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What to Covered Today...

* Object Detection
* Detection via Sliding Windows
* Two-Stage vs. Single-Stage Detectors
* Transformer-based Detectors
* 3D Detection & Grounding
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Object Detection

* Focus on object search: “Where is it?”

* Build templates that quickly differentiate object patch from background patch

Object or
Non-Object?



General Process of Object Recognition

Specify Object Model

Generate Hypotheses

Gradient/region based or CNN features,

SCO re Hypotheses usually based on summary representation

with classification/voting results

Rescore each proposed object
based on the entire candidate set

Resolve Detection



Challenges in Modeling the Object Classes

Clutter

Occlusion Intra-class appearance Viewpoint

Slide from K. Grauman, B. Leibe



Challenges in Modeling the Non-object Classes

True
Detection

Bad
Localization

Confused with
Similar Object

v h 1

Confused with
Dissimilar Objects
)



Detection by Classification

CNN-based Methods

“\Nhat” Correct label:

Cat J
Fully Class Scores
Connected: Cat: 09 — Softmax
4096 to 1000 Dog: 0.05 Loss
Car: 0.01 l
\ R }: ‘_ ==t Weighted L
NSS! —— Loss
. Vector: \
This image is CCO public domain 4096 Fu"v
Treat localization as a jg;g‘:“:d: Box — L2 Loss
- 0 H
regression problem! Coordinates 1
(x,y, w, h)
“Where” Correct box:

(X, y', w', )

Slide credit: UMich EECS 498-007 8



Detection by Classification (cont’d)

* Sliding Windows
» “Slide” a box within the input image, or even across image scales (see below)

» Classify each cropped image region inside the box
and determine if it’s an object of interest or not

* E.g., HOG (person) detector by Dalal and Triggs (2005)
Deformable part-based model by Felzenswalb et al. (2010)
Real-time (face) detector by Viola and Jones (2001)

| Lewela
Blurand ‘4415 resciution

subsample b Lewal 3
Elurand 1/8 esolulion

subsample | Level 2
g 1/4 ' solution

Blur and

subsample e
L Level 1
ol 1/2 resolution
Blur and
subsample

Level O
Original
image




Detection by Classification (cont’d)

* Region (Object) Proposals
* Generate region (object) proposals -> how?
* Classify each proposal and determine it’s an object or not

Region proposal: R-CNN

Sagradodid  Agprth
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Before the Resurgence of CNN:
The HOG Detector

* Histogram of Oriented Gradients (HOG)

» Sliding window detectors finds the objects in 4 steps:

Inspect every window
Extract features in window
Classify & accept window if score > threshold

Clean-up (post-processing) stage

Detection window
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e Step 1: Inspect every window
* Objects can vary in sizes, what to do?
* Sliding window + image pyramid!

Scale-space pyramid

?

Detection window
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Step 2: Extract Features in Window

e Histogram of Gradients (HOG) features

e Ways to compute image gradients...

Mask 1D 1D
Type uncentered cubic-c ted 2x2 diagonal 3x3 Sobel
'—ﬂ ]_' -1 0 1
-1 0] -2 0 2
-1 01
Operator [-1,1] [1,-8,0,8,-1] ~1 0] 1 -2 -1
[0 1] 0 0 0
1 2 1
Miss rate
at 10~ 12.5% 12% 12.5% 14%
FPPW

(Miss rate: smaller is better)

This gradient filter gives the best performance
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Step 2: Extract Features in Window

* Divide the image into non-overlapping cells (grids) of 8 x 8 pixels

e Compute a histogram of orientations in each cell,
resulting in a 9-dimensional feature vector.

Compute Weighted vote Contrast normalize
adi —» into spatial & —>| over overlapping
gradients : A z
orientation cells spatial blocks

o
| ||
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* Step 2: Extract Features in Window

* We now take blocks, where each has 2 x 2 cells, for HOG normalization.

Compute
gradients

Weighted vote
into spatial &
orientation cells

Contrast normalize .
—>» over overlapping
 spatial blocks

block (2x2 cells)



e Step 2: Extract Features in Window

* We now take blocks, where each has 2 x 2 cells, for HOG normalization

* Normalize each feature vector, such that each block has unit norm.
This does not change the dim of the feature, just the magnitude.

Compute Weighted vote Contrast normalize
gradients —>»| into spatial & — overoveﬂapping
orientation cells spatial blocks

Cell —

Block ~>

Overlap

of Blocks

Feature vector f=1 ..., ..., ...]

f

L2 normalizationin f —
each block: \/||f\ 2 + €2
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* Step 2: Extract Features in Window

* For each class of person, window is 15 x 7 HOG cells.

* Each cell is in 4 blocks thus has 4 different normalizations;
we make each as a feature representation (in 3780 dimensions).

* We vectorize each feature matrix in each window.

