[12/13截止] 期末教學意見調查 - 填問卷、抽iPad https://if163.aca.ntu.edu.tw/eportfolio/ or https://investea.aca.ntu.edu.tw/opinion/login.asp

Deep Learning for Computer Vision

113-1/Fall 2024

https://cool.ntu.edu.tw/courses/41702 (NTU COOL)

http://vllab.ee.ntu.edu.tw/dlcv.html (Public website)

Yu-Chiang Frank Wang 王鈺強, Professor Dept. Electrical Engineering, National Taiwan University

2024/12/10

What to Be Covered Today...

- Additional Topics in DLCV
 - Continual Learning
 - Meta Learning
 - Domain Generalization
 - Federated Learning
- Experience Sharing
 - Tim Chou (MS, GICE, NTU 2023), AI SW Engineer, NVIDIA

Continual Learning (aka Incremental Learning)

• Motivation

- Always new dataset, knowledge, etc, to finetune the LLM/VLM
 - No practical to re-train foundation models from scratch
- It is a naive learning way, since human is a continual learner.
- Goal: learn downstream tasks/datasets in a sequential (or incremental) way, while not forgetting what models have learned before.

Continual Learning (cont'd)

• Task Definition

• Learning a list of datasets in a sequential manner **without forgetting** previous knowledge.

• The most straight forward strategy

- Directly fine-tune a pre-trained model on a new dataset...any concern?
- Challenge: Suffer from the well-known catastrophic forgetting issue,

as the model weights can be totally distorted toward the new task only

Previous works on Continual Learning

- Rehearsal-based methods
 - o iCaRL (CVPR'17)
- Regularization-based methods
 - EWC (PNAS'17)
- Continual Learning for open-vocab. Vision-Language Models
 - o ZSCL (ICCV'23)
 - Select and Distill (ECCV'24)

iCaRL: Incremental Classifier and Representation Learning, Oxford, CVPR'17

- Rehearsal-based method
- Idea:
 - Maintain a subset of previous data in a class exemplar sets $P = (P_1, \dots, P_{s-1})$ where {1, 2, ..., k-1} are the learned classes
 - Joint training with the current data X^s, \ldots, X^t with classes {s, ..., t}
- Method
 - For data in *P*, enforce the learned model θ output as that of θ_{old} .
 - Can be viewed as Knowledge Distillation
 - For newly observed data, training with the standard cross entropy loss.

$$Y_{\text{old}} = \{ f_{\theta_{\text{old}}}(x) | \forall x \in P \}$$
$$\mathcal{L}(\theta) = \sum_{(x,y)\in D} \left[\sum_{y=s}^{t} \mathcal{L}(Y_{\text{new}}, \hat{Y}) + \sum_{y=1}^{s-1} \mathcal{L}(Y_{\text{old}}, \hat{Y}) \right]$$

• Any concern?

iCaRL: Incremental Classifier and Representation Learning

EWC: Overcoming catastrophic forgetting in neural networks, DeepMind, PNAS'17

- Regularization-based method
- Idea:
 - <u>Weight Consolidation</u>: restrict the learned weights not to be too distinct from the original model ones

$$\mathcal{L}_{\mathrm{WC}} = \sum_{i} (\theta_i - \bar{\theta}_i)^2$$

- <u>Elastic Weight Consolidation</u>: each parameter should be treated differently (w/ different weights)
 - o i: the index of the model parameters.

Overcoming catastrophic forgetting in neural networks

EWC, DeepMind, PNAS'17 (cont'd)

- Method (cont'd)
 - Using Fisher Information (F) to determine the importance of a parameter to the previous task.
 - O Fisher information: the expectation of second derivative of negative log-likelihood at $\overline{ heta}$

$$\mathcal{L}_{\mathrm{EWC}} = \sum_{i} rac{\lambda}{2} F_i (heta_i - ar{ heta}_i)^2$$

O λ : a hyper-parameter to determine the overall importance of previous tasks.

$$\mathcal{L}(\theta) = \mathcal{L}_B(\theta) + \sum_i \frac{\lambda}{2} F_i (\theta_i - \theta_{A,i}^*)^2$$

Continual Learning for Vision-Language Models

• Motivation

With the prevalence of large-scale Vision-Language Models (VLMs),
 Continual Learning for VLMs has emerged as a potential research trends.

