Deep Learning for Computer Vision

Fall 2024

https://cool.ntu.edu.tw/courses/41702(NTU COOL) http://vllab.ee.ntu.edu.tw/dlcv.html (Public website)

Sheng-Yu Huang 黃聖喻 (Ph.D. Student) Yu-Chiang Frank Wang 王鈺強, Professor Dept. Electrical Engineering, National Taiwan University

2024/11/19

What to Cover Today?

- Introduction to 3D Vision
- Part I: Traditional 3D Representation
 - Perception
 - 3D Reconstruction
- Part II: Recent 3D Representation
 - Neural Radiance Fields
 - 3D Gaussian Splatting
- Advanced Topics About NeRF & 3DGS
 - Text-to-3D without 3D supervision
 - 4D Gaussian Splatting

What is 3D Vision?

• Enable machine to perceive and reconstruct the 3D world which we live in.

Applications of 3D Vision

• Robotics

• Augmented Reality

• Autonomous driving

References:

Boston Dynamics: <u>https://www.youtube.com/watch?v=gvzljfK-PiU&ab_channel=BostonDynamics</u> Ikea: <u>https://www.youtube.com/watch?v=UudV1VdFtuQ&ab_channel=IKEA</u> Waymo: https://www.youtube.com/watch?v=IzZcqCfA8_k&ab_channel=Waymo

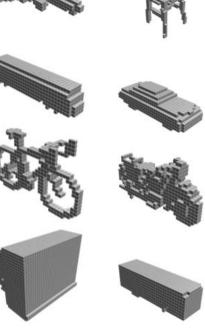
How to Represent the 3D World?

- Recap: 2D representations
 - RGB pixels
 - Images/videos
 - Why 2D vision not good enough?
 - Lack of depth, scene geometry, etc. information

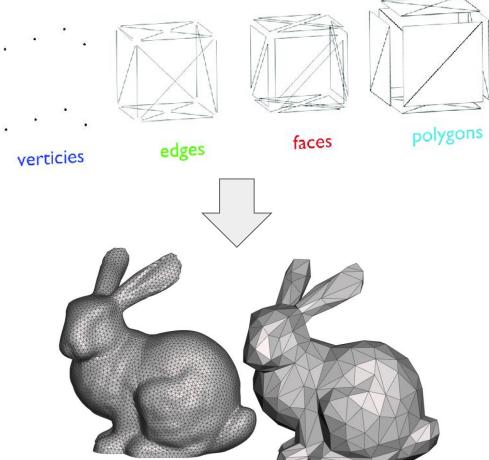
• What about 3D representations?

• Multi-view RGB-D images

- Multi-view RGB-D images
- Voxels

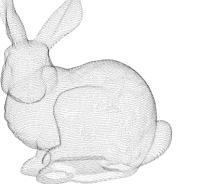


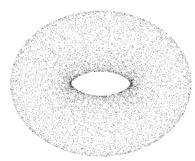
- Multi-view RGB-D images
- Voxels
- Polygon Mesh

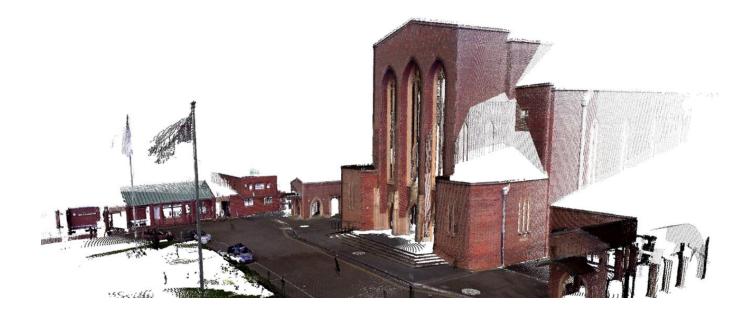




- Multi-view RGB-D images
- Voxels
- Polygon Mesh
- Point Cloud



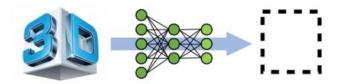




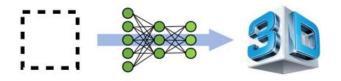
Deep Learning for 3D Vision

Traditional 3D Representation (Part 1)

• **Perception**: extract information from 3D shapes



• **Reconstruction**: synthesis 3D shapes

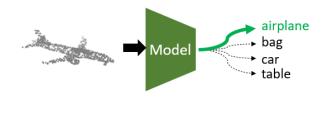


What to Cover Today?

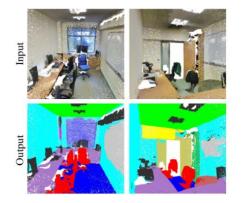
- Introduction to 3D Vision
- Part I: Traditional 3D Representation
 - Perception
 - 3D Reconstruction
- Part II: Recent 3D Representation
 - Neural Radiance Fields
 - 3D Gaussian Splatting
- Advanced Topics About NeRF & 3DGS
 - Text-to-3D without 3D supervision
 - 4D Gaussian Splatting

3D Perception

- Extract information from 3D shapes for downstream tasks
 - Classification
 - Object/scene segmentation
 - Pose estimation
 - Object detection
 - Grounding

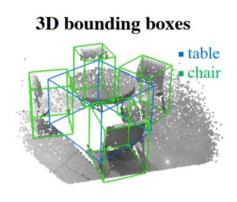


Classification



Segmentation

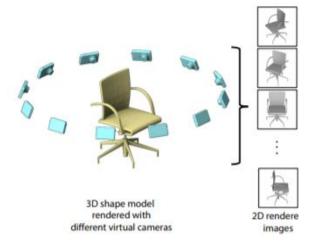
"bottle on top of the bathroom vanity" Grounding

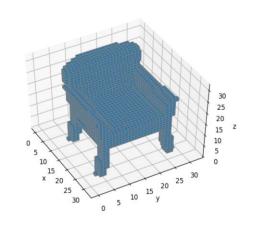


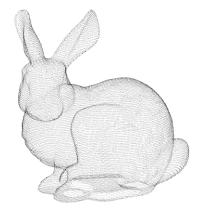
Detection

3D Perception

- In this part, we will talk about feature extraction from:
 - Multi-view images
 - Voxel
 - Point cloud

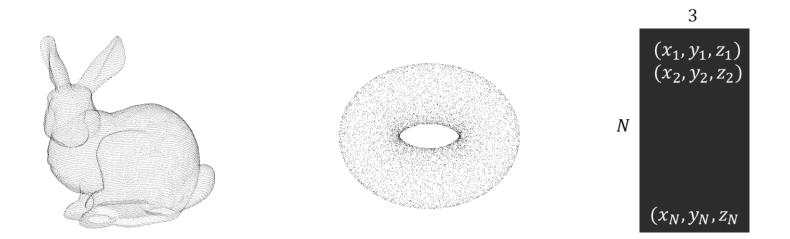






Point Cloud

- Point cloud is a point set, representing 3D shapes
- Each point is represented by coordinates (x, y, z)
- Point cloud is stored as a *N*×3 matrix (N: point number, 3: coordinates)

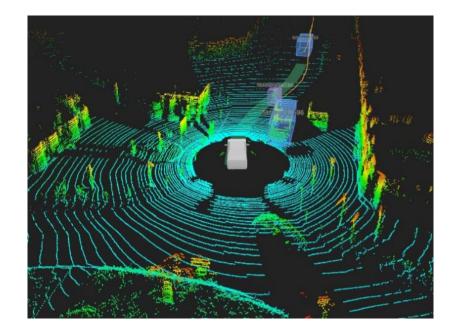


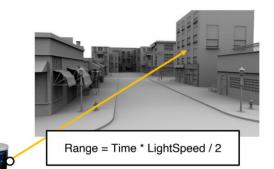
Point Cloud (cont'd)

- Point cloud can be obtained from LiDAR sensors
- Can capture scene geometry

Autonomous driving

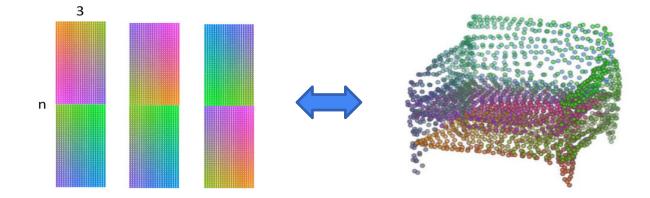
Augmented Reality (AR)





Challenges in Point Cloud

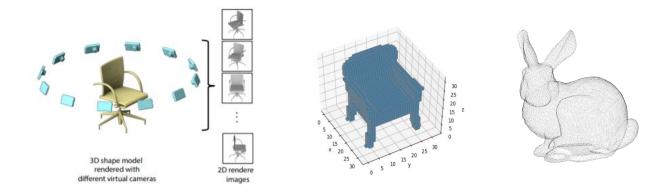
- Can we directly apply CNN on point cloud?
 - No, because point cloud is not grid-structured.
- The shape object can be represented in different orders
- Unknown shape transformation (e.g., translation, rotation...)

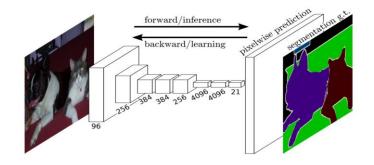


Limitation of CNN

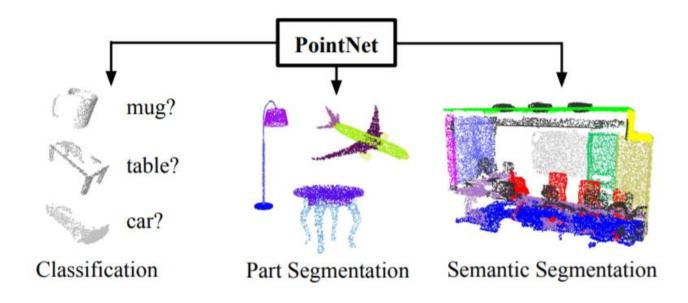
- Can we directly apply CNN on 3D data?
 - Well, it depends...