# orientations
# features = 15 x 7 X 9 x 4 = 3780

# cells # normalizations by
neighboring cells

Final descriptor for window
(person class in this case)



e Step 3: Detection (classify & accept window if score > threshold)
* Training:

learn a linear/nonlinear classifier to predict
the presence of object class in each window

Predict presence/absence
of object class in each
image window

Train
classifier

positive training examples

negative training examples

Train classifier. SVM (Support Vector Machines)
is typically used.
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e Step 3: Detection (Classify & accept window if score > threshold)

* Testing:
Compute the score w'x+b in each location, which can be viewed as performing
cross-correlation (or convolution) with template w (and add bias b).

score(l, p) = w - (!, p)

v

Image pyramid HOG feature pyramid
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e Step 4: Cleaning-Up

* Perform a greedy algorithm of non-maxima suppression (NMS)
to pick the bounding box with highest score

Non-maxima suppression (NMS)

area(boxq n box remove
overlap = (bozs 2) > 0.5 [ bor- ]
area(box v boxs) 02

* Remove all boxes that overlap more than XX (typically
50%) with the chosen box

20



* Evaluation

* loU (intersection over union)
* E.g, detection is correct if loU between bounding box and ground truth > 50%

area(B, N Bgt)

ag —

area( B, U Bgt)
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* Evaluation
e |0U (intersection over union)
* Mean IOU (mIOU): average IOU across classes
* Precision & Recall
* Sort all the predicted boxes according to scores, in a descending order

* For each location in the sorted list,
we compute precision and recall obtained when using top k boxes in the list.

1
#correct boxes B A
recall = —
#ground-truth boxes c
o
O
. D
. “*correct boxes a
yrecision = — _
: #all predicted boxes
0

recall
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* Evaluation

* Precision and Recall

Precision

Recall

Accuracy

True Positive True Positive
= _— or
Predicted Results True Positive + False Positive
True Positive True Positive
= _— or
Actual Results True Positive + False Negative

True Positive + True Negative

Total

* Fl-score: harmonic mean of P &R, i.e.,

Precision * Recall

2 +*
Precision + Recall

Actual (True) Values

Positive Negative
Q
8| 2
=] m B ER
ol ©
> a
=]
&
O Q
HE
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al @
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Evaluation (cont’d)

* Average Precision (AP):
* Compute the area under P-R curve
* mean Average Precision (mAP): average of AP across classes

precision
ut

0 01 02 03 04 0s 08 OF o 08 1

recall



Something to Think About...

* Sliding window detectors work
* very well for faces
* fairly well for cars and pedestrians
* badly for cats and dogs

 Why are some classes easier than others?



What to Covered Today...

* Object Detection

* Two-Stage vs. Single-Stage Detectors
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Recall that

* Visual Features derived by Convolutional Neural Networks

FEATURE MAPS FEATURE MAPS

ouTPUT

Full Connaction

32 x32x3 16 % 16 % D 1x1=10

32x32xD

3I2x32=xD

AN 192 128 2 20ag [pense
3 13 \ [\a3 \
e ; =1 - Yl =
el 3 o T T ha dense’| [defse] [
hall. | — i I
N 192 128 Max L
; 2048
228\istrid Max 128 Max pooling 2048
of 4 pooling pooling
3 rT
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CNN as Feature Extractor

Image credit: Justin Johnson
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CNN as Feature Extractor

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

i e Dog? YES
=== Cat? NO
0, Background? NO

gggggg

29
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CNN as Feature Extractor

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

= = Dog? YES
el — Cat? NO
i\ — Background? NO

30

Slides by Justin Johnson



CNN as Feature Extractor

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

J Dog? NO
Cat? YES
Background? NO

31
Slides by Justin Johnson



CNN as Feature Extractor

 What could be the problems?

e Suppose we have an image of 600 x 600 pixels.
If sliding window size is 20 x 20,
then have (600-20+1) x (600-20+1) = ~330,000 windows to compute.

* What if more accurate results are needed,
need to perform multi-scale detection by
* Resize image
* Multi-scale/shape sliding windows

* For each image, we need to forward pass image regions through CNN
for at least ~330,000 times. -> Slow!!!



Recap: CNN for Object Detection

* Need to deal with more than one object
e How?

“\What” Correct label:
Cat l
Class Scores
Fully
Connected: Cat: 09 — Softmax
4096 to 1000 Dog: 0.05 Loss
Car: 0.01 {
Weighted Loss
Sum
4096 : k ‘
L Connected: BOX .
Treat localization as a 2096 10 4 L2 Loss

Coordinates
‘ (x, vy, w, h)

regression problem!

T

Correct box:
(x’I y’l W’I h’)

“Where”

Slide credit: UMich EECS 498-007
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Two-Stage vs. One-Stage Object Detection

Methods
( Sliding Windows
( R-CNN
Fast R-CNN
Two-stage Frameworks - Mask R=CNN
< L :
( YOLO
YOLOv2
One-stage Frameworks < YOLOV3
\ L

34



Region Proposal

e Solution

» Use pre-processing algorithms to filter out some regions first,
and feed the regions of interest (i.e., region proposals) into CNN

* E.g., selective search

35

Uijilings et al. IJCV 2013



R-CNN (Girshick et al. CVPR 2014)

] warped region

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classity
1mage proposals (~2k) CNN features regions

Replace sliding windows with “selective search” region proposals
(Uijilings et al. 1JCV 2013)
Extract rectangles around regions and resize to 227x227 pixels

Extract features with fine-tuned CNN
(e.g., initialized with network pre-trained on ImageNet)

Classify last layer of network features with linear classifiers (e.g., SVM/MLP),
and refine bounding box localization (bbox regression) simultaneously

http://arxiv.org/pdf/1311.2524.pdf 36



http://arxiv.org/pdf/1311.2524.pdf

R-CNN (Girshick et al. CVPR 2014)

] warped region

aeroplane? no.

person? yes.

i . i l-"'
- w7V

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classity
1mage proposals (~2k) CNN features regions

* Ad hoc training objectives:
* Object class: Fine-tune network with softmax classifier (log loss)
* Object class: Train post-hoc linear SVMs for each class (hinge loss)
* Bbox location: Train post-hoc bounding-box regressors (least squares loss)

* Training is extremely slow with lots of disk space.