• Goal

- Sequentially learning from new datasets
- Preserve the original zero-shot ability for unseen data
- O Maintain knowledge learned from previous stages (as existing CL methods do)

ZSCL: Preventing Zero-Shot transfer degradation in Continual Learning of vision-language models, NUS, ICCV'23

- Method
 - Utilize an auxiliary reference dataset (e.g., ImageNet), and perform Knowledge Distillation from the original CLIP model.
 - (1) Distill knowledge on **both visual and textual sides**.

ZSCL, ICCV'23 (cont'd)

• Method (cont'd)

- (2) WE: <u>Weight space Ensemble to regularize the weights</u>
 - The updated model weights would not be too different from the weights learned from the previous stage.

$$\hat{\theta}_t = \begin{cases} \theta_0 & t = 0\\ \frac{1}{t+1}\theta_t + \frac{t}{t+1} \cdot \hat{\theta}_{t-1} & \text{every I iterations} \end{cases}$$

- Same form as EMA (exponetial moving average)
- Training strategy: (1) -> (2) -> (1) -> (2) -> ... (1) $\mathcal{L} = \mathcal{L}_{ce} + \lambda \cdot (\mathcal{L}_{lwf_img} + \mathcal{L}_{lwf_txt})$ (2) $\hat{\theta}_t = \begin{cases} \theta_0 & t = 0 \\ \frac{1}{t+1}\theta_t + \frac{t}{t+1} \cdot \hat{\theta}_{t-1} & every I \text{ iterations} \end{cases}$ Data from novel task + auxiliary ref dataset

ZSCL, ICCV'23 (cont'd)

• Comparisons

• Zero-shot accuracy vs. accuracy on novel task

ZSCL, ICCV'23 (cont'd)

• Limitation

• ZSCL still significantly suffers from catastrophic forgetting for previous tasks.

ZSCL can preserve zero-shot ability for unseen data

There is still a gap for previous task after training on multiple datasets

Preventing Zero-Shot transfer degradation in Continual Learning of vision-language models

Select and Distill: Selective Dual-Teacher Knowledge Transfer for Continual Learning on Vision-Language Models, NTU, ECCV'24

- Goal
 - Same as ZSCK, adapt to new datasets sequentially while:
 - o preserving the original pre-trained zero-shot ability
 - maintaining the knowledge learned from previous stages

• Idea

- Follow ZSCL, utilize a reference dataset for knowledge distillation
- Dual-Teacher Knowledge Distillation (original VLM vs. recently tuned VLM)
 - Distill from to preserve **zero-shot ability**.
 - o Distill from

to preserve **prior knowledge**.

• Key

• For any data point in the reference dataset,

we need to select a proper model and distill its knowledge.

Select and Distill: Selective Dual-Teacher Knowledge Transfer for Continual Learning on Vision-Language Models

- Observation
 - If a data point is a previously learned data.
 - It must be seen by g_{k-1}, but never been seen by g₀
 thus, the feature distance d between g₀ and g_{k-1} would be large or small?
 - Select g_{k-1} as the teacher model to maintain previous knowledge
 - $\eta(\mathbf{x})$: A normalized distance between 0~1, determine how much should we distill from g_{k-1}

Select and Distill: Selective Dual-Teacher Knowledge Transfer for Continual Learning on Vision-Language Models

- Observation
 - If a data point has never been seen by both g_{k-1} and g_0 (i.e., unseen data)
 - The feature distance d between g_0 and g_{k-1} can be relatively small/large?
 - In this case, we should select g_0 as the teacher model

to preserve the original zero-shot ability.