3D Representation	CNN applicable?
Multi-view images	Ο
Voxel	Ο
Point Cloud	X

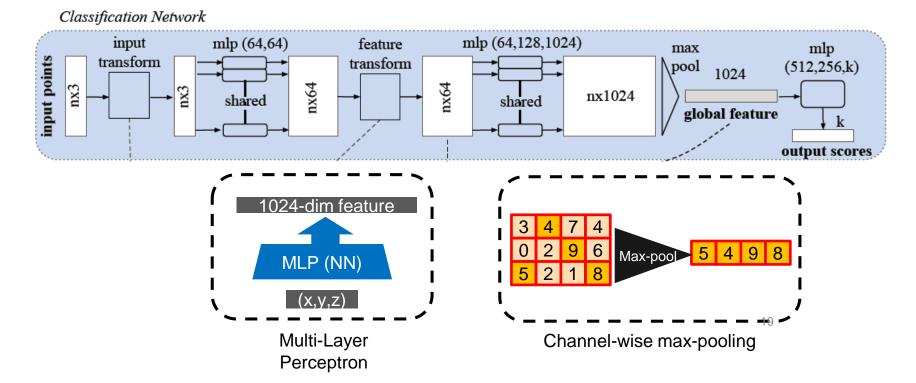




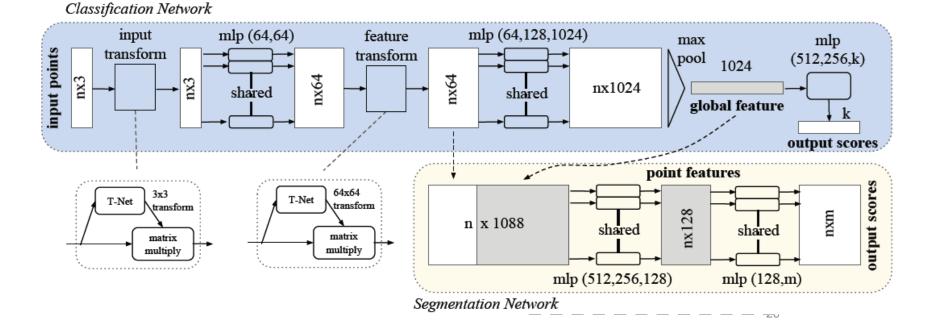
• Goal: Point cloud classification & segmentation



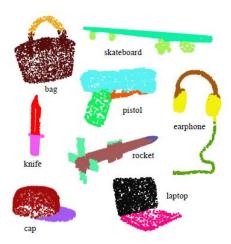
- Goal: Point cloud classification & segmentation
- Classification



- Goal: Point cloud classification & segmentation
- Classification
- Segmentation



- Goal: Point cloud classification & segmentation
- Classification & segmentation
- Qualitative results



Point: (xyz, rgb)

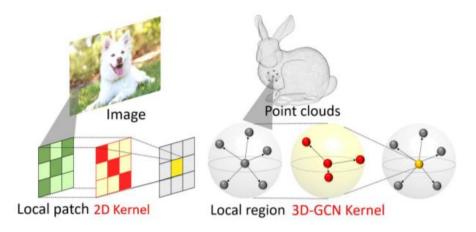
Part segmentation

Scene segmentation

- Goal: Point cloud classification & segmentation
- Classification & segmentation
- Qualitative results
- Remarks
 - Pros: extract features from unordered points
 - Cons:
 - Outlier/noisy point cloud data
 - Cannot capture detailed geometry (global pooling)
 - Might not robust to transformation like translation, scaling, rotation

Extensions of PointNet

- **PointNet++**: Deep Hierarchical Feature Learning on Point Sets in a Metric Space, NIPS 2017
- **Dynamic Graph CNN** for Learning on Point Clouds, TOG 2019
- **KPconv**: Flexible and deformable convolution for point clouds, ICCV 2019
- **Convolution in the cloud**: Learning deformable kernels in 3D graph convolution networks for point cloud analysis, CVPR 2020 (VLLab @ NTU)
- **3D-SelfCutMix:** Self-Supervised Learning for 3D Point Cloud Analysis, ICIP 2022 (VLLab @ NTU)

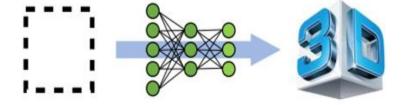


What to Cover Today?

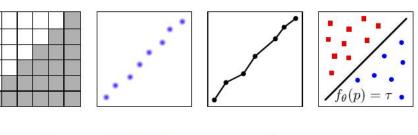
- Introduction to 3D Vision
- Part I: Traditional 3D Representation
 - Perception
 - 3D Reconstruction
- Part II: Recent 3D Representation
 - Neural Radiance Fields
 - 3D Gaussian Splatting
- Advanced Topics About NeRF & 3DGS
 - Text-to-3D without 3D supervision
 - 4D Gaussian Splatting

3D Reconstruction

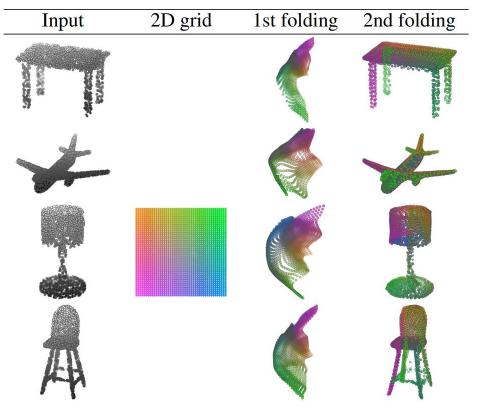
- Reconstruct 3D shapes/scenes from partial observations
 - o Single/multi-view images
 - o Videos
 - O Incomplete point cloud
 - o text

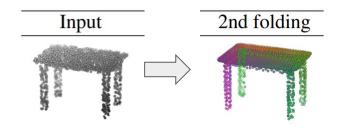


- In this part, we will talk about how to reconstruct
 - O Depth
 - O Voxels
 - o Point cloud
 - O Mesh
 - O Implicit Representation (Function) (??)

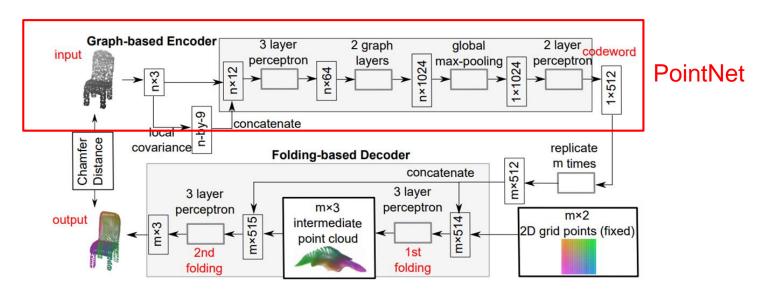


- 3D reconstruction via point cloud (Auto Encoder)
- Input: point cloud object
- Output: reconstructed point cloud



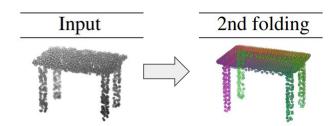


- 3D reconstruction via point cloud (Auto Encoder)
- Input: point cloud object
- Output: reconstructed point cloud
- Decoder: concat 2D coordinates with object feature and pass to MLPs

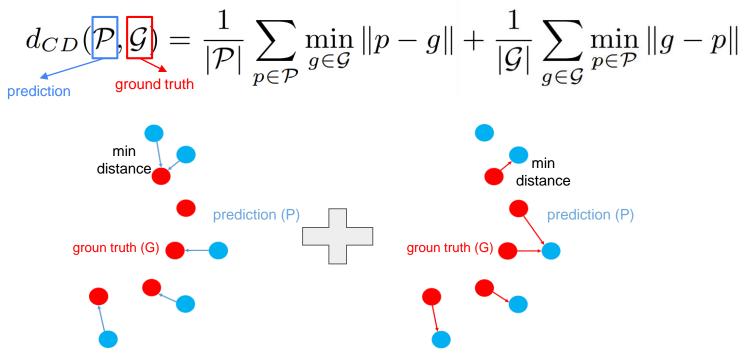


FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation, CVPR 2018

- 3D reconstruction via point cloud
- Input: point cloud object
- Output: reconstructed point cloud
- Loss function: Chamfer distance

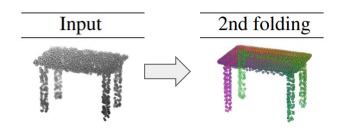


What if only one-sided?



FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation, CVPR 2018

- 3D reconstruction via point cloud
- Input: point cloud object
- Output: reconstructed point cloud
- Example results



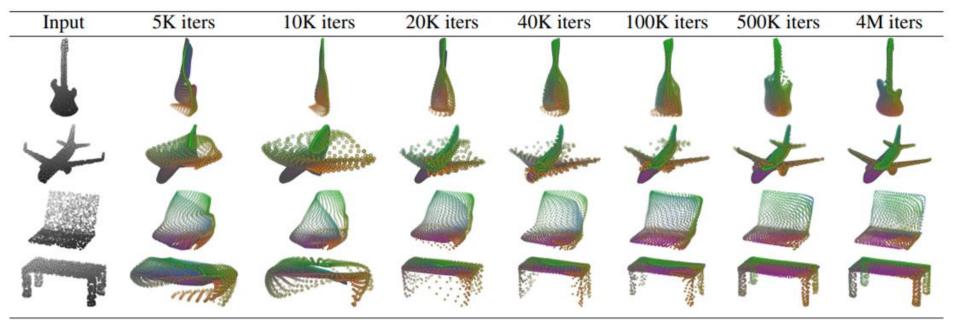


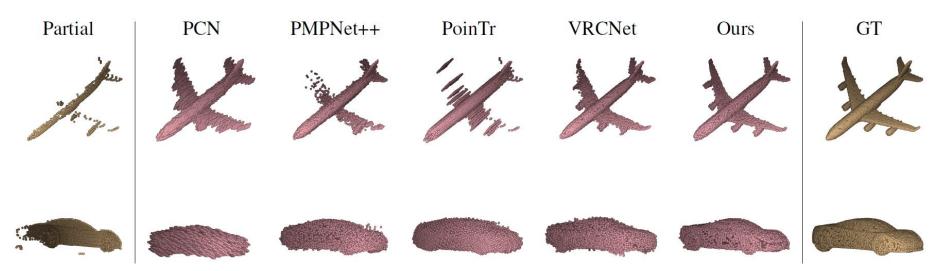
Table 2. Illustration of the training process. Random 2D manifolds gradually transform into the surfaces of point clouds.

FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation, CVPR 2018

Extensions of FoldingNet

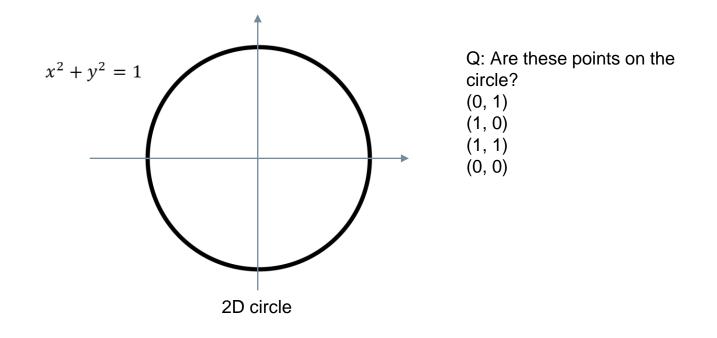
Point Cloud completion: complete partial point clouds

- PCN: Point Completion Network, 3DV 2018
- VRCNet: Variational Relational Point Completion Network, CVPR 2021
- PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers, ICCV 2021
- Variational Transformer for Dense Point Cloud Semantic Completion, NeurIPS 2022 (VLLab @ NTU)



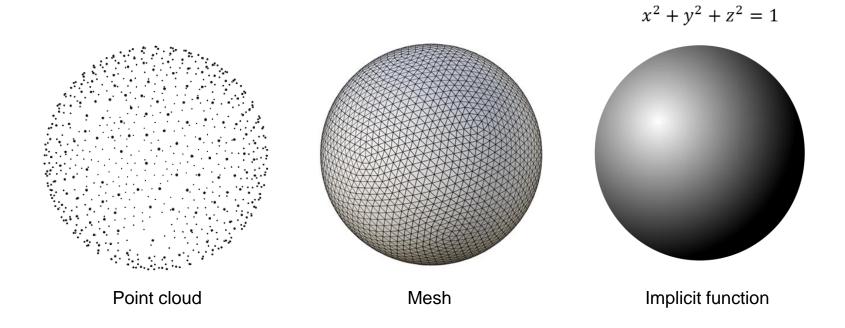
Implicit Representation

- Represent shapes as "function"
- Tell us whether a point is on the surface



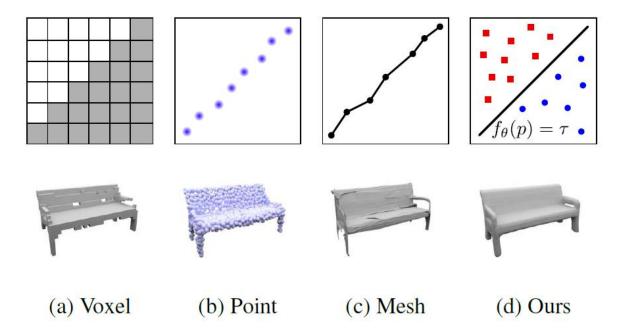
Implicit Representation

- Represent shapes as "function"
- Unit sphere: $f(x, y, z) = x^2 + y^2 + z^2 1$
 - Surface is the solution set of f(.) = 0



Occupancy Network

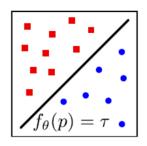
• Shape is a function that determines a point is inside/outside of it



Occupancy Network

- Make model learn to predict occupancy at every possible 3D point $p \in \mathbb{R}^3$
- Think of occupancy function as a "classifier"
- Condition on object feature X

$$f_{\theta} : \mathbb{R}^3 \times \mathcal{X} \to [0, 1]$$



Signed Distance Function

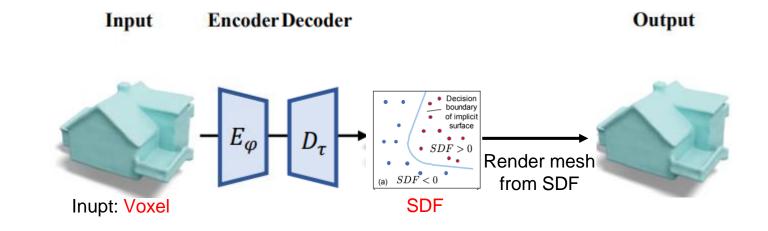
- Make model learn to predict **distance to surface** at every possible 3D point $p \in R^3$
- Think of signed distance function as a "regressor"
- Condition on object feature X

$$f_{\theta}: \mathbb{R}^{3} \times \mathcal{X} \to [\mathcal{R}]$$

Extension on Signed Distance Function

SDFusion (CVPR 2023)

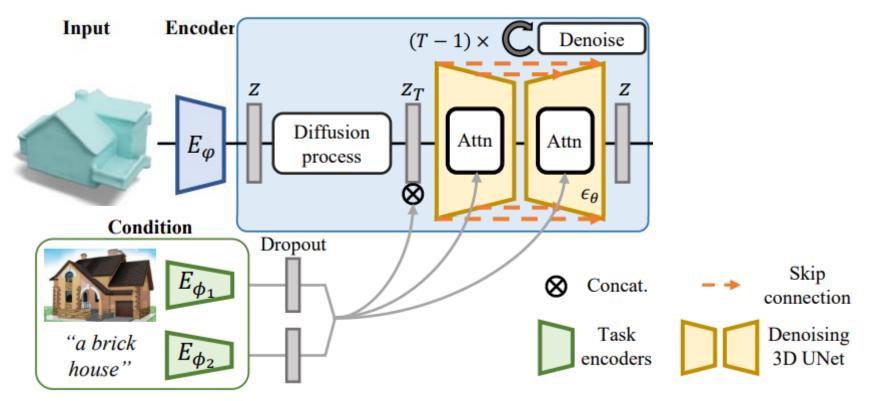
• Train an Auto Encoder for SDF (input voxel)



Extension on Signed Distance Function

SDFusion (CVPR 2023)

- Train an Auto Encoder for SDF (input voxel)
- Train a conditional LDM for latent vector z (text or image)

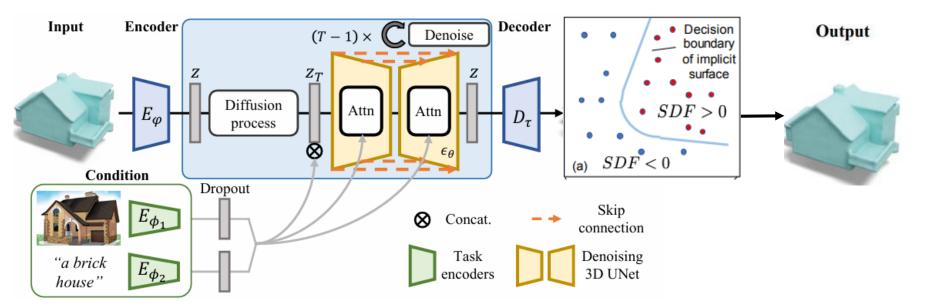


SDFusion: Multimodal 3D Shape Completion, Reconstruction, and Generation, CVPR 2023

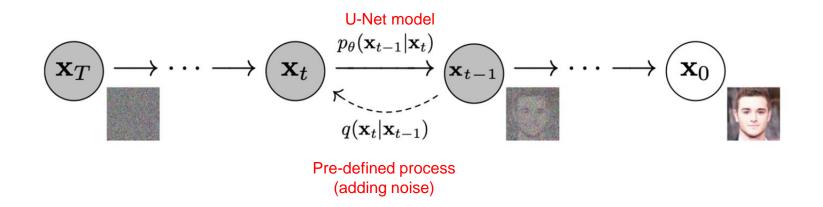
Extension on Signed Distance Function

SDFusion (CVPR 2023)

- Train an Auto Encoder for SDF (input voxel)
- Train a conditional LDM for latent vector z (text or image)



Recap: Diffusion model (intuitively)



- Can be viewed as denoising from a Gaussian noise image
- Each step makes little progress of denoising (total about 1000 steps)
- Output image of each step can be seen as the original image combining with a noise using specific ratio
- The process can also be seen as predicting the **added noise**

Implicit Representation (Occupancy, SDF)

Strength

- Flexible shape topology
- Arbitrary resolution
- Few model parameters •

Output

Weakness

- Require post-processing to get mesh
- Cannot handle complex scene

"a somewhat circular chair"

"a round table with two surfaces"

Extensions of Occupancy, SDF

Text-to-3D Generation

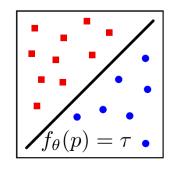
- **Diffusion-SDF:** Text-To-Shape via Voxelized Diffusion (CVPR 2023)
- **Diffusion-SDF**: Conditional Generative Modeling of Signed Distance Functions (CVPR 2023)
- Learning Shape-Color Diffusion Priors for Text-Guided 3D Object Generation (accepted to TMM 2024 Sept.)(VLLab @ NTU)
- **GraphDreamer**: Compositional 3d scene synthesis from scene graphs (CVPR 2024)

What to Cover Today?