* Implementation/testing cannot be done in real time.

http://arxiv.org/pdf/1311.2524.pdf
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R-CNN (Girshick et al. CVPR 2014)

* What could be the problems?

e Repetitive computation!
For overlapping regions, we feed it multiple times into CNN

warped region

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classity
1mage proposals (~2k) CNN features regions

39



Fast R-CNN (Girshick ICCV 2015)

 Solution
* Why not feed the whole image into CNN only once?
* Then, crop the feature map instead of the image itself

- \ Outputs: hbox
Deep
softmax regressor
~|ConvNet X gTI
= ?Fc FC

pooling
layer |

FCs

=projecti nh‘*i

Conv | Rol feature
feature map vector

For each Rol

https://arxiv.org/pdf/1504.08083.pdf 40



https://arxiv.org/pdf/1504.08083.pdf

Fast R-CNN (Girshick ICCV 2015)

e Solution

Softmax
classifier

Regions of %

&ﬁ/"mnﬁ” feature map of image

Interest (Rols)
from a proposal
method

Linear +
softmax

Linear

1

Bounding-box
regressors

Fully-connected layers

L ,~—7 /7 “RolPooling” layer

/

Forward whole image through ConvNet

https://arxiv.org/pdf/1504.08083.pdf 41



https://arxiv.org/pdf/1504.08083.pdf

Fast R-CNN (Girshick ICCV 2015)

* Wait...what about the image feature to be processed?

* Any potential problem?

_Deep \
d | |ConvNet X

Rol
pooling

=projecti nh‘*i

Conv X[
feature map

layer E -

Outputs:

bbox

softmax regressor

FCs

FC

FC

Rol feature
vector

For each Rol

42



Fast R-CNN (Girshick ICCV 2015)

* Features need to be of the same size.

* How to crop features?

* Since we have fully-connected layers, the size of feature map
for each bounding box should be a fixed number

N\

Outputs: hbox
softmax regressor
;I I;I
Rol |- :;j FC =3 FC
pooling
layer E HF':DS
Rol feature
vector

For each Rol

43



Fast R-CNN (Girshick ICCV 2015)

 How to crop features?

* Resize/Interpolate the feature map as fixed size?

* Not optimal. This operation is hard to backprop.
-> we cannot train the conv layers in CNNs...

Rol

ing

N\

| HH

Outputs: hbox
softmax regressor

FC FC

FCs

Rol feature

VECtD r Far each Ral

44



Fast R-CNN (Girshick ICCV 2015)

 How to crop features?

* Rol Pooling
* How to crop regions of various sizes but resulting in the same size?



Rol Pooling

* Step 1:
Get bounding box for feature map from bounding box for image

* Due to the (down)convolution/pooling operations,
feature map would have a smaller size than the original image.

-
-
-
-
-
-
-
-l
-
-
-
[
1

Feature map

46



Rol Pooling

* Step 2:
Divide cropped feature map into fixed number of sub-regions
e The last column and last row might be smaller

v

Make it as
12 13 14 15 2x2 grids
Feature map
4x4x1 9 10 11

13 14 15




Rol Pooling

* Step 3:
For each sub-region, perform max pooling (pick the max one)

»

Max pooling 9 10

8 9 10




Rol Pooling

Divide projected

Project proposal proposal into 7x7

onto features

grid, max-pool Fully-connected
within each cell layers
Hi-res input image: Hi-res conv features: Rol conv features:  Fully-connected layers expect
3 x 640 x 480 512 x 20 x 15; 512x7x7 low-res conv features:
with region for region proposal 512 x 7 x7

proposal Projected region

proposal is e.g.
512x 18 x 8

(Varies per proposa” Girshick, “Fast R-CNN”, ICCY 2015.
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Fast R-CNN (Girshick Iccv 2015)

* What could be the problems?

* We still need to collect the region proposals from a pre-processing step,
which does not allow end-to-end learning.

