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What to Be Covered Today…

• Additional Topics in DLCV
• Continual Learning
• Meta Learning
• Domain Generalization
• Federated Learning

• Experience Sharing
• Tim Chou (MS, GICE, NTU 2023), AI SW Engineer, NVIDIA
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Continual Learning (aka Incremental Learning)

● Motivation
○ Always new dataset, knowledge, etc, to finetune the LLM/VLM

○ No practical to re-train foundation models from scratch
○ It is a naive learning way, since human is a continual learner.
○ Goal: learn downstream tasks/datasets in a sequential (or incremental) way, 

while not forgetting what models have learned before.
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Continual Learning (cont’d)

● Task Definition
○ Learning a list of datasets in a sequential manner without forgetting previous knowledge.

● The most straight forward strategy
○ Directly fine-tune a pre-trained model on a new dataset…any concern?
○ Challenge: Suffer from the well-known catastrophic forgetting issue, 

as the model weights can be totally distorted toward the new task only
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Previous works on Continual Learning

● Rehearsal-based methods
○ iCaRL (CVPR’17)

● Regularization-based methods
○ EWC (PNAS’17)

● Continual Learning for open-vocab. Vision-Language Models
○ ZSCL (ICCV’23)
○ Select and Distill (ECCV’24)
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iCaRL: Incremental Classifier and Representation Learning

iCaRL: Incremental Classifier and Representation Learning, 
Oxford, CVPR’17

● Rehearsal-based method
● Idea: 

○ Maintain a subset of previous data in a class exemplar sets
where {1, 2, …, k-1} are the learned classes

○ Joint training with the current data                          with classes {s, …, t}
● Method

○ For data in P, enforce the learned model θ output as that of θold.
○ Can be viewed as Knowledge Distillation

○ For newly observed data, training with the standard cross entropy loss.

○ Any concern?
6
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EWC: Overcoming catastrophic forgetting in neural networks, 
DeepMind, PNAS’17

● Regularization-based method
● Idea: 

○ Weight Consolidation: 
restrict the learned weights not to be too distinct from the original model ones

○ Elastic Weight Consolidation: 
each parameter should be treated differently (w/ different weights)

○ i: the index of the model parameters.

7
Overcoming catastrophic forgetting in neural networks

https://arxiv.org/abs/1611.07725
https://arxiv.org/pdf/1612.00796


EWC, DeepMind, PNAS’17 (cont’d)

● Method (cont’d)
○ Using Fisher Information (F) to determine 

the importance of a parameter to the previous task. 
○ Fisher information: the expectation of second derivative of negative log-likelihood at 

○ 𝜆𝜆: a hyper-parameter to determine the overall importance of previous tasks.
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Higher Fisher Information. 
Sensitive to the parameter 
change

Lower Fisher Information.
Non-sensitive to the 
parameter change.

Overcoming catastrophic forgetting in neural networks

https://arxiv.org/abs/1611.07725
https://arxiv.org/pdf/1612.00796


Continual Learning for Vision-Language Models

● Motivation
○ With the prevalence of large-scale Vision-Language Models (VLMs), 

Continual Learning for VLMs has emerged as a potential research trends.
● Goal

○ Sequentially learning from new datasets
○ Preserve the original zero-shot ability for unseen data
○ Maintain knowledge learned from previous stages (as existing CL methods do)
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Preventing Zero-Shot transfer degradation in Continual Learning of vision-language models

ZSCL: Preventing Zero-Shot transfer degradation
in Continual Learning of vision-language models, NUS, ICCV’23

● Method
○ Utilize an auxiliary reference dataset (e.g., ImageNet), 

and perform Knowledge Distillation from the original CLIP model.
○ (1) Distill knowledge on both visual and textual sides.
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Teacher (Original CLIP) output

Student output

https://arxiv.org/abs/1611.07725
https://openaccess.thecvf.com/content/ICCV2023/papers/Zheng_Preventing_Zero-Shot_Transfer_Degradation_in_Continual_Learning_of_Vision-Language_Models_ICCV_2023_paper.pdf


Preventing Zero-Shot transfer degradation in Continual Learning of vision-language models

ZSCL, ICCV’23 (cont’d)

● Method (cont’d)
○ (2) WE: Weight space Ensemble to regularize the weights

○ The updated model weights would not be too different 
from the weights learned from the previous stage.