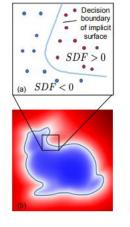
- Introduction to 3D Vision
- Part I: Traditional 3D Representation
 - Perception
 - 3D Reconstruction
- Part II: Recent 3D Representation
 - Neural Radiance Fields
 - 3D Gaussian Splatting
- Advanced Topics About NeRF & 3DGS
 - Text-to-3D without 3D supervision
 - 4D Gaussian Splatting

Recap: Neural Networks as a Continuous Shape Representation

Occupancy Networks (Mescheder et al. 2019) (x,y,z) -> occupancy



Deep SDF (Park et al. 2019) (x,y,z) -> distance



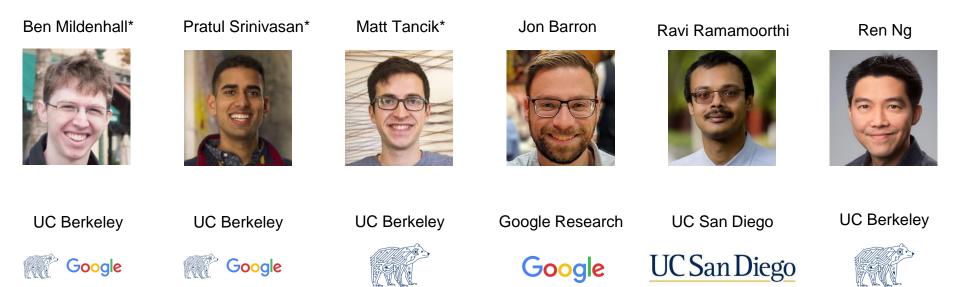
Pros: Compact and expressive parameterization

Cons: Limited rendering, difficult to optimize

NeRF:

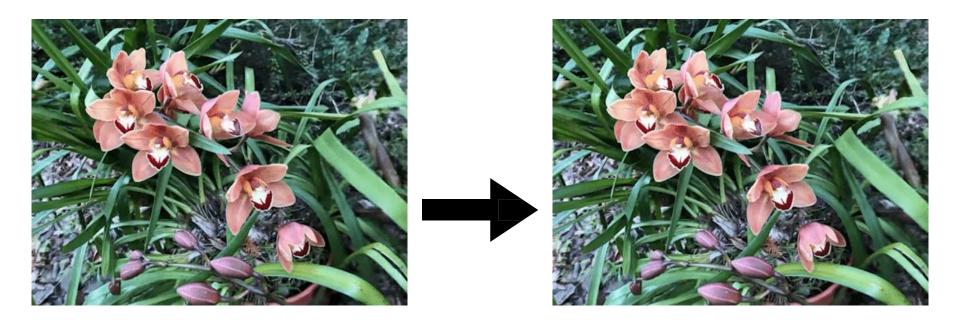
Representing Scenes as Neural Radiance Fields for View Synthesis

Many slides from Jon Barron and cs598dwh (UIUC)



Slide credit: cs598dwh

Problem: Novel view synthesis (NVS)



Inputs: sparsely sampled images of a scene

tancik.com/nerf

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020

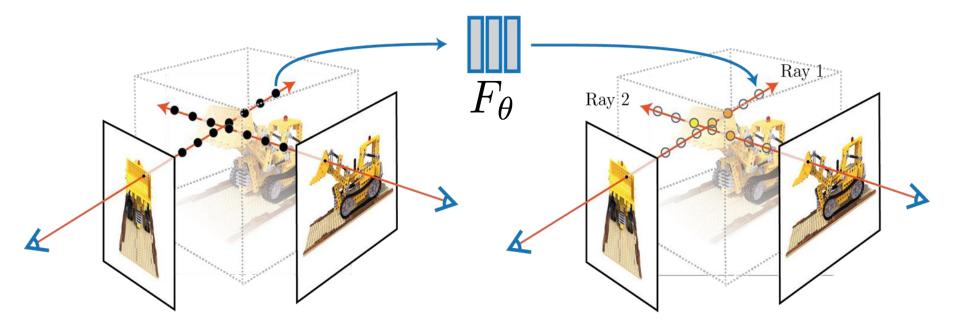
Outputs: new views of the same scene

Slide credit: Jon Barron

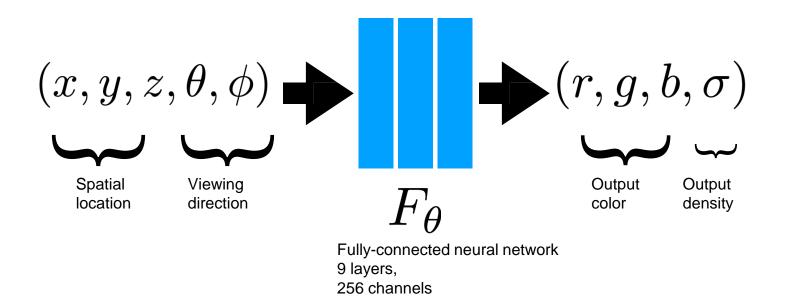
NeRF (Neural randiance field)

- Goal: learn 3D representation, and perform novel view synthesis
- Input: multi-view images + camera poses
- Output: 3D representation (neural radiance field)

Generate views with traditional volume rendering

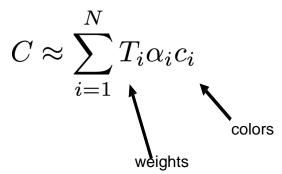


NeRF (Neural randiance field)



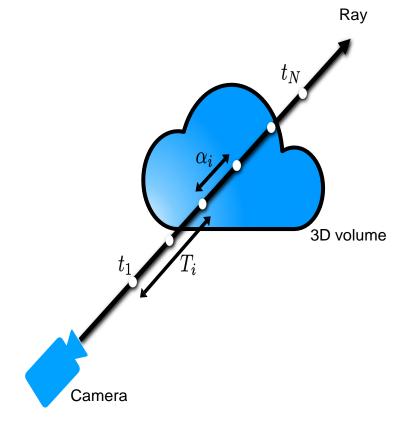
Generate views with traditional volume rendering

Rendering model for ray r(t) = o + td:



• How much light is blocked earlier along ray:

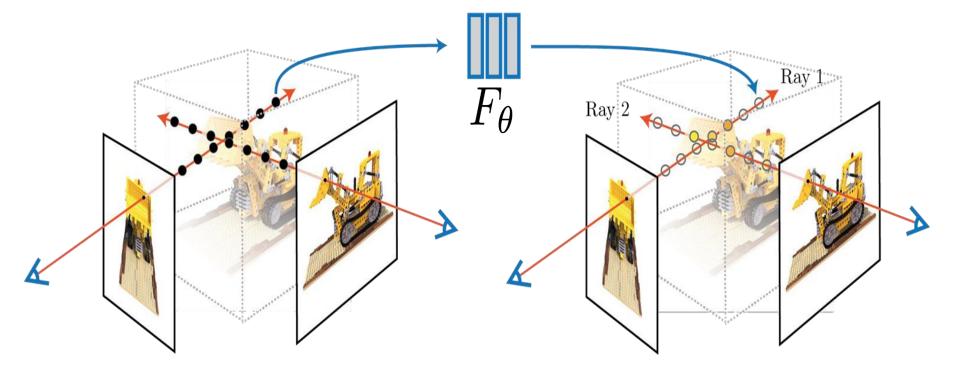
$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$



• How much light is contributed by ray segment *i*:

 $\alpha_i = 1 - e^{-\sigma_i \delta t_i \leftarrow}$ -Density * Distance Between Points

Optimize with gradient descent on rendering loss

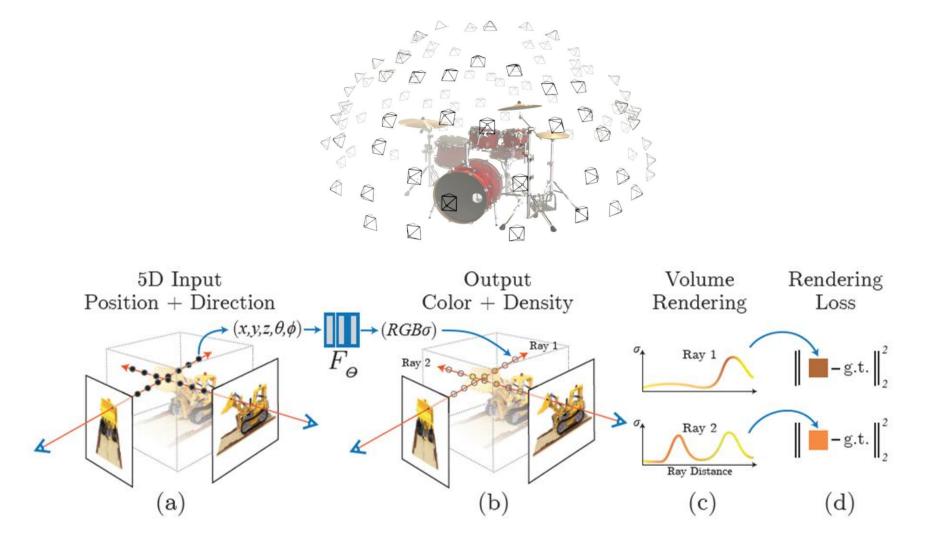


 $\min_{\theta} \sum ||\operatorname{render}_i(F_{\theta}) - I_i||^2$

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020

Slide credit: Jon Barron

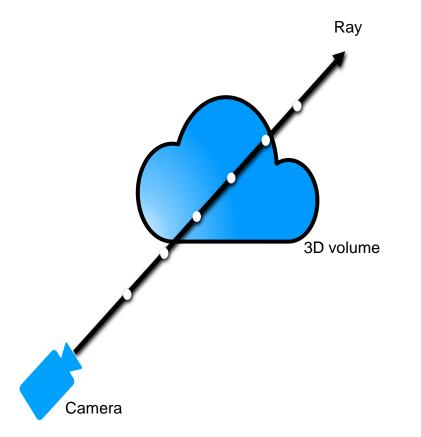
Training network to reproduce all input views of the scene



NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020

Slide credit: Jon Barron

Can we allocate samples more efficiently? --Two pass rendering

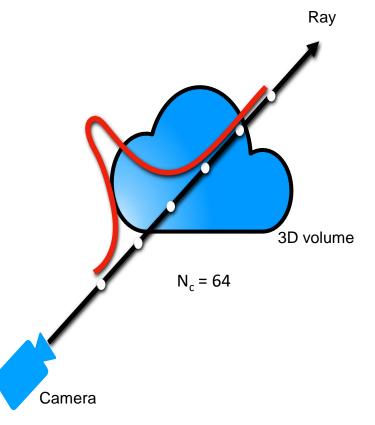


Two pass rendering:coarse network

- Sparsely sample points along ray
- Serve as a coarse guidance

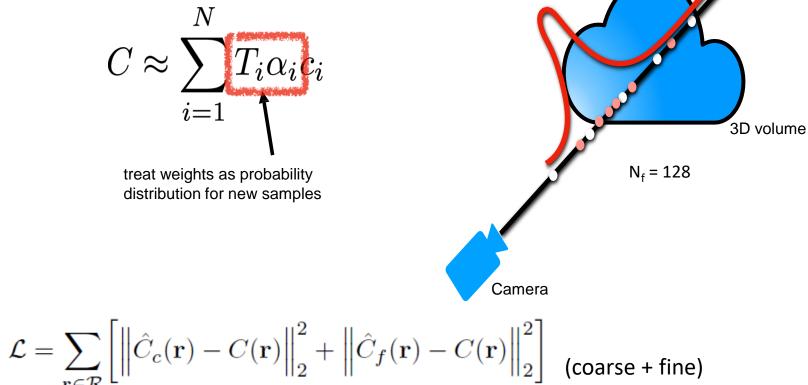
 $C \approx \sum_{i=1}^{N} T_i \alpha_i c_i$

treat weights as probability distribution for new samples



Two pass rendering:fine network

- Use the coarse predicted density to resample new points along ray
- Together compute all N_c + N_f points to calculate final color for fine network