50



Faster R-CNN (Ren et al. NIPS/NeurlPS 2015)

e Solution

* Why not generate region proposals using CNN?
-> Insert Region Proposal Network (RPN) to predict proposals from features

* Jointly train with 4 losses:
* RPN classification loss
* RPN regress box coordinates

* Final classification loss “lassification Jounding-t ‘ ;
. rap] ol pooling
* Final box coordinates "
. ) L 4
; proposals/ . /

Region Proposal Network /b ey

feature map
CNN
y _ ,

https://arxiv.org/pdf/1506.01497.pdf

51
Image credit: http://zh.gluon.ai/chapter computer-vision/object-detection.html



https://arxiv.org/pdf/1506.01497.pdf
http://zh.gluon.ai/chapter_computer-vision/object-detection.html

R-CNN, Fast R-CNN, & Faster R-CNN

Bounding-box

I Log loss + Smooth L1 loss Classification

I
‘ loss Lig J/_ﬁl regression loss
—————— Linear + / '+ -
| Bbox reg ” i softmax _—— —

| Bbox reg I: SWMs J /‘t N » Classification Bounding-box

—— e loss regression loss
Bhox reg | 5ViMs | /tf ; 7Y

13

Conv '+ \5 '-Qproplsgls
Cony MNet P A — A

M Region Proposal Network 25

52



Faster R-CNN with Feature Pyramid Network

Per-image computation Per-region computation for each r; € r(I)

Softmax clf. J

[ RolPool J 2 I MLP

r 3

L LTI T ]

Box regressor J

The whole-image feature representation
can be improved by making it multi-scale

Slide credit: Ross Girshick 53



Faster R-CNN (Ren et al. NIPS 2015)

* What could be the problems

* Two-stage detection pipeline is still too slow
for real-time detection in videos...

* What about instance-wise information?

person, sheep, d_f:ig '

(a) Image classification

(c) Semantic segmentation (d) Instance segmentation

54



Mask R-CNN (ICCV2017)

 Still a 2-stage detector

* Goals:
* Refined detection + precise segmentation skl 22l

* Overall design:
* Use of ResNet or feature pyramid net for feature extraction

Faster R-CNN + FCN

R-CNN

Fast R-CNN

Faster R-CNN

— object detection

* Use RPN to produce proposals (w/ ROl align)

* Use one detection branch for box classification + regression

Use one

He et al, “Mask R-CNN", arXiv 2017

instance segmentation
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R-CNN Family

R-CNN Fast R-CNN

=1 .
box regression | - N R |
I:g ;-—-—clar.:; speclfic LSE it

classification

L —
-------- SVM alaszaifisation *

TerLTL

cees Timed Slze TGalnre mep

carvelutional fsature oTs from

extraction AncarrEon s
mzhod -,

—— warpsd reqion proposals

Eolfeel layor

Zeaktura TCD

corvolutionad bockbone

W —2x reglon proposals
{independent algorithm)

Mask R-CNN Faste MR-CNN

£ o e b ; claszifimation box = classification
Tegrags 10mn regres3sion

[ully connecled

. [ully econnceoted
layers -

laycro

- flXed siZe foature map cmmeee Eiwed size fealure map

RolRlign layer

—-— TEATITE MAD I

RoIFool layer

—— Teature map

—- aopvoluticnal hackbone — convwolut Lonal backbone

slide: C. Lim
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Mask R-CNN (cont’d)

* Example Training Data (requires pixel-level labels)

57



Mask R-CNN

* Very good results!

* running at 5fps though

skateboard.99
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i i rson1.00 2
Persan.sge Dersonﬂet;:;" ;9;)
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s
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car.o8 truck S8 lig!

carl,00

GaRoHIuck. A5 SLcars
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car|97

car.99r. 98199 car.82
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car. 96 9%ar.94
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car.78

person.77

person.87 chajn@g g1
chaitpaitedr:ay

erson.97 |chiia =air-81
person_g@rson.g‘f REHIF 53

i T
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spofts ball.99

tennis racket100
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What to Covered Today...

* Object Detection

Single-Stage Detectors

59



Recap

* So far, the introduced methods follow a two-stage framework.

1. Region Proposal
2. Per-Region Classification/Regression

 Can we make it faster by integrating the above two steps
into one single network?

(Sliding Windows

( R-CNN
Fast R-CNN
Mask R-CNN
Object Detection Methods - \ :

( YOLO
YOLOv2
YOLOv3

Two-stage Frameworks -

One-stage Frameworks <

\ \

60



One-Stage Object Detection:
Detection without Proposals

Go from input image to tensor of scores with one big convolutional network! .

Within each grid cell:

- Regress from each of the B
base boxes to a final box with
5 numbers:
(dx, dy, dh, dw, confidence)

- | Predict scores for each of C
classes (including
background as a class)

Input image Divide image into grid Output:
3xHxW 7 %7 7x7x(5*B +C)
Image a set of base boxes
Redmon et al, “You Only Look Once: centered at each grld cell
Unified, Real-Time Object Detection”, CVPR 2016 H ere B - 3

Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016

61



You Only Look Once (YOLO)

Divide the image into an S x S grid and for each grid cell predicts B bounding boxes,
confidence for those boxes, and C class probabilities.

These predictions are encoded asan S xS x (B * 5 + C) tensor.

ol
il

S %S grd on input Final detections

Class probability map
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You Only Look Once (YOLO)

class confidence score = box confidence score X conditional class probability

box confidence score = P,(object) - loU
conditional class probability = P,(class; |object)
class confidence score = P,(class;) - [oU

= box confidence score X conditional class probability

where

P,(object) is the probability the box contains an object.
IoU 1s the IoU (intersection over union) between the predicted box and the ground truth.

P,(class;|object) is the probability the object belongs to class; given an object is presence.

P,(class;) is the probability the object belongs to class;

63



You Only Look Once (YOLO)

Fast.
Good for real-time processing.

End-to-end learnable.
Predictions (object locations and classes) are made from one single network.

