎩

3 ⋅ 0 + 3 + 4 ⋅ 0 ≠ 0

3 ⋅ (−
1

2
)
2
+ 3 + 4 ⋅ (−

1

2
)
3
≠ 0

(1pt)

Hence there is no point on the curve C such that the osculating plane is parallel to the plane x+ y + z = 1. (2pt)
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7. (12%) Let f(x, y) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(x2 + y2) sin
1

x2 + y2
if (x, y) ≠ (0,0),

0 if (x, y) = (0,0).

(a) Is fx continuous at (0,0)?

(b) Write down the linear approximation L(x, y) of f at (0,0).

(c) Find the limit lim
(x,y)→(0,0)

f(x, y) −L(x, y)
√
x2 + y2

.

Solution:

(a)

For (x, y) ≠ (0,0), fx(x, y) = 2x sin(
1

x2 + y2
) −

2x

x2 + y2
cos(

1

x2 + y2
) (2)

∵ lim
t→0

fx(t
2,0) = lim

t→0
2t2 sin(

1

t4
) −

2t2

t4
cos(

1

t4
) = 0 − lim

t→0

2

t2
cos(

1

t4
)

= −2 lim
u→0+

1

u
cos(

1

u2
) = −2 lim

v→∞ v cos(v2)

lim
v→∞ v cos(v2) does not exists.

∴fx is not continuous at (0,0). (2)

(b)
L(x, y) = f(0,0) + fx(0,0)∆x + fy(0,0)∆y

∵fx(0,0) = lim
t→0

f(t,0) − f(0,0)

t
= lim

t→0

t2 sin(1/t2) − 0

t
= lim

t→0
t sin(

1

t2
)

= 0 (2)

fy(0,0) = lim
t→0

f(0, t) − f(0,0)

t
= lim

t→0

t2 sin(1/t2) − 0

t
= lim

t→0
t sin(

1

t2
)

= 0 (2)

∴L(x, y) = 0 + 0∆x + 0∆y = 0 (2)

(c)

lim
(x,y)→(0,0)

f(x, y) −L(x, y)
√
x2 + y2

= lim
(x,y)→(0,0)

√
x2 + y2 sin(

1

x2 + y2
)

Let x = r cos θ and y = r sin θ, then we have:

lim
(x,y)→(0,0)

√
x2 + y2 sin(

1

x2 + y2
) = lim

r→0+

√
r sin(

1

r
)

∵ −
√
r ≤

√
r sin(

1

r
) ≤

√
r and lim

r→0+
√
r = 0

∴ lim
r→0+

√
r sin(

1

r
) = 0 by the squeeze theorem

Hence lim
(x,y)→(0,0)

f(x, y) −L(x, y)
√
x2 + y2

= 0 (2)
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8. (12%) Let f(x, y) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

sin(x3) − sin(y3)

x2 + y2
if (x, y) ≠ (0,0),

0 if (x, y) = (0,0).

(a) Calculate ∇f(0,0).

(b) Use the definition of directional derivative to calculate Duf(0,0), where u =
1

√
2
(i − j).

(c) Is f(x, y) differentiable at (0,0)?

Solution:

(a)

fx(0,0) = lim
t→0

f(t,0) − f(0,0)

t
= lim

t→0

sin(t3)

t3
= 1 (3)

fy(0,0) = lim
t→0

f(0, t) − f(0,0)

t
= lim

t→0
−

sin(t3)

t3
= −1 (3)

∴∇f(0,0) = (1,−1)

(b)

Du(0,0) = lim
t→0

f(0 + 1√
2
t,0 − 1√

2
t) − f(0,0)

t
(1)

= lim
t→0

sin( t3

2
√
2
) − sin(− t3

2
√
2
)

t3
=

2

2
√

2
lim
t→0

sin( t3

2
√
2
)

t3

2
√
2

=
1

√
2

(2)

(c)
If f(x, y) is differentiable at (0,0), then Du(0,0) = ∇f(0,0) ⋅ u. (2)
However,

∵Du(0,0) =
1

√
2

and ∇f(0,0) ⋅ u = (1,−1) ⋅ (
1

√
2
,−

1
√

2
) =

√
2

∴Du(0,0) ≠ ∇f(0,0) ⋅ u, i.e f(x, y) is not differentiable. (1)
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9. (12%) Suppose that x, y, z satisfy the relation x2 + 2y2 + 3z2 + xy − z = 9. Find
∂2z

∂x2
,
∂2z

∂x∂y
and

∂2z

∂y2
.

Solution:

Let F (x, y, z) = x2 + 2y2 + z2 + xy − z − 9 = 0

Then

∂z

∂x
= −

Fx

Fz
= −

2x + y

6z − 1
(3 points)

And

∂z

∂y
= −

Fy

Fz
= −

x + 4y

6z − 1
(3 points)

Therefore

∂2z

∂x2
=
∂

∂x
(−

2x + y

6z − 1
) =

(−2)(6z − 1) + (2x + y)(6zx)

(6z − 1)2
=

−2

6z − 1
− 6

(2x + y)2

(6z − 1)3
(2 points)

∂2z

∂x∂y
=
∂

∂y
(−

2x + y

6z − 1
) =

(−1)(6z − 1) + (2x + y)(6zy)

(6z − 1)2
=

−1

6z − 1
− 6

(2x + y)(x + 4y)

(6z − 1)3
(2 points)

∂2z

∂y2
=
∂

∂y
(−
x + 4y

6z − 1
) =

(−4)(6z − 1) + (x + 4y)(6zy)

(6z − 1)2
=

−4

6z − 1
− 6

(x + 4y)2

(6z − 1)3
(2 points)
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10. (12%) Find all critical points of the function f(x, y) = xye−x
2−y2

and classify them.