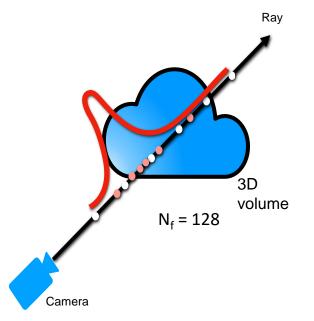
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020

Slide credit: Jon Barron

Ray

Two pass rendering: optimization

- Optimize coarse network and fine network together
- Only use the prediction of fine network when rendering a new scene



$$\mathcal{L} = \sum_{\mathbf{r}\in\mathcal{R}} \left[\left\| \hat{C}_{c}(\mathbf{r}) - C(\mathbf{r}) \right\|_{2}^{2} + \left\| \hat{C}_{f}(\mathbf{r}) - C(\mathbf{r}) \right\|_{2}^{2} \right] \text{ (coarse + fine)}$$

predicted color from coarse network predicted color from fine network

Positional encoding

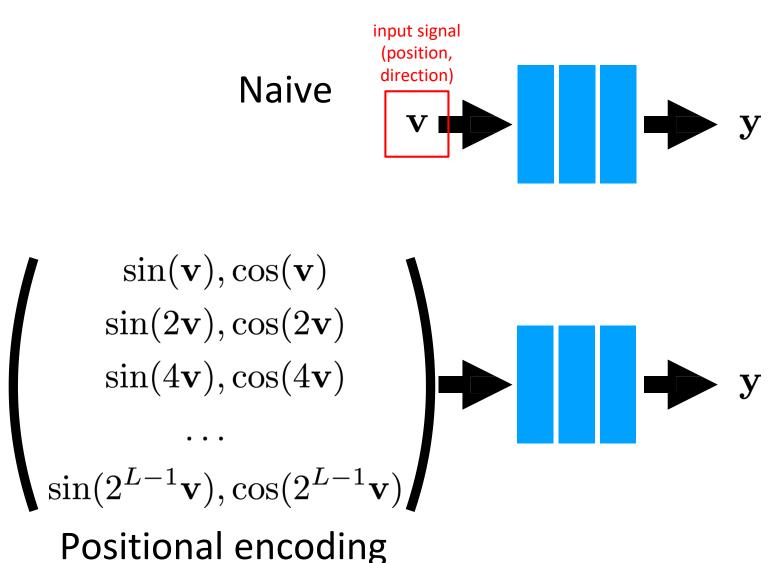
NeRF (Naive)

NeRF (with positional encoding)

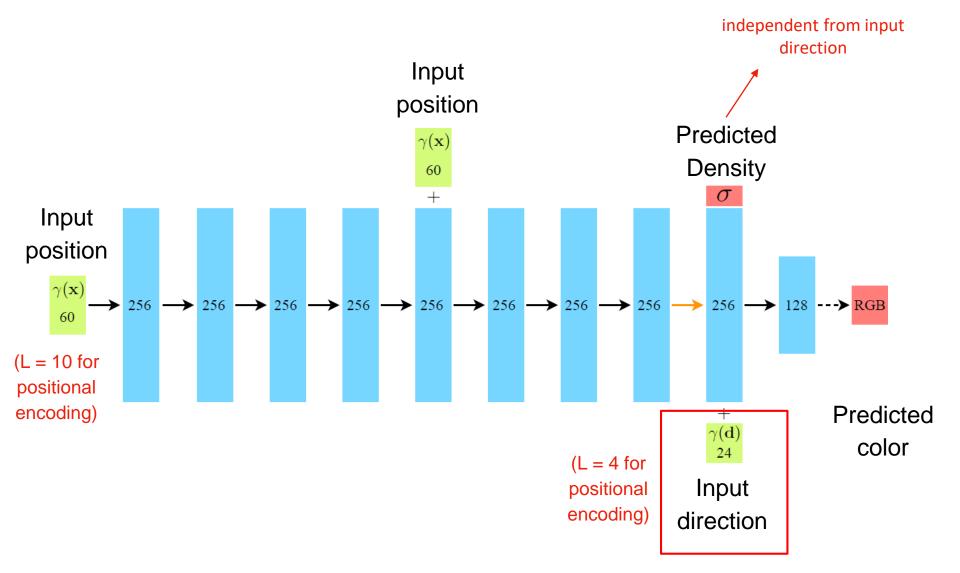
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020

Slide credit: Jon Barron

Positional encoding

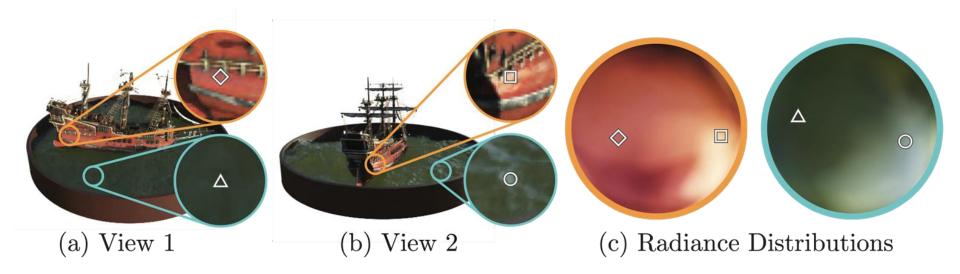


Network Structure



Viewing directions as input

• The specular reflection (or other changes influenced by lighting) varies across different views



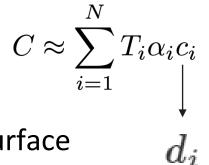
Viewing directions as input

- The rendered color changes as the viewing direction
- L: image plane change with viewing direction
- R: fixing image plane while the viewing direction feeded to NeRF changes

Viewing directions as input

• Another example

Depth (geometry) Estimation



- The predicted density indicates the object surface
- The estimated depth perfectly shows the geometry of foreground object

Distance from the points to camera

Depth (geometry) Estimation

• Another example

Depth (geometry) Estimation

• By correctly estimate the depth of the scene, virtual objects are possible to interact with the real scene

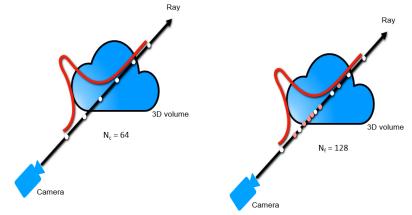
NeRF: strength & weakness

Strength

- Photo-realistic texture
- Do not require 3D ground truth
- View-dependent effect

Weakness

- Only fit single scene
- Require much posed images
- Time-consuming rendering (30s per frame)
- <- Fatal for real-time applications !!



Extensions of NeRF

NeRF Acceleration, Generalization

- Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains (NeurIPS 2020) -> explain why positional encoding works
- **pixelnerf:** Neural radiance fields from one or few images (CVPR 2021)
- **KiloNeRF**: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs (ICCV 2021)
- Instant Neural Graphics Primitives with a Multiresolution Hash Encoding (SIGGRAPH 2022)
- NeurMiPs: Neural Mixture of Planar Experts for View Synthesis (CVPR 2022) (VLLab @ NTU)
- Direct voxel grid optimization: Super-fast convergence for radiance fields reconstruction (CVPR 2022)
- **GSNeRF**: Generalizable Semantic Neural Radiance Fields with Enhanced 3D Scene Understanding (CVPR 2024) (VLLab @ NTU)

What to Cover Today?

- Introduction to 3D Vision
- Part I: Traditional 3D Representation
 - Perception
 - 3D Reconstruction
- Part II: Recent 3D Representation
 - Neural Radiance Fields
 - 3D Gaussian Splatting
- Advanced Topics About NeRF & 3DGS
 - Text-to-3D without 3D supervision
 - 4D Gaussian Splatting

3D Gaussian Splatting for Real-Time Radiance Field Rendering

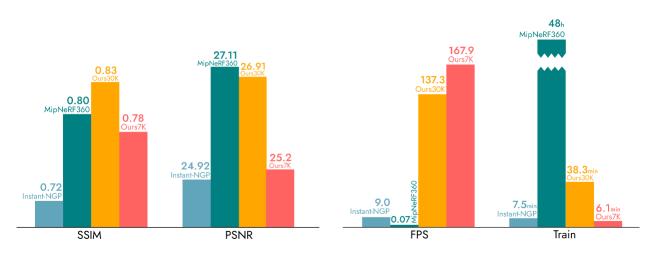
SIGGRAPH 2023

(ACM Transactions on Graphics)

Bernhard Kerbl^{* 1,2} Georgios Kopanas^{* 1,2} Thomas Leimkühler³ George Drettakis^{1,2}

* Denotes equal contribution

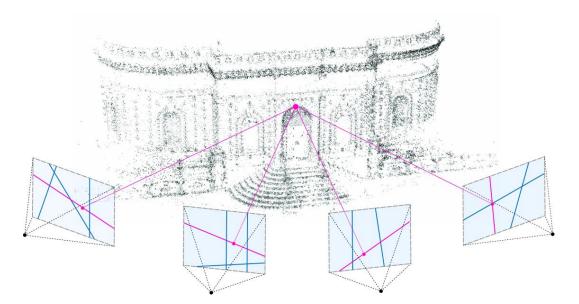
²Université Côte d'Azur ³MPI Informatik ¹Inria



3D Gaussian Splatting for Real-Time Radiance Field Rendering Link

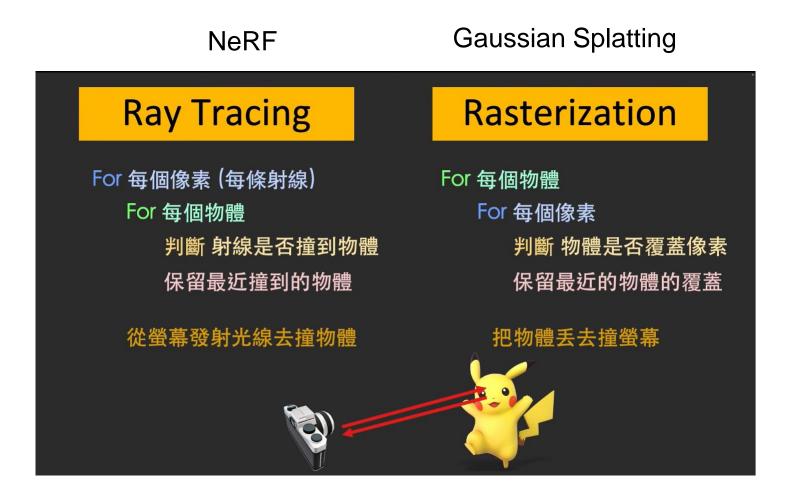
How to make renderings faster?