Access to the entire image.

Region proposal methods limit the classifier to the specific region.

YOLO accesses to the whole image in predicting boundaries.

With additional context, result in fewer false positives in background areas.

Spatial diversity.
Detect one object per grid cell. It enforces spatial diversity in making predictions.

ji |
A
— A "7 1
L. |
1 e ul
i Bounding boxes + confiden
v

Sx S grid on input

Final detections

Class probability map 64



Avg 10U

0

YOLOv2

* Predetermined bounding box shape (anchor boxes)
Guesses that are common for real-life objects using k-means clustering
= Predicts offsets rather than bounding boxes themselves

* Move the class prediction from the cell level to the boundary box level
Each bounding box (instead of each cell) produces a class prediction

SXSx(B*5+C)=SxSx(Bx*(5+C))

g :
- pw
I Cy IIIIIIIIIIIIIIII E
b, .
: Io(t) : b=0(t )+c
ph: bh — g . by=0(ty)+cy
: o(t) : b =p,et
1234567 nRbR L E E bh=phet“
# Clusters = u



YOLOv3

* Feature Pyramid Networks (FPN) like Feature Pyramid
YOLOv3 makes predictions at 3 different scales (similar to the FPN).

SxSx(3*(5+C))

91 4
| 7
79
) ee oo e —‘\- U
y
m Addition

Scale 1
& 82 Stride: 32

I

(Q Concatenation

Residual Block /
Detection Layer i Scale 2
94 Stride: 16

Upsampling Layer

/

y.

v
e Further Layers
Scale 3
106 Stride: 8

YOLO v3 network Architecture
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Recap

Object Detection Methods
( Sliding Windows

Two-stage Frameworks -

< (High Accuracy, Slow)

One-stage Frameworks <

( R-CNN
Fast R-CNN
Mask R-CNN

( YOLO
YOLOv2

(Good Accuracy, Very Fast)

\

YOLOvV3
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Overall mAP

40

35

30

25

20

15

10

Remarks

Faster R-CNN w/ResNet, Hi Meta Architecture
e st Faster RCNN W _RFCN _ 4 _SSD
SR p— - o — -
R-FCN w/ 0@ 0O e
ResNet, Hi Res, ’ - /
100 Proposals / % oI
F o Faster R-CNN w/Inception
r Resnet, Hi Res, 300
. . Proposals, Stride 8
/ ﬂI O
Sl
o .
@

Feature Extractor

Inception V2
Inception V3
MobileNet
Resnet 101
VGG

SSD w/Inception V2, Lo Res
SSD w/MobileNet, Lo Res

[ N NONCN N0

200 400 600 800
GPU Time

Slide credit: UMich EECS 498-007

Takeaways:

Inception Resnet V2

1000

Two stage method (Faster
R-CNN) get the best
accuracy, but are slower
Single-stage methods
(SSD) are much faster, but
don’t perform as well
Bigger backbones improve
performance, but are
slower
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40

35

Overall mAP
N w
w [«]

N
(=}

15

10

Remarks (cont’d)

Current leaderboard
winner: 55 mAP

Method ???
Mask R-CNN

® /RexNext 152 SRS ¢ These results are a few years old ... since
R then GPUs have gotten faster, and we’ve

. improved performance with many tricks:
S Meta Architecture - Train longer!
“,/ O: o ~ - Multiscale backbone: Feature Pyramid
et 46 % og Um S Networks
$o Ta Lo e - Better backbone: ResNeXt
° i - Single-Stage methods have improved
Feature Extractor - Very big models work better
e E EEE ggmw - Test-time augmentation pushes
ey B numbers up
S - Big ensembles, more data, etc
200 400 00 800 1000

GPU Time

Slide credit: UMich EECS 498-007 69



What to Covered Today...

* Object Detection

* Transformer-based Detectors
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DEtection TRansformer (DETR) (ECCV’20)

« Proposed by Facebook Al

* Previous methods rely on NMS to matching predictions to ground truth bboxes
* Designing NMS involves lots of manual tuning
* NMS can sometimes incorrectly suppress true positive detections

« DETR views object detection as direct set prediction problem =>no more NMS

transformer
encoder-
decoder

set of image features

Carion et al., “End-to-End Object Detection with Transformers”, ECCV 2020 71



Framework of DETR

* CNN
* Feature extraction with CNN

« Transformer
* Generate N guesses
* Nisset to a relatively high number (~100)

 FFN
* Predict class logits and bounding box

backbone L encoder

|
set of image features::
|

|
N
:: '
1 class,
E: FEN 17
| . ‘
" FFN no
transformer I' transformer . | object
|
encoder ! ! decoder : | N class,
|I :I box
I S N ﬁ Ij_'l & ﬁ | -
000000 DJ 1 1 FEN [ object
i N |
: " object queries : |
[ L

Carion et al., “End-to-End Object Detection with Transformers”, ECCV 2020
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Framework of DETR (cont’d)