○ Same form as EMA (exponetial moving average)

○ Training strategy: (1) -> (2) -> (1) -> (2) -> …
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(1)

(2)

Data from novel task + 
auxiliary ref dataset

https://arxiv.org/abs/1611.07725
https://openaccess.thecvf.com/content/ICCV2023/papers/Zheng_Preventing_Zero-Shot_Transfer_Degradation_in_Continual_Learning_of_Vision-Language_Models_ICCV_2023_paper.pdf


Preventing Zero-Shot transfer degradation in Continual Learning of vision-language models

ZSCL, ICCV’23 (cont’d)

● Comparisons
○ Zero-shot accuracy vs. accuracy on novel task
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Sample every 100 iterations. 
As training progresses, the 
model's zero-shot capability 
deteriorates.

Ensemble the original and fine-tuned 
model weights with different ratios.
Sensitive to the choose of the ratio

Iterative weight ensemble. Improved 
fine-tuned accuracy, with an acceptable 
decrease in zero-shot performance

https://arxiv.org/abs/1611.07725
https://openaccess.thecvf.com/content/ICCV2023/papers/Zheng_Preventing_Zero-Shot_Transfer_Degradation_in_Continual_Learning_of_Vision-Language_Models_ICCV_2023_paper.pdf


Preventing Zero-Shot transfer degradation in Continual Learning of vision-language models

ZSCL, ICCV’23 (cont’d)

● Limitation
○ ZSCL still significantly suffers from catastrophic forgetting for previous tasks.
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ZSCL can preserve zero-shot ability for unseen data There is still a gap for previous task
after training on multiple datasets

Performance gap

https://arxiv.org/abs/1611.07725
https://openaccess.thecvf.com/content/ICCV2023/papers/Zheng_Preventing_Zero-Shot_Transfer_Degradation_in_Continual_Learning_of_Vision-Language_Models_ICCV_2023_paper.pdf


Select and Distill: Selective Dual-Teacher Knowledge Transfer for Continual Learning on Vision-Language Models

Select and Distill: Selective Dual-Teacher Knowledge Transfer
for Continual Learning on Vision-Language Models, NTU, ECCV’24

● Goal
○ Same as ZSCK, adapt to new datasets sequentially while:

○ preserving the original pre-trained zero-shot ability
○ maintaining the knowledge learned from previous stages
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Select and Distill: Selective Dual-Teacher Knowledge Transfer for Continual Learning on Vision-Language Models

Select and Distill, NTU, ECCV’24 (cont’d)

● Idea
○ Follow ZSCL, utilize a reference dataset for knowledge distillation
○ Dual-Teacher Knowledge Distillation (original VLM vs. recently tuned VLM)

○ Distill from the original pre-trained VLM to preserve zero-shot ability.
○ Distill from the most recent fine-tuned VLM to preserve prior knowledge.

● Key
○ For any data point in the reference dataset, 

we need to select a proper model and distill its knowledge.
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https://arxiv.org/abs/2403.09296
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Select and Distill: Selective Dual-Teacher Knowledge Transfer for Continual Learning on Vision-Language Models

Select and Distill, NTU, ECCV’24 (cont’d)

● Observation
○ If a data point is a previously learned data.

○ It must be seen by 𝑔𝑔𝑘𝑘−1, but never been seen by 𝑔𝑔0 
thus, the feature distance d between 𝑔𝑔0 and 𝑔𝑔𝑘𝑘−1 would be large or small?

○ Select 𝑔𝑔𝑘𝑘−1 as the teacher model to maintain previous knowledge

○ : A normalized distance between 0~1, determine how much should we 
distill from 𝑔𝑔𝑘𝑘−1
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Previously learned data

https://arxiv.org/abs/2403.09296
https://arxiv.org/abs/2403.09296


Select and Distill: Selective Dual-Teacher Knowledge Transfer for Continual Learning on Vision-Language Models

Select and Distill, NTU, ECCV’24 (cont’d)

● Observation
○ If a data point has never been seen by both 𝑔𝑔𝑘𝑘−1 and 𝑔𝑔0 (i.e., unseen data)

○ The feature distance d between 𝑔𝑔0 and 𝑔𝑔𝑘𝑘−1 can be relatively small/large?
○ In this case, we should select 𝑔𝑔0 as the teacher model 

to preserve the original zero-shot ability.
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Unseen data

https://arxiv.org/abs/2403.09296
https://arxiv.org/abs/2403.09296


● Objective

,

Select and Distill: Selective Dual-Teacher Knowledge Transfer for Continual Learning on Vision-Language Models