- Borrow the idea from point cloud
 - Can be super fast using **rasterization** for rendering
 - Only preserves regions containing objects



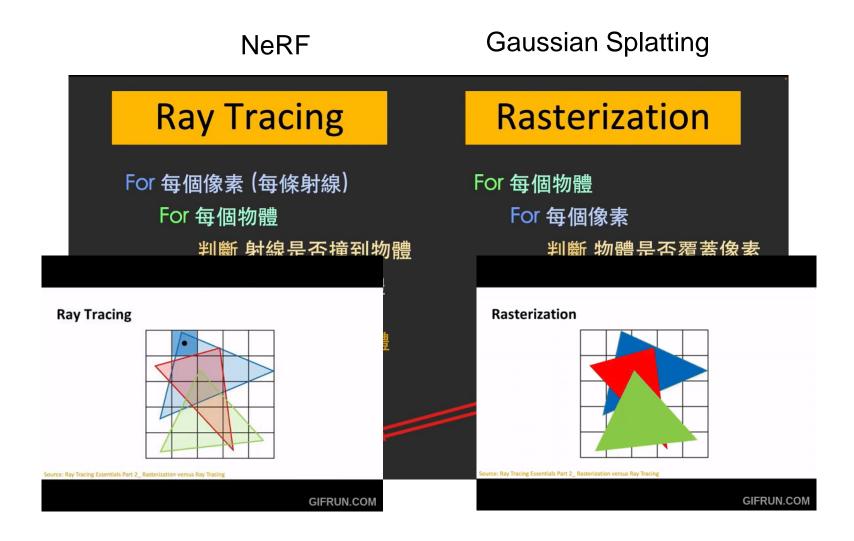
https://www.linkedin.com/pulse/structure-from-motion-manish-joshi/

Method – When old meets new



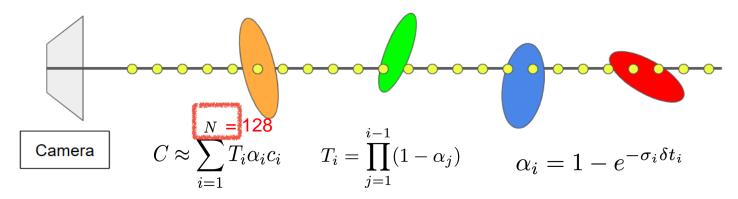
Slide credit: AI 甘安捏

Method – When old meets new



Slide credit: AI 甘安捏

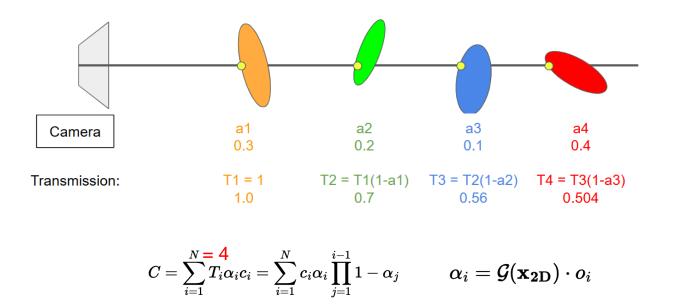
Method – When old meets new



For NeRF-based methods, despite there are only four primitives, they still require intensive samples in empty space

Slide credit: 陳楚融

Method – When old meets new

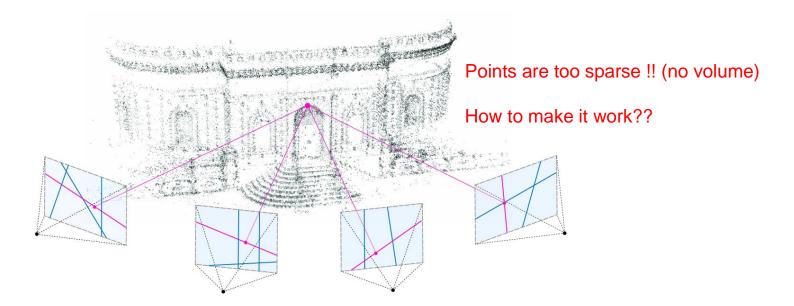


For Rasterization, only 4 times of calculation for 4 object surface encountered

Slide credit: 陳楚融

How to make renderings faster?

- Borrow the idea from point cloud
 - Can be super fast using **rasterization** for rendering
 - Only preserves regions containing objects



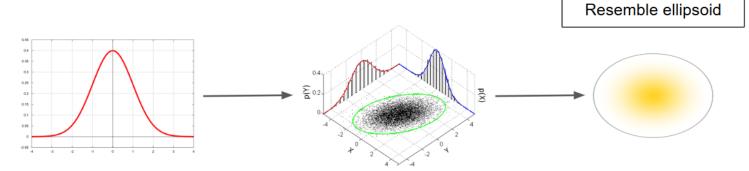
https://www.linkedin.com/pulse/structure-from-motion-manish-joshi/

Method – How to solve sparsity problem of point cloud?

Recall Gaussian distribution

$$\mathcal{G}(\mathbf{x}-\mu) = \exp\left(-rac{1}{2}(\mathbf{x}-\mu)^T\Sigma^{-1}(\mathbf{x}-\mu)
ight)$$

 μ is the mean, Σ is the covariance matrix

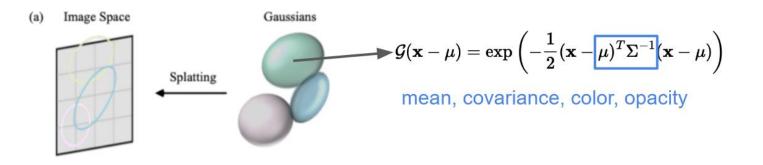


Slide credit: 陳楚融

Method – How to solve sparsity problem of point cloud?

Use numerous 3D Gaussians distributed in the space, each having volume, direction and color

 \rightarrow Solve the discontinuity problem of point-based method



Slide credit: 陳楚融

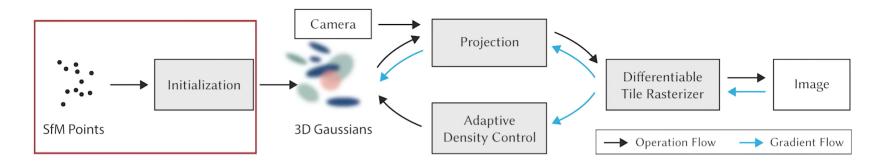
Method – When old meets new

• Structure from Motion:

from multi-view image to sparse point cloud

Sparse model of central Rome using 21K photos produced by COLMAP's SfM pipeline.

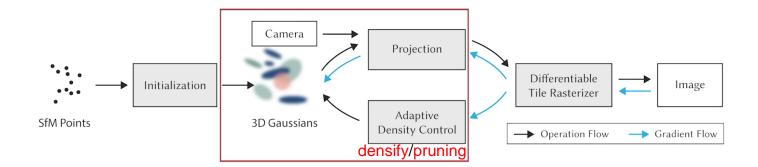
Photo credit: colmap



We start with a set of cameras and a point cloud provided by Structure from Motion during calibration.

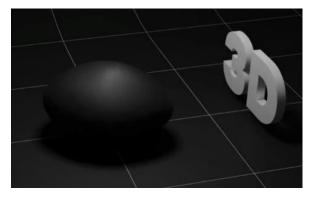
Method

Overview of our Method



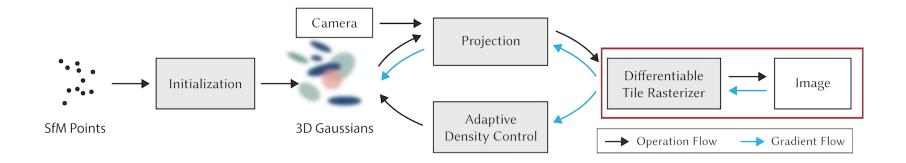
Next, we optimize the set of 3D Gaussians to represent the scene

- The whole Gaussian Splat model have N Gaussians
 - Dynamically adjust by densify/pruning
- Each 3D Gaussians composed of four parameters:
 - position (x, y, z),
 - covariance (how it's stretched/scaled: 3x3),
 - color (RGB)
 - alpha (density)



Method

Overview of our Method



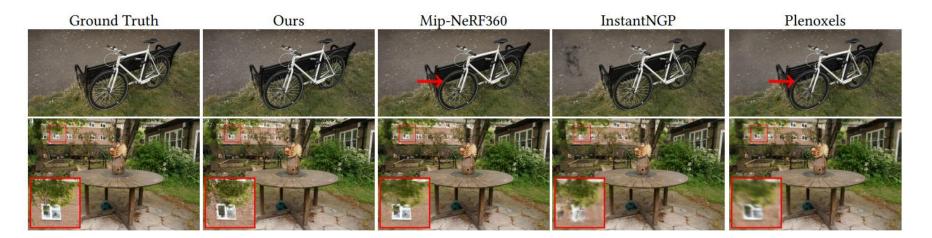
Finally, we render transparent anisotropic Gaussians and backpropagate the gradients to their properties.