« Transformer captures global semantics
and disentangles objects simultaneously

Class Bounding Box

FFN FFN
« Decoder inputs: N learnable queries becoder
l-}V[-x -------------------- 1
' ->| Add & Norm | E
: 3 :
] FFN | |
1 1
Encoder : i :
I,I-V; --------- |' --------- \I E ')l Add & Norm | i
self-attention(430, 600) self-attention(450, 830) : _>| Add & Norm | : : * :
: ,f : : Multi-Head Attention | :
2l FEN | : T ‘Ké °$ I
L —4 Db = :
g e ’ vl AaddaNom ] ' p]  Adda&nNorm ||
self-attention(520, 450) o v ™ v » self-attention(440, 1200) 1 1 1 1
' 1 ! : i I
, | Multi-Head Self-Attention | ' : | Multi-Head Self-Attention | :
! VA K Q : ! VA K Q !
: ol :
1 ' 1 1
! ' ! !
[ v U . '
Attention maps of self-attention layers in encoder r 1) CHEE-E)
|mage featu res Spatial positional i i
encoding Object queries

Carion et al., “End-to-End Object Detection with Transformers”, ECCV 2020
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Bipartite Matching Loss in DETR

- Goal:
Assign each prediction to a ground truth object (or “no object” @)

« Solve bipartite matching with Hungarian algorithm

‘/” = 7
- Loss a L ((,_i)j(,;;) _
Cross entropy loss|+ bounding box loss J J/
N A 60/
EHungarian (y: :’;) = ZlT_ logﬁc}(i)(ci) + ]l{ciyéz}ﬁbox(bi: bé‘ ("f))i| (( ‘) )
i A > (<, S) (/ @
Ebox( b ) — Alouﬁlou(bo( ) b ) + )\LIHba(t bz”l N (c L) “2) (/
. PIays the same role as NMS (¢ ,")-—c ,4)

* Force unique matching between prediction & GT; permutation invariant

J— transformer
o encoder-
decoder
set of image features set of box predictions bipartite matching loss
Image credit: “DETR: End-to-End Object Detection with Transformers (Paper Explained)” 74

https://youtu.be/T35ba VXkMY?si=30m17kAQzN2gq9R M&t=701



https://youtu.be/T35ba_VXkMY?si=3om17kAQzN2q9R_M&t=701

Final Remarks for DETR

« Simplicity
Simple to implement; less hand-designed components.

* End-to-End learnable
No region proposal; no NMS for post-processing

« Attends to the entire image
Transformer allows the model to capture global context of the image.

Current State-of-the-Art
Variants of DETR score very well on well-known datasets like MSCOCO

FocalNet-H (DINO) Co-DETR
DyHead (Swin-L, multi scale,.self-training)
60 DetectoRS (ResNeXt-101-64x4d, multi-scale)
NAS-FPN (AmoebaNet-D-learned aug)

A D-RFCN + SNIP (DPN-98 with flip, multi-scale).
é Mask R-CNN (ResNeXt-101-FPN)

4 = =
é 0 Faster R-CNN (box refinement, contextgmuiti=scale testing)
o SSDS12

Fast=RENN
20 D
0
2016 2017 2018 2019 2020 2021 2022 2023

Other models  -o- Models with highest box mAP



What to Covered Today...

* Object Detection

* 3D Detection & Grounding
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Intro of 3D Detection

e Produce 3D bounding boxes with the following inputs:
o 3D point clouds
o 2D images
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Supervised 3D Detection

e PointRCNN (CVPR 2019)
o segment foreground points
o generate 3D bounding box proposals for each foreground point
(i.e., center, box size, & orientation)

a: Bottom-up 3D Proposal Generation

Point cloud representation Point-wise Generate 3D proposal
of input scene feature vector from each foreground point :

Bin-based 3D
5 Box Generation

r fossach koo el
: e |
=] Ry
fe—| i - :

% ¥ H -~ '

v

Point Cloud
Encoder
Point Cloud
Decoder

.| Foreground Point
"| Segmentation
— v

PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
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Supervised 3D Detection (cont’d)

e For each bounding box and points inside
o transform point coordinate by treating bounding box center as origin
O concate point coordinate (low-level) and feature (high-level)
for all points and encode a global feature for each box
O output classification score (confidence) for each box & preserve high-score box as final prediction

Point cloud representation Point-wise Generate 3D proposal
of input scene _ feature vector from each foreground point :

5 Bin-based 3D

—» :
E Box Generation

Decoder
v

r

Point Cloud
Point Cloud

Foreground Point
Segmentation
— 9

B Boi 5
SEma@_c ,__-._F--_d SR Fore%)und Mask_ : _l Rols_ __

jemeeeeeansasaanannnnn :ii ?&.:.w"—"_ﬁ.'.—:._.-:'_—i ................................................................................................................................................................ 4
i fr—— =y adjust parameters 3D boxes of detected objects |
: | | Semantic Features Merged Features =
- Bin-based 3D ;
: = ﬁﬁ ﬁ i
E k > [ & & & - Box Refinement
. " | N =
N - \ 3 .
. _}ﬁ: | S
& et | 3 3
| | |Local Spatial Points Canonical ionz;ifji‘."ce >

| @@ @ Transformation LspOn
i |Point Cloud Region F-‘ocllng ; —
e classification

/12

PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud



HF

Problem of PointRCNN:
o Data collection -> need to reduce the need of labeled 3D bounding box
o Points far from camera are too sparse -> need other information to help

Can we leverage 2D boxes?

sparse points hard to detect
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Weakly-Supervised 3D Detection