Select and Distill, NTU, ECCV’24 (cont’d)
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https://arxiv.org/abs/2403.09296
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● Metrics
○ Average Accuracy

○ Average of the last performance on each dataset
○ Catastrophic forgetting

○ Max. performance gap after the task has been fine-tuned
○ Zero-shot degradation

○ Max. performance gap before the task has been fine-tuned

Select and Distill: Selective Dual-Teacher Knowledge Transfer for Continual Learning on Vision-Language Models

Select and Distill, NTU, ECCV’24 (cont’d)
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https://arxiv.org/abs/2403.09296
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● Results
○ Successfully preserve the zero-shot ability for unseen data
○ Mitigate the catastrophic forgetting of previously learned data

Select and Distill: Selective Dual-Teacher Knowledge Transfer for Continual Learning on Vision-Language Models

Select and Distill, NTU, ECCV’24 (cont’d)
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Successfully preserve zero-shot ability for unseen data Largely mitigate the performance gap

https://arxiv.org/abs/2403.09296
https://arxiv.org/abs/2403.09296


● Robustness
○ We shuffle the training orders, producing 8 different training sequences.
○ Our methods showing state-of-the-art performance on all metrics, 

and the results are stable across all training sequences.

Select and Distill: Selective Dual-Teacher Knowledge Transfer for Continual Learning on Vision-Language Models

Select and Distill, NTU, ECCV’24 (cont’d)
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Meta Learning 元學習

• Meta Learning ⊆ Supervised Learning
• For Supervised Learning,

• Given training data D = {X, Y}, 
learn function/model f so that f(xi) = yi

23

“Cat”𝑓𝑓 =

Training data X Ground truth labels Y



What If Only Limited Amount of Data Available?

• Naive transfer?
• Model finetuning:

- Train a learning model (e.g., CNN) on large-size data (base classes), 
followed by finetuning on small-size data (novel classes).

- That is, freeze feature backbone (learned from base classes) 
and learn/update classifier weights for novel classes.

• Question: What would be the concern/limitation?

24

objects of interest,
driving scenarios, etc.

# of data big data

small data



Meta Learning = Learning to Learn

• Let’s consider the following “2-way 1-shot” learning scheme:

25

Meta-Training
Cat (+) Dog (-)

Meta-Testing

Train Test

Train Test

Train Test

Task i

Task i+1

Support set Query set

…

Cat (+) Dog (-)

Apple (+) Orange (-) Apple (+) Orange (-)

Bike (+) Car (-) Bike Car

Predict: 
+ or -

Predict: 
+ or -

Bike 
as + or -? 

Slide credit: H.-Y. Lee

Novel 
Task



Some ML Backgrounds (if time permits…)

• (Standard) Supervised Learning

• We know the biggest problem is that…
• Can’t always collect a large amount of labeled data D in advance.

26

model parameters training data label
input (e.g., image)

data likelihood regularizer (e.g., weight decay)

“cat”



• Now, for the Meta Learning scheme…
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Few-shot data domain of interest

… …



What Meta Learning Solves:
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Object label:
“cat”

Object ID: 
“person”



What Meta Learning Solves:
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Object 
label:
“cat”

Object ID: 
“person”

What meta learning cares is the learning of Φ from D (and implicitly from Dmeta-train)

What makes meta learning challenging is the learning of optimal Θ* from Dmeta-train:



A Quick Review:
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[1, 0, 0]?
[0, 1, 0]?
[0, 0, 1]?

meta-training

Person ID: 
“Brad Pitt”

Meta training:

Meta testing:



A Quick Review (cont’d):
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Meta training:

Meta testing:

test input

test label

meta-testing

 Key Idea:
The condition/mechanism of meta-training and meta-testing must match.
In other words, meta learning is to learn the mechanism, not to fit the data/labels.

[0, 0, 1]



Meta-Learning Terminologies & Additional Remarks
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Meta testing:

Tasksupport (set) 

5-way 1-shot

query (set)

 Remarks
- Meta learning: learn a N-way K-shot learning mechanism, not fitting data/labels
- The conditions (i.e., N-way K-shot) of meta-training and meta-testing must match.
- Question: Remarks on N & K vs. performances?