• The render results

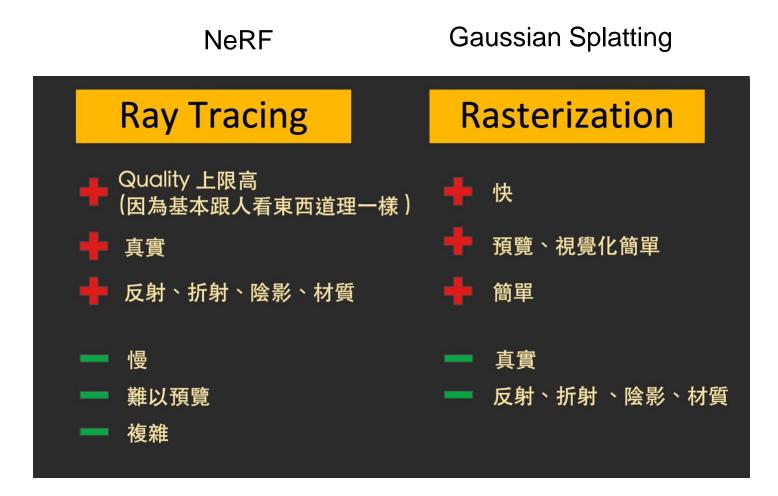
• The render results if we set all 3D gaussians' alpha to 1, without transparency.

• Better visual quality with order of magnitude rendering speed difference.

Dataset	Mip-NeRF360						Tanks&Temples						Deep Blending					
Method Metric	<i>SSIM</i> [↑]	$PSNR^{\uparrow}$	LPIPS↓	Train	FPS	Mem	<i>SSIM</i> [↑]	$PSNR^{\uparrow}$	$LPIPS^{\downarrow}$	Train	FPS	Mem	<i>SSIM</i> [↑]	$PSNR^{\uparrow}$	$LPIPS^{\downarrow}$	Train	FPS	Mem
Plenoxels	0.626	23.08	0.463	25m49s	6.79	2.1GB	0.719	21.08	0.379	25m5s	13.0	2.3GB	0.795	23.06	0.510	27m49s	11.2	2.7GB
INGP-Base	0.671	25.30	0.371	5m37s	11.7	13MB	0.723	21.72	0.330	5m26s	17.1	13MB	0.797	23.62	0.423	6m31s	3.26	13MB
INGP-Big	0.699	25.59	0.331	7m30s	9.43	48MB	0.745	21.92	0.305	6m59s	14.4	48MB	0.817	24.96	0.390	8m	2.79	48MB
M-NeRF360	0.792 [†]	27.69 [†]	0.237^{\dagger}	48h	0.06	8.6MB	0.759	22.22	0.257	48h	0.14	8.6MB	0.901	29.40	0.245	48h	0.09	8.6MB
Ours-7K	0.770	25.60	0.279	6m25s	160	523MB	0.767	21.20	0.280	6m55s	197	270MB	0.875	27.78	0.317	4m35s	172	386MB
Ours-30K	0.815	27.21	0.214	41m33s	134	734MB	0.841	23.14	0.183	26m54s	154	411MB	0.903	29.41	0.243	36m2s	137	676MB



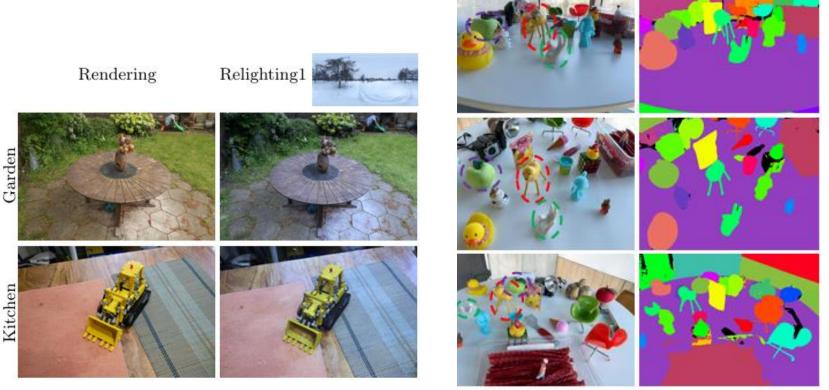
Pros and Cons



Slide credit: AI 甘安捏

Extensions of 3DGS

- **Relightable 3D Gaussians**: Realistic Point Cloud Relighting with BRDF Decomposition and Ray Tracing (ECCV 2024)
- Gaussian Grouping: Segment and Edit Anything in 3D Scenes (ECCV 2024)



(a) Rendered Views

(b) Rendered Anything Masks

What to Cover Today?

- Introduction to 3D Vision
- Part I: Traditional 3D Representation
 - Perception
 - 3D Reconstruction
- Part II: Recent 3D Representation
 - Neural Radiance Fields
 - 3D Gaussian Splatting
- Advanced Topics About NeRF & 3DGS
 - Text-to-3D without 3D supervision
 - 4D Gaussian

DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION

Ben Poole Google Research Ajay Jain UC Berkeley Jonathan T. Barron Google Research Ben Mildenhall Google Research

2023 ICLR

https://dreamfusion3d.github.io/

DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION

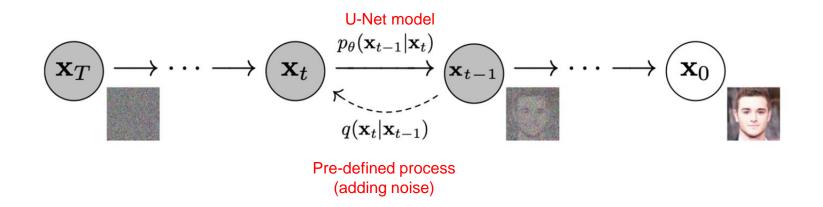
an orangutan making a clay bowl on a throwing wheel*

a raccoon astronaut holding his helmet

a blue jay standing on a large basket of rainbow macarons

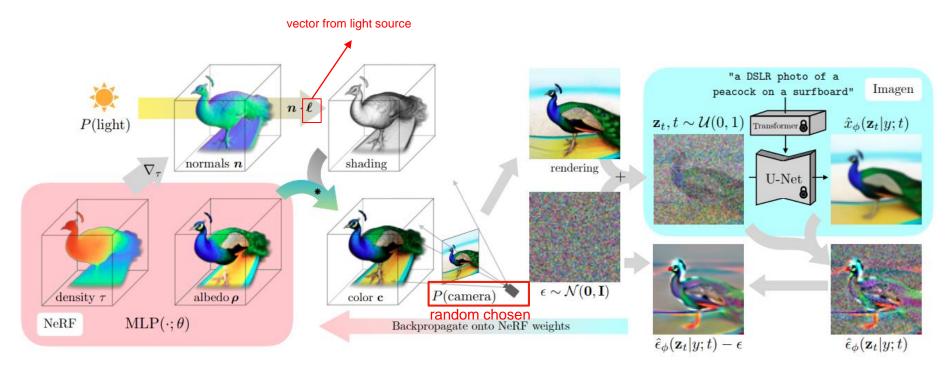
- Take description as input and generate corresponding 3D results (via 2D rendering)
- Without paired "text and 3D object"
- Combining NeRF and 2D text-to-image diffusion model

Recap: Diffusion model (intuitively)



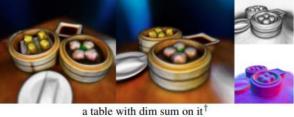
- Can be viewed as denoising from a Gaussian noise image
- Each step makes little progress of denoising (total about 1000 steps)
- Output image of each step can be seen as the original image combining with a noise using specific ratio
- The process can also be seen as predicting the **added noise**

Method

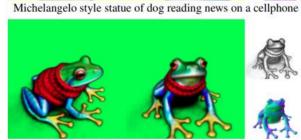


- The left part is a standard NeRF with shading condition
- Combine the rendered NeRF image with random noise to simulate a state of the text-to-image diffusion model
- The difference between the predicted noise and the inserted noise is treated as the rendering loss to guide NeRF

a corgi taking a selfie*



a lion reading the newspaper*



a frog wearing a sweater*

a humanoid robot playing the cello*

a steam engine train, high resolution*

Sydney opera house, aerial view[†]

an all-utility vehicle driving across a stream[†]

a chimpanzee dressed like Henry VIII king of England*

a baby bunny sitting on top of a stack of pancakes[†]

a classic Packard car*

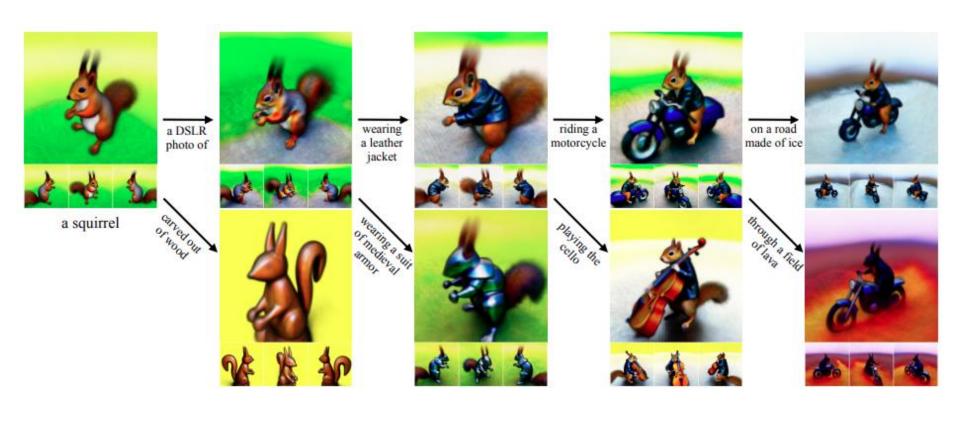
a sliced loaf of fresh bread

a bulldozer clearing away a pile of snow*

zoomed out view of Tower Bridge made out of gingerbread and candy[‡]