VS3D (ACM MM 2021):
o Use pre-trained 2D classifier and detector to guide 3D prediction

o 2D projection of 3D bounding box should perfectly match a 2D bounding box

_________________________________________________________________________________________

Cross-model transfer learning (only in training)

Teacher network pretrained on image datasets

Classification
Regression

Input point cloud

3D object proposals

Unsupervised 3D object oo Supervise |
proposal module (UPM) i o e i

Regression

S
-
XYZ map CNN backbone ;
T Classification
(=)

Weakly Supervised 3D Object Detection from Point Clouds

3D detection outputs
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Weakly-Supervised 3D Detection

e WeakM3D (ICLR 2022):
o 2D image + 3D point cloud as inputs
o Also use 2D detector as strong prior
o Introduce many loss for regularization

3D Feature Encoder Deep Features
RGB Image

Object Features 3D Box Predictions

Geometric alignment loss
Ray tracing loss

Point-wise loss balancing
Learning disentanglement

----------------------------

®*— |

" = a ..'E -------------------------- - . Averﬂg'ed Loss
LiDAR Point Cloud Object-LiDAR-Points Single Object Loss

WeakM3D: Towards Weakly Supervised Monocular 3D Object Detection



Ray Tracing Loss

BEV Box Prediction

P';: Ray Tracing Loss
ol (with Z Buffering)
Y L)

w
%

WeakM3D (ICLR 2022) (cont’d):
O Loss balancing ensure that the sparse regions not neglected
Geo. Alignment Loss
z BEVY Box Prediction = BEV Box Predict}
. I el
= N[ com
A .: \ Ray Tra;:'.ing Loss
unglhllgf:ints . Object : {with Z Buffering)
i ToB LIDAR Points,
ifj E‘ .ﬁ
o ¥ad %/ MignmentLoss i &
& Teats s & ..“l'\.;}-{._.;.\.-t )
BEV Box Prediction \ Y
o Y
- No Ray Tracing Loss™."- ™",
Centar  ~ (Ray Tracing Loss =0) ™
Pm. Alignment Loss o
r e, 3

] -:":"1:3.‘

Camera

Prr.':"l

_—

WeakM3D: Towards Weakly Supervised Monocular 3D Object Detection

Weakly-Supervised 3D Detection (cont’d)

o Alignment loss ensure most points align to at most 2 sides of predicted bbox
O Ray tracing loss ensure point-camera ray panetrates through bbox without touching any others

Loss Balancing
F4
L=

BEV Box Prediction

Dsnsity-!!:

Center
L

Density=1 @

) .@;.'.

Dengity=T7

Loss
= point—wise
Lossbatanc!ng =

De“"-"'it}'pam:
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Weakly-Supervised 3D Detection (cont’d)

McCraith et.al (ICRA 2022):
O Use a human-designed mesh of car to find matching points in 3D space
o Treat the bounding box of the aligned mesh as final predcition

r‘r{ '\-\1
Segmentation _ Alignment loss
Filtered PointNet (L) P - Eq. (4) Template mesh S,
Mask R-CNN detections LiDAR L, _ p
\.*.—..—
_..N_.., @S| L] ||| <
_":-‘r [ I |
il .5 _.________,_____.Ei Yaw bins
s 0,
[mn'-;latmn : I
l “““““““ - | [EIRE (|| <
.—F :
. Full transform
«<-- (k) |y

Pose regression deb classification
PointMNet (L)

Lifting 2D Object Locations to 3D by Discounting LiDAR Outliers across Objects and Views 34



More references for 3D detection

e Supervised
o PatchNet: A Simple Face Anti-Spoofing Framework via Fine-Grained Patch Recognition (CVPR

2022)
o PointPillars: Fast Encoders for Object Detection from Point Clouds (CVPR 2019)
O Deep Hough Voting for 3D Object Detection in Point Clouds (ICCV 2019)

e Weakly-supervised
O FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection (ICRA

2021)
O Weakly Supervised 3D Object Detection from Lidar Point Cloud (ECCV 2020)
O Weakly Supervised Monocular 3D Object Detection Using Multi-View Projection and Direction

Consistency (CVPR 2023)
o Weakly Supervised Monocular 3D Detection with a Single-View Image (CVPR 2024)



What to Covered Today...

* Object Detection

* 3D Grounding
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Intro of 3D Visual Grounding (3DVG)

e Find target object with text prompt as query
e Input prompt contains a target object and objects

o Target: Object that the query text want to find (only one)

: Objects that are mentioned in the text whichhave spatial
relation with the target (can have many of them)

e In general 3VG setting:

o 3D bbox proposal are given (directly provided by the dataset)

o Only target object has ground-truth label (even for FS settings)

3D Point clouds




Fully-supervised 3DVG

e BUTD-DETR (ECCV 2022)
o Use colored point cloud as input
o obtain object proposal (and class pred.) from pre-trained 3D detector
o Transfomer-based decoder to cross-attend visual-textual features
m Non-parametric queries: treat each proposal as a token (global
feature of each proposal as input)

Pos. Embed. N xCross-Encoder

\ : : Np x Decoder
ond Visual _ i 4\ Self Cross _ _Cross i Predict box/span
w Encoder i Attn| | Aftn Attn . .
£t : i :
A ii» Cross-attention
H i A A