Base classes

Novel classes



Approach #1: Optimization-Based Approach

• Model-Agnostic Meta-Learning (MAML)*
• Key idea:

• Train over many tasks (with a small amount of data & few gradient steps),
so that the learned model parameter would generalize to novel tasks

• Learning to initialize/fine-tune
• Meta-Learner Φ → Θ0: 

• Learn a parameter initialization Θ0 of model 
that transfers/generalizes to novel tasks well.

• That is, learn model Θ0 which can be fine-tuned by novel tasks efficiently/effectively.

33*Finn, Abbeel, Levine, ICML 2017

𝜃𝜃𝑖𝑖′

𝜃𝜃𝑖𝑖+1′

ℒ𝒯𝒯𝑖𝑖(𝑓𝑓𝜃𝜃𝑖𝑖′)

ℒ𝒯𝒯𝑖𝑖+1(𝑓𝑓𝜃𝜃𝑖𝑖+1′ )
𝜃𝜃

𝜃𝜃

optimize model parameter 𝜃𝜃 so that 
it can quickly adapt to new tasks

𝜃𝜃𝑖𝑖+1∗



Approach #2: Non-Parametric Approach

• Can models learn to compare?
• E.g., Siamese Network

• Learn a network to determine whether a pair of images are of the same 
category.
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label

0
label

1
label

1

Koch et al., Siamese Neural Networks for One-Shot Image Recognition, ICML WS 2015



Learn to Compare (cont’d)

• Siamese Network (cont’d)
• Meta-training/testing: learn to match

• Question: output label of the following example is 1 or 0? 
(i.e., same ID or not)

43

label

?



Learn to Compare (cont’d)
• Siamese Network (cont’d)

• Meta-training/testing: learn to match
• Question: output label of the following example is 1 or 0? 

(i.e., same ID or not)

• What did we learn from these examples?
• And, can we perform multi-way classification (beyond matching)?

44

label

?



Learn to Compare…with the Representative Ones!

• Prototypical Networks
• Learn a model which properly describes data in terms of intra/inter-class info.
• Learn a prototype for each class, with data similarity/separation guarantees.

45Snell et al., Prototypical Networks for Few-Shot Learning, NIPS 2017

𝑓𝑓𝜙𝜙

𝑓𝑓𝜙𝜙

𝑓𝑓𝜙𝜙

support set     
𝑆𝑆 = 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝑖𝑖=1

𝑘𝑘



• Prototypical Networks (cont’d)
• Learn a model which properly describes data in terms of intra/inter-class info.
• It learns a prototype for each class, with data similarity/separation guarantees.
• For DL version, the above embedding space is derived by a non-linear mapping 𝑓𝑓𝜙𝜙

and the representatives (or anchors) of each class is the mean feature vector 𝐜𝐜𝑘𝑘.

46Snell et al., Prototypical Networks for Few-Shot Learning, NIPS 2017

, where 𝑆𝑆𝑘𝑘 ⊂ 𝑆𝑆 is the subset of support set 𝑆𝑆 with class 𝑘𝑘

𝐜𝐜1

𝐜𝐜2

𝐜𝐜3



support set     𝑆𝑆 =
𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝑖𝑖=1

𝑘𝑘

query example �𝑥𝑥

Learn to Compare

• Matching Networks
• Inspired by the attention mechanism, 

access an augmented memory containing useful info to solve the task of interest
• The authors proposed a weighted nearest-neighbor classifier, 

with attention over a learned embedding from the support set 𝑆𝑆 = 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝑖𝑖=1
𝑘𝑘 , 

so that the label of the query �𝑥𝑥 can be predicted. 

47Vinyals et al., "Matching Networks for One Shot Learning," NIPS, 2016

with

𝑐𝑐 . , . : cosine similarity



• Matching Networks (cont’d)
• Full context embedding (FCE)
• Each element in 𝑆𝑆 should not be embedded independently of other elements

• 𝑔𝑔 𝑥𝑥𝑖𝑖  𝑔𝑔 𝑆𝑆 as a bidirectional LSTM by considering the whole 𝑆𝑆 as a sequence
• Also, 𝑆𝑆 should be able to modify the way we embed �𝑥𝑥