• Objective

$$\mathcal{L}_{\mathrm{KD}}^{k-1} = d(g_{k-1}(\mathbf{x}), g_k(\mathbf{x})), \ \mathcal{L}_{\mathrm{KD}}^0 = d(g_0(\mathbf{x}), g_k(\mathbf{x}))$$

$$\mathcal{L}_{\mathrm{KD}}^{\mathrm{dual}} = \sum_{\mathbf{x} \sim \mathcal{X}^{\mathrm{ref}}} \eta(\mathbf{x}) \cdot \mathcal{L}_{\mathrm{KD}}^{k-1} + (1 - \eta(\mathbf{x})) \cdot \mathcal{L}_{\mathrm{KD}}^0$$

$$\overset{\text{Reference}}{\underset{\mathcal{X}^{\mathrm{ref}}}{\overset{\mathcal{I}}{\underset{\mathbf{x}^{\mathrm{ref}}}{\overset{$$

- Metrics
 - Average Accuracy
 - Average of the last performance on each dataset
 - Catastrophic forgetting
 - Max. performance gap after the task has been fine-tuned
 - Zero-shot degradation
 - Max. performance gap before the task has been fine-tuned

Select and Distill: Selective Dual-Teacher Knowledge Transfer for Continual Learning on Vision-Language Models

• Results

- Successfully preserve the zero-shot ability for unseen data
- o Mitigate the catastrophic forgetting of previously learned data

Successfully preserve zero-shot ability for unseen data

Largely mitigate the performance gap

Robustness

- We shuffle the training orders, producing 8 different training sequences.
- Our methods showing state-of-the-art performance on all metrics, and the results are stable across all training sequences.

Method / Sequence	\mathcal{S}^1	\mathcal{S}^2	\mathcal{S}^3	\mathcal{S}^4	\mathcal{S}^5	\mathcal{S}^6	\mathcal{S}^7	\mathcal{S}^8	Mean
Catastrophic forgetting (\downarrow)									
Continual FT	10.98	10.60	8.80	19.17	10.11	11.95	15.19	9.48	12.04
LwF [24]	10.38	6.52	6.37	10.22	7.99	7.70	10.41	8.91	8.56
iCaRL [35]	8.42	7.00	6.45	and a					-
ZSCL [50]	4.67	2.35	2.13	030	· 周主之行;	Select and Dis	till: Selective Dual-To	eacher Knowledge T	ransfer for
MoE-Adapters [48]	2.74	4.71	4.28		Andread Travar Us	ivenity Yu-Dia Yal Chi-Pin ma	ng ¹ Jr-Jen Chen ¹ Kei Po Chang ¹ Ya ¹ Notional Tenam Univ	op-Hum tel: Fu-Be Sing? Yu-Ch mity::: 740000	Nong Avank Wang ^{1,2} INVIDI.
Ours	1.70	1.16	0.89	01	ThipDic we propose S	oduction	Catastrophic Porgetting an M Castas Between Series	d preserving Zero-Shot Tr Slaad WOungary Sector Bel New Working Sector	Experia Experia
Zero-shot degradation (\downarrow)				Real Providence					E Series
Continual FT	24.81	23.58	19.54			The Researching Transfer (Rese)		- Distri	A start and thereby
LwF [24]	10.75	10.23	8.63		A Printer for U.M. 2	parts 2 challenger preventing Datasting		- Bart	Contractor for Print
iCaRL [35]	13.77	12.68	11.28			a takene Dat Stater Transley Ton	 Per data that has been learned be treade to be legge and we attend if Conversity for amount data, the 	ten die lanae datum e lerwere (). Hill kowindje dan ()	2
ZSCL [50]	3.44	3.94	4.02			 (antiter stage are labele), as pro- standorability of DAI correspond- quicting any additional memory to pro- 	Ablab	ion Study	-
MoE-Adapters [48]	1.62	2.58	1.04			Officeral basising orders demonstrate Wolfort prepared functions	tiller		
Ours	1.55	2.04	1.21			-	2107		
Average accuracy (\uparrow)				1					4.16
Continual FT	76.16	76.24	78.03	1. Je		-		The state of the s	
LwF [24]	76.78	80.45	80.65	M. A.	18				
iCaRL [35]	77.99	79.77	79.93	70.00	79.20	79.08	77.00	78.01	78.55
ZSCL [50]	81.89	83.98	84.30	83.49	83.41	82.38	81.92	81.97	82.92
MoE-Adapters [48]	82.71	80.74	81.15	83.97	83.68	83.68	82.73	79.68	82.29
Ours	84.48	84.92	84.97	84.89	85.50	85.07	85.02	84.52	84.92

Select and Distill: Selective Dual-Teacher Knowledge Transfer for Continual Learning on Vision-Language Models

What to Be Covered Today...