Pretrained s -

Obj. Box Encoder —» » Cross-attention ;
Detector | ¥ 41 B A . "
‘ i . Not
Crloss-anenﬂ?n  mentioned
“the plant that is on ! |Self| Cross ;
Text Encod > . > - s Self-attention : ", :
top of the end table" W Encoger : JAttin  Attn t 5 the Bl that is on
= [ top of the BidMABIE

o '-Non-parametric queries
encode points inside each proposal as input token feature

[S19)



e BUTD-DETR (ECCV 2022) (cont’d)
o Synthesize query texts for pre-training
m direct combine random object classes
m treat the last mentioned object as target, others as anchors

| Visual encoder |
_-___'—--L____ -.-,;“. }!“!"_"ﬁ' L}
F‘Iretraane:l ]_. |1 | »| Boxencoder S Decoder —

Obj. Detector | | ‘groamt : Encoder

| —— p4_ X I 2 |
]I
MNon-parametric

"Couch. Person. Chair." —>|_Text encoder | L adie
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Data-Efficient 3DVG

e Data-Efficient 3D Visual Grounding via Order-Aware Referring (ViGOR),
WACV 2025, VLL@NTU

f'ﬂ_-_'_'_'_'_ .
------ OF o NN,
1p is the one nearer the toy snake on the floor, ;

not the one nearer the dollhouse."

e - - 21 3 AR o mnniEa v
: "When facing the radiator with trash cansiin front of it, : i"The lan
: it's the&ed on the right." J | :
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Data-Efficient 3DVG (cont’d)

e VIGOR, WACV 2025

O Leverage LLM to produce the referring order for 3DVG (anchor -> target)

o Apply several referring blocks to progressively find the target object
m Each block contains feature enhancement to focus on anchor/target objects

s & .] »

P1y---.PK : i
E{ b, . K h{}} B x Object-Referring Block P
= T
i Fy R, 3@l Fy Hao: = i) Fg Rp a
Visual Feature | Feature : Feature -
Encoder + Enhancement « _E_Enhammenta:— 7 +Enhan¢emem4— T e
B 2| | mEmew| = | =
S l I F::m.ii'.. i . I an.i.i.' : L_Frjm.ﬂr SR T
Object Proposing + Classification L..,mnd - —L)—’-ﬂll'ﬂ E G °
' "Look at the king-size | —" — — C: Scene Point Cloud
: bed in the room next to | .
a gmen chair. Find 'lhe : 1 'l.- ‘t., SEER R . / & - D) Description
i the pillow on the sofa | e b ! F: Object Proposals
oo b s bosid th [ Ordering | |
i air 5 L: Object Labels
D l —— "chair, bed, pillow"” ———"bed, pillow™ — » === — "pillow"™
|_ v A Ovn Oa.n v Op (1. p: Referential Order
Text o —
Encoder !
' __ g

91




Data-Efficient 3DVG (cont’d)

e Feature enhancement in each block

o

Upper branch: pass all proposal features

Middle branch: encode texts of the
anchor/target objects from the referential order

Lower branch: mask features of other classes
(not belong to anchor or target) and enhance
anchor/target feature

. Feature Enhancement (FE)

F Self- Cross-
—_—
Attention Attention

& r

—

DI:H
— "chair, bed, pillow™ Text 9

Encoder “4

Cross-
—— —_— T
Attention
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Results

e NR3D dataset
O contains 707 indoor point cloud scenes from ScanNet
O 28715/7485 descriptions in the training/testing set, each has a target object label
e (Quantitative evaluation
O Only train for 1710 % of description-target training pairs
m Unlabeled descriptions (and their corresponded scenes) in training set are not used
O Our 1% better than many methods with 10% data

Labeled Training Data
Method % 75% 5% 0%
Referit3D [2] 4.4 13.6 20.3 23.3
TransRefer3D [17] 11.0 16.1 21.9 25.7
SAT [46] 11.6 16.0 214 25.0
BUTD-DETR [21] 242 28.6 31.2 33.3
MVT [20] 0.9 16.1 21.6 26.5
MVT + CoT3DRef [5] 0.4 17.3 26.5 38.2
ViL3DRel + CoT3DRef [5] 22.38 27.25 33.77 384
Vigor (Ours) 33.5 36.1 41.5 46.0
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More references of 3DVG

e Traditional

O Multi-View Transformer for 3D Visual Grounding (CVPR 2022)

O Language Conditioned Spatial Relation Reasoning for 3D Object Grounding (NeurlPS 2022)
e Data-efficient

O NS3D: Neuro-Symbolic Grounding of 3D Objects and Relations (CVPR)

O CoT3DRef: Chain-of-Thoughts Data-Efficient 3D Visual Grounding (ICLR 2024)

GT

MVT

Vigor

L5 “:;
You are looking for its the smaller bathroom this trashcan is if looking at the window from

the cups nearest to stall closest to the sinks by a large screen  the end of the long table the
the sink basin on the wall second trash can on the left
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What We’ve Covered Today...

* Object Detection
* Detection via Sliding Windows
* Two-Stage vs. Single-Stage Detectors
* Transformer-based Detectors
* 3D Detection & Grounding
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