Solution:

fx(x, y) = (1 − 2x2)ye−x
2−y2

(1 points)

fy(x, y) = (1 − 2y2)xe−x
2−y2

(1 points)

Ô⇒ critical points are (0,0), (
1

√
2
,

1
√

2
), (

1
√

2
,
−1
√

2
), (

−1
√

2
,

1
√

2
), (

−1
√

2
,
−1
√

2
) (2 points)

fxx(x, y) = (−6xy − 4x3y)e−x
2−y2

fyy(x, y) = (−6xy − 4xy3)e−x
2−y2

fxy(x, y) = (1 − 2x2 − 2y2 + 4x2y2)e−x
2−y2

(2 points)

∆(0,0) = −1 < 0

∆(
1

√
2
,

1
√

2
) =

4

e2
> 0 and fxx(

1
√

2
,

1
√

2
) =

−2

e
< 0

∆(
1

√
2
,
−1
√

2
) =

4

e2
> 0 and fxx(

1
√

2
,
−1
√

2
) =

2

e
> 0

∆(
−1
√

2
,

1
√

2
) =

4

e2
> 0 and fxx(

−1
√

2
,

1
√

2
) =

2

e
> 0

∆(
−1
√

2
,
−1
√

2
) =

4

e2
> 0 and fxx(

−1
√

2
,
−1
√

2
) =

−2

e
< 0 (4 points)

Hence

(0,0) is a saddle point

(
1

√
2
,

1
√

2
), (

−1
√

2
,
−1
√

2
) are local maximum points

(
1

√
2
,
−1
√

2
), (

−1
√

2
,

1
√

2
) are local minimum points (2 points)
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11. (12%) Among all planes that are tangent to the surface x2yz = 1, are there the ones that are nearest or farthest from
the origin? Find such tangent planes if they exist.

Solution:

Preliminaries Let f(x, y, z) = x2yz, and let Tr be the tangent plane of a point r = ⟨a, b, c⟩ on the surface. The
gradient of f on r is

∇f(r) = ⟨2abc, a2c, a2b⟩ = ⟨
2

a
,
1

b
,
1

c
⟩ .

Note that here we use the condition a2bc = 1 since r is a point on the surface. Since ∇f(r) is also the normal
vector of Tr, the equation of Tr is

2

a
x +

1

b
y +

1

c
z = 4.

The distance between Tr and the origin is

d(Tr,0) =
∣ 2
a
⋅ 0 + 1

b
⋅ 0 + 1

c
⋅ 0 − 4∣

√

( 2
a
)
2
+ ( 1

b
)
2
+ ( 1

c
)
2
=

4
√

4
a2 +

1
b2
+ 1

c2

.

Now, let

g(a, b, c) =
4

a2
+

1

b2
+

1

c2

and find the maxima and minima subject to the constraint a2bc = 1. The maxima of g correspond to the nearest
tangent planes, and the minima correspond the farthest. We will use several methods to solve this optimization
problem.

Method 1 Applying the AM-GM inequality,

g(a, b, c) =
2

a2
+

2

a2
+

1

b2
+

1

c2
≥ 4

√
2

a2
⋅

2

a2
⋅

1

b2
⋅

1

c2
= 4

√
4

a4b2c2
= 8.

The maxima does not exist since g →∞ when a → 0. And the minima of g occurs when 2/a2 = 1/b2 = 1/c2; that
is, a2 = 2b2 = 2c2. By a2bc = 1, we have

a = ±
4
√

2 and b = c = ±
1
4
√

2
.

Method 2 Applying the Lagrange multiplier,

∇g + λ(f − 1) = 0;

that is,

−
8

a3
+ λ

2

a
= 0, −

2

b3
+ λ

1

b
= 0, and −

2

c3
+ λ

1

c
= 0.

Therefore, the extrema occurs when λ = 4/a2 = 2/b2 = 2/c2; that is, a2 = 2b2 = 2c2. It follows that g(a, b, c) = 8.
Also, the extrema occurs when the derivative of g does not exist; that is, a = 0 or b = 0. Since g →∞ when a→ 0
or b→ 0, these does are not exist, and we can guarantee that those extrema with g = 8 are global minima.

Method 3 Replacing c by 1/a2b,

g(a, b) =
4

a2
+

1

b2
+ a4b2.

The first order partial derivatives are

ga = −
8

a3
+ 4a3b2 and gb = −

2

b3
+ 2a4b,

and the second order partial derivatives are

gaa =
24

a4
+ 12a2b2, gab = gba = 8a3b, and gbb =

6

b4
+ 2a4.
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Therefore, the extrema occurs when ga = 0 and gb = 0; that is,

a = ±
4
√

2 and b = c = ±
1
4
√

2
.

It follows that
D = gaagbb − g

2
ab = 24 ⋅ 16 − (±8

√
2) = 384 − 128 = 256 > 0;

that is, these extrema are local minima. Also, the extrema occurs when derivative of g does not exist; that is,
a = 0 or b = 0. Since g →∞ when a→ 0 or b→ 0, these does are not exist, and we can guarantee that those local
minima are global minima.

Results After solving the optimization problem, we find the farthest tangent planes

23/4x + 21/4y + 21/4z = 1,

23/4x − 21/4y − 21/4z = 1,

−23/4x + 21/4y + 21/4z = 1,

−23/4x − 21/4y − 21/4z = 1.

The nearest tangent plane does not exist since g has no maxima.

Points

� (2%) Find ∇f(r).

� (2%) Find equation of Tr.

� (2%) Find the distance between Tr and the origin.

� (2%) Find the extrema of g.

� (2%) Find farthest tangent planes.

� (2%) Show that the nearest tangent plane does not exist.

Page 12 of 12