- Additional Topics in DLCV
 - Continual Learning
 - Meta Learning
 - Domain Generalization
 - Federated Learning
- Experience Sharing
 - Tim Chou (MS, GICE, NTU 2023), AI SW Engineer, NVIDIA

Meta Learning 元學習

- Meta Learning ⊆ Supervised Learning
- For Supervised Learning,
 - Given training data D = {X, Y}, learn function/model f so that f(x_i) = y_i

"Cat"

What If Only Limited Amount of Data Available?

Naive transfer?

• Model finetuning:

- Train a learning model (e.g., CNN) on large-size data (base classes), followed by finetuning on small-size data (novel classes).
- That is, freeze feature backbone (learned from base classes) and learn/update classifier weights for novel classes.
- Question: What would be the concern/limitation?

Meta Learning = Learning to Learn

• Let's consider the following "2-way 1-shot" learning scheme:

Some ML Backgrounds (if time permits...)

- We know the biggest problem is that...
 - Can't always collect a large amount of labeled data **D** in advance.

• Now, for the *Meta Learning* scheme...

supervised learning:

 $\arg\max_{\phi}\log p(\phi|\mathcal{D})$

can we incorporate *additional* data?

Few-shot data domain of interest

$$\mathcal{D} = \{(x_1, y_1), \dots, (x_k, y_k)\}$$

$$\begin{array}{c|c} & & & \\ \hline \varphi & L & \beta & S & L \\ \hline \mu & \alpha & & & \\ \hline \nu & 0 & & & \\ \hline \upsilon & 0 & Y & L & \\ \hline \omega & & & & \\ \hline \rho & & & \\ \hline \end{array} \begin{array}{c} & & & \\ \hline \end{array} \begin{array}{c} & & \\ \end{array} \begin{array}{c} & & \\ \hline \end{array} \begin{array}{c} & & \\ \end{array} \end{array} \begin{array}{c} & & \\ \end{array} \begin{array}{c} & & \\ \end{array} \end{array} \begin{array}{c} & & \\ \end{array} \end{array} \begin{array}{c} & & \\ \end{array} \begin{array}{c} & & \\ \end{array} \end{array}$$

$$\mathcal{D}_{ ext{meta-train}} = \{\mathcal{D}_1, \dots, \mathcal{D}_n\}$$

$$\mathcal{D}_i = \{(x_1^i, y_1^i), \dots, (x_k^i, y_k^i)\}$$

What Meta Learning Solves:Object label:
"cat"Object ID:
"person"arg max log
$$p(\phi|\mathcal{D}, \mathcal{D}_{meta-train})$$
 $\mathcal{D}_{meta-train} = \{\mathcal{D}_1, \dots, \mathcal{D}_n\}$ $\stackrel{\circest}{\longrightarrow} \mathcal{D} = \{(x_1, y_1), \dots, (x_k, y_k)\}$ $\stackrel{\bullet}{\longrightarrow}$ what if we don't want to keep $\mathcal{D}_{meta-train}$ around forever? $\stackrel{\bullet}{\longrightarrow} \frac{|\varphi| \cdot |\varphi| \cdot |\varphi|$

What Meta Learning Solves:

$$\arg \max_{\phi} \log p(\phi | \mathcal{D}, \mathcal{D}_{meta-train})$$

$$\square = \{\mathcal{D}_{1}, \dots, \mathcal{D}_{n}\}$$

$$\square = \{(x_{1}, y_{1}), \dots, (x_{k}, y_{k})\}$$

$$\square = \{(x_{1}$$

A Quick Review (cont'd):

✓ Key Idea:

The condition/mechanism of meta-training and meta-testing must match. In other words, meta learning is to learn the mechanism, **not** to fit the data/labels.

Meta-Learning Terminologies & Additional Remarks

✓ Remarks

- Meta learning: learn a N-way K-shot learning mechanism, *not* fitting data/labels
- The conditions (i.e., N-way K-shot) of meta-training and meta-testing must match.
- Question: Remarks on N & K vs. performances?