• 𝑓𝑓 �𝑥𝑥  𝑓𝑓 �𝑥𝑥,𝑆𝑆 as an LSTM with read-attention over 𝑔𝑔 𝑆𝑆 : attLSTM 𝑓𝑓′ �𝑥𝑥 ,𝑔𝑔 𝑆𝑆 ,𝐾𝐾 , 
where 𝑓𝑓′ �𝑥𝑥 is the (fixed) CNN feature, and 𝐾𝐾 is the number of unrolling steps

• Experiment results on miniImageNet

48Vinyals et al., "Matching Networks for One Shot Learning," NIPS, 2016

support set     
𝑆𝑆 = 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝑖𝑖=1

𝑘𝑘

query example �𝑥𝑥

bidirectionalLSTM

attLSTM



Learn to Compare

• Matching Networks (cont’d)
• If we have 𝑔𝑔 = 𝑓𝑓, 

the model turns into a Siamese network like architecture
• Also similar to prototypical network for one-shot learning

49

support set     𝑆𝑆 =
𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝑖𝑖=1

𝑘𝑘

query example �𝑥𝑥

Vinyals et al., "Matching Networks for One Shot Learning," NIPS, 2016



Further Remarks:
A Closer Look at FSL (1/3)
• Idea

• Deeper backbones significantly reduce the gap across existing FSL methods. 
(with decreased domain shifts between base and novel classes)

• A slightly modified baseline method (baseline++) 
surprisingly achieves competitive performance.

• Simple baselines  (baseline and baseline++: trained on base and fine-tuned on novel) 
outperform representative FSL methods when the domain shift grows larger.

Chen et al., A Closer Look at Few-shot Classification, ICLR, 2019

use cosine distances between the input feature and the 
weight vector for each class to reduce intra-class variations

50



A Closer Look at FSL (2/3)

• Performance with deeper backbones
• For CUB, gaps among different methods diminish as the backbone gets deeper.
• For mini-ImageNet, some meta-learning methods are even beaten by baselines with 

a deeper backbone.

Chen et al., A Closer Look at Few-shot Classification, ICLR, 2019
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A Closer Look at FSL (3/3)

• Performance with domain shifts (using ResNet-18)
• Existing FSL methods fail to address large domain shifts (e.g., mini-ImageNet  CUB) 

and are inferior to the baseline methods.
• This highlights the importance of learning to adapt to domain differences in FSL.

Chen et al., A Closer Look at Few-shot Classification, ICLR, 2019
52



What to Be Covered Today…

• Additional Topics in DLCV
• Continual Learning
• Meta Learning
• Domain Generalization
• Federated Learning

• Experience Sharing
• Tim Chou (MS, GICE, NTU 2023), AI SW Engineer, NVIDIA
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Domain Generalization

• Input: Images and labels from multiple source domains
• Output: A well-generalized model for unseen target domains

54

DS = {Photo, Painting, Cartoon}
DT = {Sketch}



Recap: Domain Adaptation

• Domain-Adversarial Training of Neural Networks (DANN)
• Y. Ganin et al., ICML 2015
• Maximize domain confusion = maximize domain classification loss
• Minimize source-domain data classification loss
• The derived feature f can be viewed as a disentangled & domain-invariant feature.
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Recap: 
Learn to Compare
with the Representative Ones!

• Prototypical Networks
• Learn a model which properly describes data in terms of intra/inter-class info.
• It learns a prototype for each class, with data similarity/separation guarantees.

For DL version, the learned feature space is derived by a non-linear mapping 𝑓𝑓𝜃𝜃
and the representatives (i.e., prototypes) of each class is the mean feature vector 𝐜𝐜𝑘𝑘.

56

𝑓𝑓𝜙𝜙

𝑓𝑓𝜙𝜙

𝑓𝑓𝜙𝜙

support set     
𝑆𝑆 = 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝑖𝑖=1

𝑘𝑘Meta-Training Stage

Meta-Testing Stage

, where 𝑆𝑆𝑘𝑘 ⊂ 𝑆𝑆 indicates features of class 𝑘𝑘 from support set 𝑆𝑆𝑓𝑓𝜃𝜃



Strategy of Episodic Training

• Episodic training for domain generalization (ICCV’19)
• Generalize across domains via Meta-Learning 

Zhang et al. : Episodic training for domain generalization. In ICCV (2019) 57



• Motivation

58

Domain Specific Models

Aggregated ModelEpisodic 
training

Episodic Training (cont’d)



59

Photo

Cartoon

• Random sample two domains, e.g., Photo and Cartoon

Episodic Training (cont’d)
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Photo Cartoon

• Random sample two domains, e.g., Photo and Cartoon

Episodic Training (cont’d)
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Episodic Training (cont’d)



Experiments

• Input: Images and labels from multiple source domains
• Output: A well-generalized model for unseen target domains

62

DS = {Photo, Painting, Cartoon}
DT = {Sketch}



• Domain Generalized Classification

Zhang et al.: Episodic training for domain generalization. In ICCV (2019) 63

Experiments (cont’d)
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Why Federated Learning?