Approach #1: Optimization-Based Approach

- Model-Agnostic Meta-Learning (MAML)*
 - Key idea:
 - Train over many tasks (with a small amount of data & few gradient steps), so that the learned model parameter would generalize to novel tasks
 - Learning to initialize/fine-tune
 - Meta-Learner $\Phi \rightarrow \Theta_0$:
 - Learn a parameter initialization Θ₀ of model that transfers/generalizes to novel tasks well.
 - That is, learn model Θ_0 which can be fine-tuned by novel tasks efficiently/effectively.

optimize model parameter $\boldsymbol{\theta}$ so that it can quickly adapt to new tasks

Approach #2: Non-Parametric Approach

- Can models learn to compare?
- E.g., Siamese Network
 - Learn a network to determine whether a pair of images are of the same category.

Koch et al., Siamese Neural Networks for One-Shot Image Recognition, ICML WS 2015

Learn to Compare (cont'd)

- Siamese Network (cont'd)
 - Meta-training/testing: learn to match
 - Question: output label of the following example is 1 or 0? (i.e., same ID or not)

Learn to Compare (cont'd)

- Siamese Network (cont'd)
 - Meta-training/testing: learn to match
 - Question: output label of the following example is 1 or 0? (i.e., same ID or not)

- What did we learn from these examples?
- And, can we perform multi-way classification (beyond matching)?

Learn to Compare...with the Representative Ones!

Prototypical Networks

- Learn a model which properly describes data in terms of intra/inter-class info.
- Learn a prototype for each class, with data similarity/separation guarantees.

- Prototypical Networks (cont'd)
 - Learn a model which properly describes data in terms of intra/inter-class info.
 - It learns a prototype for each class, with data similarity/separation guarantees.
 - For DL version, the above embedding space is derived by a non-linear mapping f_{ϕ} and the representatives (or anchors) of each class is the **mean feature vector** \mathbf{c}_k .

Learn to Compare

Matching Networks

- Inspired by the **attention** mechanism, access an augmented memory containing useful info to solve the task of interest
- The authors proposed a weighted nearest-neighbor classifier, with attention over a learned embedding from the support set S = {(x_i, y_i)}^k_{i=1}, so that the label of the query x̂ can be predicted.

- Matching Networks (cont'd)
 - Full context embedding (FCE)
 - Each element in *S* should not be embedded independently of other elements
 - $g(x_i) \rightarrow g(S)$ as a **bidirectional LSTM** by considering the whole S as a **sequence**
 - Also, S should be able to modify the way we embed \hat{x}
 - $f(\hat{x}) \rightarrow f(\hat{x}, S)$ as an **LSTM** with **read-attention** over g(S): attLSTM $(f'(\hat{x}), g(S), K)$, where $f'(\hat{x})$ is the (fixed) CNN feature, and K is the number of unrolling steps
 - Experiment results on *mini*ImageNet

query example \hat{x}

Learn to Compare

- Matching Networks (cont'd)
 - If we have g = f, the model turns into a Siamese network like architecture
 - Also similar to prototypical network for one-shot learning

Further Remarks: A Closer Look at FSL (1/3)

- Idea
 - **Deeper backbones** significantly reduce the gap across existing FSL methods. (with decreased domain shifts between base and novel classes)

use **cosine distances** between the input feature and the weight vector for each class to reduce intra-class variations

A Closer Look at FSL (2/3)

- Performance with deeper backbones
 - For CUB, gaps among different methods diminish as the backbone gets deeper.
 - For mini-ImageNet, some meta-learning methods are even beaten by baselines with a deeper backbone.

Chen et al., A Closer Look at Few-shot Classification, ICLR, 2019

A Closer Look at FSL (3/3)

- Performance with domain shifts (using ResNet-18)
 - Existing FSL methods fail to address large domain shifts (e.g., mini-ImageNet → CUB) and are inferior to the baseline methods.
 - This highlights the importance of learning to adapt to domain differences in FSL.

What to Be Covered Today...

- Additional Topics in DLCV
 - Continual Learning
 - Meta Learning
 - Domain Generalization
 - Federated Learning
- Experience Sharing
 - Tim Chou (MS, GICE, NTU 2023), AI SW Engineer, NVIDIA

Domain Generalization

- Input: Images and labels from multiple source domains
- Output: A well-generalized model for unseen target domains

 $D_{s} = \{Photo, Painting, Cartoon\}$ $D_{T} = \{Sketch\}$

Recap: Domain Adaptation

- Domain-Adversarial Training of Neural Networks (DANN)
 - Y. Ganin et al., ICML 2015
 - Maximize domain confusion = maximize domain classification loss
 - Minimize source-domain data classification loss
 - The derived feature f can be viewed as a disentangled & domain-invariant feature.

Recap: Learn to Compare with the Representative Ones!

- Prototypical Networks
 - Learn a model which properly describes data in terms of intra/inter-class info.
 - It learns a prototype for each class, with data similarity/separation guarantees.
 For DL version, the learned feature space is derived by a non-linear mapping f_θ and the representatives (i.e., prototypes) of each class is the mean feature vector c_k.

Strategy of Episodic Training

- Episodic training for domain generalization (ICCV'19)
- Generalize across domains via Meta-Learning

······ Episodic training of AGG Classifier – – – → Episodic training of AGG Feat. Ext.

• Motivation

Domain Specific Models

• Random sample two domains, e.g., Photo and Cartoon

·····→ Episodic training of AGG Classifier – – – → Episodic training of AGG Feat. Ext.

• Random sample two domains, e.g., Photo and Cartoon

·····→ Episodic training of AGG Classifier – – – → Episodic training of AGG Feat. Ext.

·····→ Episodic training of AGG Classifier – – – → Episodic training of AGG Feat. Ext.

Experiments

- Input: Images and labels from multiple source domains
- Output: A well-generalized model for unseen target domains

 $D_{s} = \{Photo, Painting, Cartoon\}$ $D_{T} = \{Sketch\}$

Experiments (cont'd)

Domain Generalized Classification

Source	Target	DICA [26]	LRE-SVM [38]	D-MTAE [12]	CCSA [25]	MMD-AAE [20]	DANN[11]	MLDG [18]	CrossGrad [32]	MetaReg [1]	AGG	Epi-FCR
0,1,2,3	4	61.5	75.8	78.0	75.8	79.1	75.0	70.7	71.6	74.2	73.1	76.9
0,1,2,4	3	72.5	86.9	92.3	92.3	94.5	94.1	93.6	93.8	94.0	94.2	94.8
0,1,3,4	2	74.7	84.5	91.2	94.5	95.6	97.3	97.5	95.7	96.9	95.7	99.0
0,2,3,4	1	67.0	83.4	90.1	91.2	93.4	95.4	95.4	94.2	97.0	95.7	98.0
1,2,3,4	0	71.4	92.3	93.4	96.7	96.7	95.7	93.6	94.0	94.7	94.4	96.3
Av	æ.	69.4	84.6	87.0	90.1	91.9	91.5	90.2	89.9	91.4	90.6	93.0

Table 1: Cross-view action recognition results (accuracy. %) on IXMAS dataset. Best result in bold.

Source	Target	DICA [26]	LRE-SVM [38]	D-MTAE [12]	CCSA [25]	MMD-AAE[20]	DANN [11]	MLDG [18]	CrossGrad [32]	MetaReg [1]	AGG	Epi-FCR
L,C,S	V	63.7	60.6	63.9	67.1	67.7	66.4	67.7	65.5	65.0	65.4	67.1
V,C,S	L	58.2	59.7	60.1	62.1	62.6	64.0	61.3	60.0	60.2	60.6	64.3
V,L,S	С	79.7	88.1	89.1	92.3	94.4	92.6	94.4	92.0	92.3	93.1	94.1
V,L,C	S	61.0	54.9	61.3	59.1	64.4	63.6	65.9	64.7	64.2	65.8	65.9
Av	e.	65.7	65.8	68.6	70.2	72.3	71.7	72.3	70.5	70.4	71.2	72.9

Table 2: Cross-dataset object recognition results (accuracy. %) on VLCS benchmark. Best in bold.

What to Be Covered Today...

- Additional Topics in DLCV
 - Continual Learning
 - Meta Learning
 - Domain Generalization
 - Federated Learning
- Experience Sharing
 - Tim Chou (MS, GICE, NTU 2023), AI SW Engineer, NVIDIA

Why Federated Learning?