• Data privacy issue becomes a growing concern in modern AI services
• Regulations like CCPA (California) or GDPR (Europe) restrict data 

transmission across different data sources

Centralized Learning
65



Federated Learning

• Collaborative learning without centralizing data
• Share model weights instead of raw data (or features)!

• Model training occurs locally at each participant/client

Federated Learning
66



Federated Learning (cont’d)

• Training models collaborately without sharing the raw data
• FedAvg:

• Local client training using private data --> Server aggregation (i.e., averaging)

Communication-Efficient Learning of Deep Networks from Decentralized Data, AISTATS 2017 67



Federated Learning (cont’d)

• Training models collaborately without sharing the raw data
• FedAvg:

• Local client training using private data --> Server aggregation (Averaging) 
--> Broadcast to clients (then iterate)

Communication-Efficient Learning of Deep Networks from Decentralized Data, AISTATS 2017 68



Extension of Federated Learning

• Semi-Supervised FL
• Some labeled clients, and other unlabeled clients

Federated Semi-supervised Medical Image Classification via Inter-client Relation Matching, MICCAI 2021 69



Extension of Federated Learning (cont’d)

• Offsite-Tuning: Transfer Learning without Full Model (MIT, arxiv., 2023)
• Sharing models across clients results in privacy concern
• Model owners (Big Tech) don’t want to share model weights
• Users don’t want to share data with personal or sensitive information 
⟹ Cannot fine-tune to obtain full power of foundation model

70https://arxiv.org/abs/2302.04870

https://arxiv.org/abs/2302.04870


Extension of Federated Learning (cont’d)

• Offsite-Tuning: Transfer Learning without Full Model (MIT, arxiv., 2023)
• Proposed idea

• Smaller version of original model (efficiency for transfer and fine-tuning)
• Less powerful (business consideration)
• Trainable adapters that can transfer to model owner and “plug in” model

71

Model (1)provide user

Data
(2)fine-tune

Emulator

Adapter

Adapter

Model

Adapter

Adapter

(3)plug in

https://arxiv.org/abs/2302.04870

https://arxiv.org/abs/2302.04870


Extension of Federated Learning (cont’d)

• Offsite-Tuning: Transfer Learning without Full Model (MIT, arxiv., 2023)
• How to construct emulators?

• Keep the first 2 and last 2 layers of original model as adapters
• Uniformly drop rest layers (e.g., every 2 layers)
• Knowledge distillation
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Extension of Federated Learning (cont’d)

• Offsite-Tuning: Transfer Learning without Full Model (MIT, arxiv., 2023)
• Experiments

• Accuracy of two LLMs on different QA benchmarks (higher is better)
• ZS: zero shot, FT: full fine-tune, 

OT Emulator: adapters on emulator, OT Plug-in: adapters on original model
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What to Be Covered Today…

• Additional Topics in DLCV
• Continual Learning
• Meta Learning
• Domain Generalization
• Federated Learning

• Experience Sharing
• Tim Chou (MS, GICE, NTU 2023), AI SW Engineer, NVIDIA
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What We’ve Covered This Semester

• MLP: Linear to Non-linear Classification
• CNN: Classification, Segmentation, Detection, and SSL

• Generative Model: AE/VAE, GAN, Diffusion Model & Personalization
• Transformer: Learning from Sequential Data
• Vision-Language Models: Pre-training & Finetuning, PEFT

• 3D Vision: Point Cloud, NeRF, 3DGS
• More Topics: Continual learning, Meta Learning, 

Domain Generalization, Fed Learning
• Guest Lectures: 2 academic + 1 career planning talks/sharing

• Your Feedback Is Appreciated! 
• 期末教學意見調查
• https://if163.aca.ntu.edu.tw/eportfolio/
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Good Luck with the Final Project 
& All Your Finals!

See you all on Dec. 26th

(snack provided during final presentation)
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