- Data privacy issue becomes a growing concern in modern AI services
- Regulations like CCPA (California) or GDPR (Europe) restrict data transmission across different data sources

Federated Learning

- Collaborative learning without centralizing data
- Share model weights instead of raw data (or features)!
- Model training occurs locally at each participant/client

Federated Learning (cont'd)

- Training models collaborately without sharing the raw data
- FedAvg:
 - Local client training using private data --> Server aggregation (i.e., averaging)

Federated Learning (cont'd)

- Training models collaborately without sharing the raw data
- FedAvg:
 - Local client training using private data --> Server aggregation (Averaging)
 --> Broadcast to clients (then iterate)

Extension of Federated Learning

- Semi-Supervised FL
 - Some labeled clients, and other unlabeled clients

- Offsite-Tuning: Transfer Learning without Full Model (MIT, arxiv., 2023)
 - Sharing models across clients results in privacy concern
 - Model owners (Big Tech) don't want to share model weights
 - Users don't want to share data with personal or sensitive information
 ⇒ Cannot fine-tune to obtain full power of foundation model

- Offsite-Tuning: Transfer Learning without Full Model (MIT, arxiv., 2023)
- Proposed idea
 - Smaller version of original model (efficiency for transfer and fine-tuning)
 - Less powerful (business consideration)
 - Trainable adapters that can transfer to model owner and "plug in" model

- Offsite-Tuning: Transfer Learning without Full Model (MIT, arxiv., 2023)
- How to construct emulators?
 - Keep the first 2 and last 2 layers of original model as adapters
 - Uniformly drop rest layers (e.g., every 2 layers)
 - Knowledge distillation

- Offsite-Tuning: Transfer Learning without Full Model (MIT, arxiv., 2023)
- Experiments
 - Accuracy of two LLMs on different QA benchmarks (higher is better)
 - ZS: zero shot, FT: full fine-tune, OT Emulator: adapters on emulator, OT Plug-in: adapters on original model

Setting	OpenBookQA	PIQA	ARC-E	ARC-C	HellaSwag	SciQ	WebQs	RACE		
	GPT2-XL (2-16-2 Distill)									
Full ZS	23.0%	70.9%	58.2%	25.1%	40.0%	83.2%	1.5%	33.0%		
Emulator ZS	18.8%	67.7%	53.2%	20.8%	33.5%	77.0%	0.2%	30.0%		
FT	30.0%	73.2%	62.9%	30.0%	40.7%	92.5%	26.4%	43.2%		
OT Emulator	24.0%	70.3%	58.2%	23.9%	35.8%	92.7%	18.9%	39.4%		
OT Plug-in	28.2%	73.6%	61.4%	28.5%	41.6%	93.2%	19.9%	39.9%		
		OPT-1.3B (2-8-2 Distill)								
Full ZS	23.4%	71.6%	56.9%	23.5%	41.5%	84.4%	4.6%	34.2%		
Emulator ZS	19.4%	68.7%	53.9%	21.5%	35.1%	80.9%	1.3%	33.0%		
FT	31.4%	75.2%	61.3%	27.7%	42.7%	92.5%	31.2%	37.0%		
OT Emulator	24.8%	71.6%	58.1%	26.1%	37.0%	92.2%	24.3%	38.6%		
OT Plug-in	29.0%	74.5%	59.4%	27.8%	43.3%	92.9%	26.2%	38.9%		

What to Be Covered Today...

- Additional Topics in DLCV
 - Continual Learning
 - Meta Learning
 - Domain Generalization
 - Federated Learning
- Experience Sharing
 - Tim Chou (MS, GICE, NTU 2023), AI SW Engineer, NVIDIA

What We've Covered This Semester

- MLP: Linear to Non-linear Classification
- CNN: Classification, Segmentation, Detection, and SSL
- Generative Model: AE/VAE, GAN, Diffusion Model & Personalization
- **Transformer**: Learning from Sequential Data
- Vision-Language Models: Pre-training & Finetuning, PEFT
- **3D Vision**: Point Cloud, NeRF, 3DGS
- **More Topics**: Continual learning, Meta Learning, Domain Generalization, Fed Learning
- Guest Lectures: 2 academic + 1 career planning talks/sharing
- Your Feedback Is Appreciated! ③
 - 期末教學意見調查
 - <u>https://if163.aca.ntu.edu.tw/eportfolio/</u>

Good Luck with the Final Project & All Your Finals!

See you all on Dec. 26th (snack provided during final presentation)