a robot and dinosaur playing chess, high resolution*

a squirrel gesturing in front of an easel showing colorful pie charts



TPA3D: Triplane Attention for Fast Text-to-3D Generation

¹National Taiwan University, ²NVIDIA

Project page

Bin-Shih Wu1*

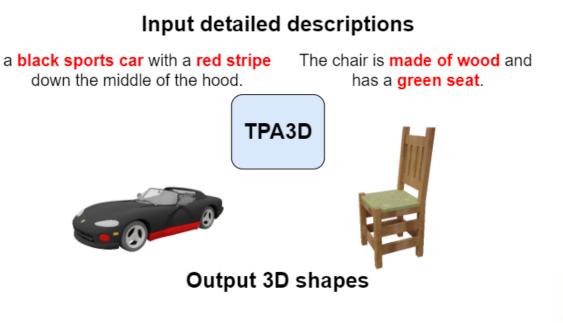
Hong-En Chen1*

Sheng-Yu Huang¹

Yu-Chiang Frank Wang^{1,2}

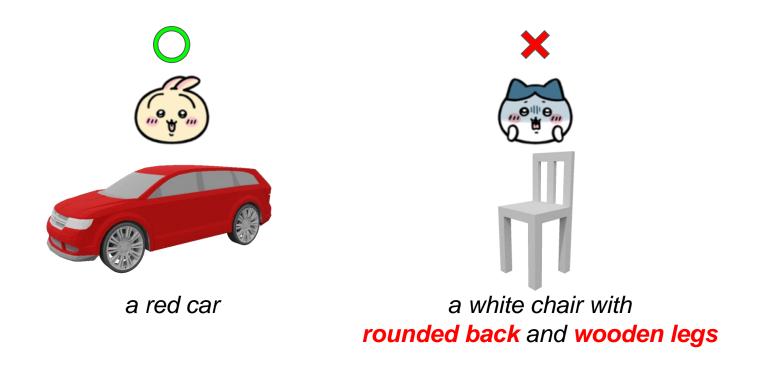
Task

• Text-to-3D generation with detailed descriptions



Motivation

- Lack of supervision: Need large 3D dataset with paired descriptions
- Lack of detailed: Omitted details for the texture and geometry in the text prompt

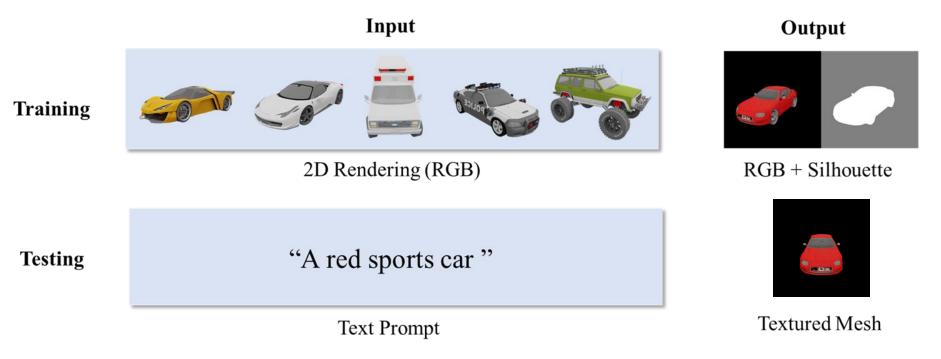


95

Slide credit: 吳彬世

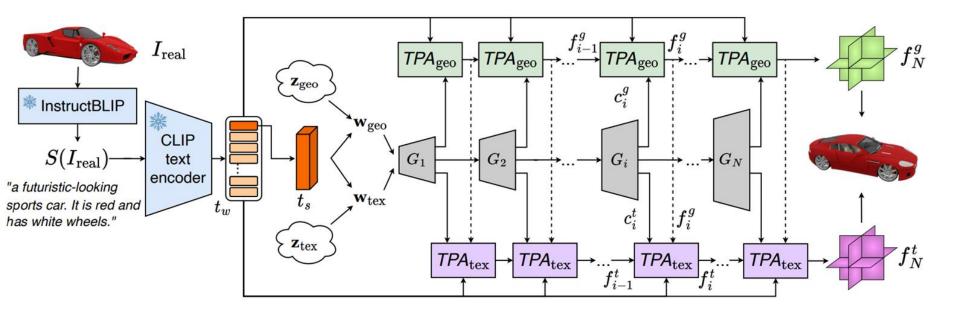
Problem Settings

• Achieve text-guided 3D generation without human-annotated text-3D pairs



Methods

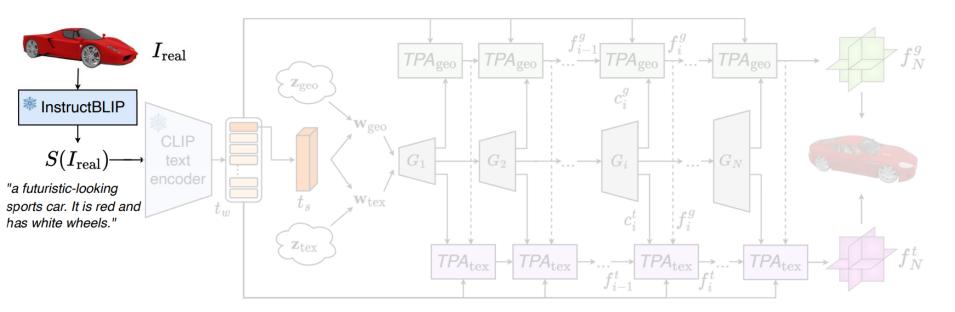
• Model overview



97

Methods

• Pseudo caption generation



Pseudo Caption Generation

paper link

- Given prompt: "In the image, the background is black. Describe the design and appearance of the {category} in detail."
- Remove redundant information

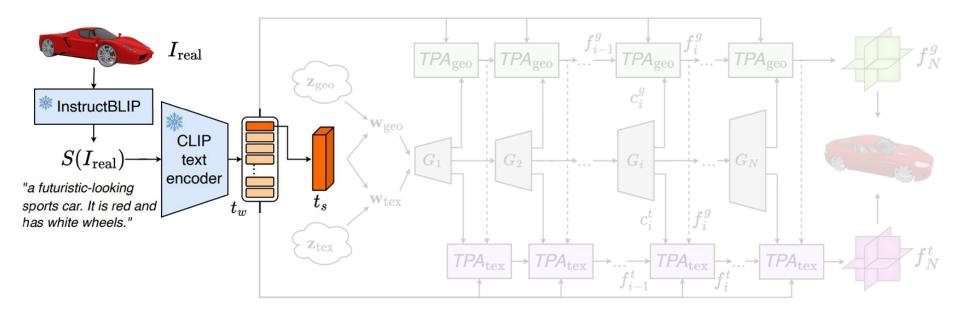
a yellow sports car with a black stripe down the middle of its body.

the chair is made of wood and has a brown leather seat.

a 1950s-style Harley Davidson. It has a red and white color scheme.

Methods

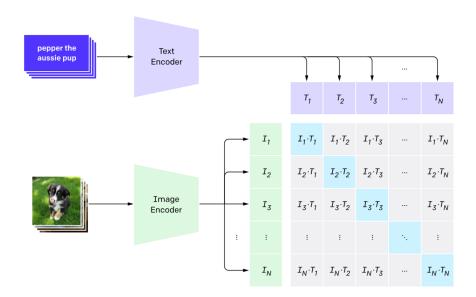
• Encode text prompt to word-level features & sentence-level features



100

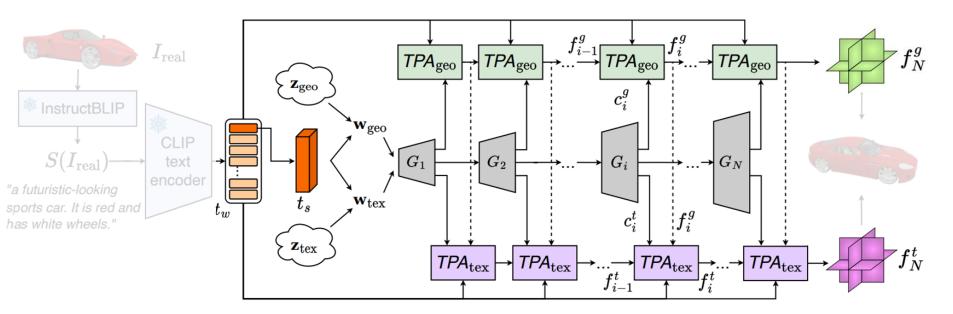
Encode Text Features

- <u>CLIP</u> (Contrastive Language-Image Pretraining)
- Word-level: second-last layer of VIT
- Sentence-level: after projection



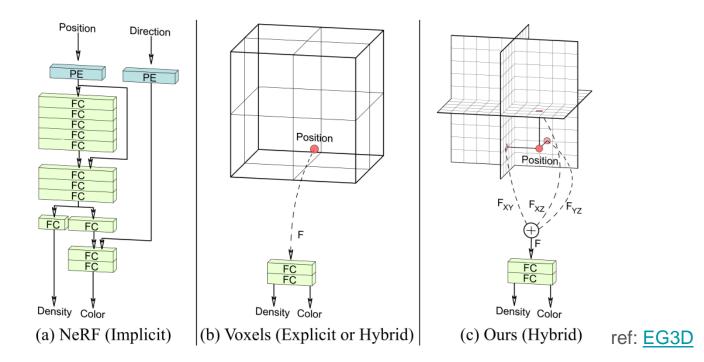
Methods

• Generate triplane features



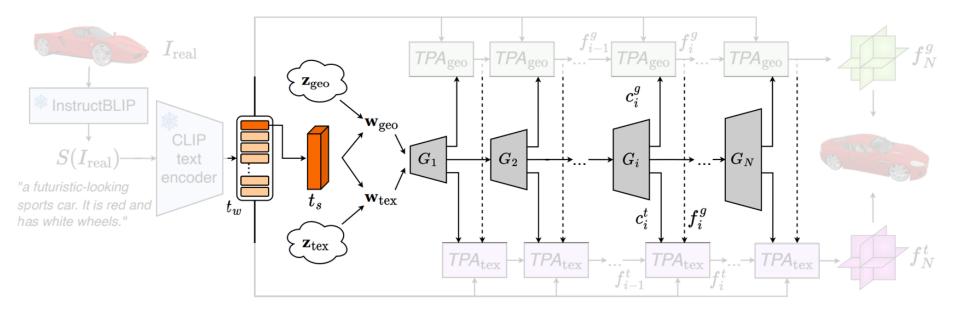
Triplane Features

• Use 2D planes to learn 3D features (efficient)



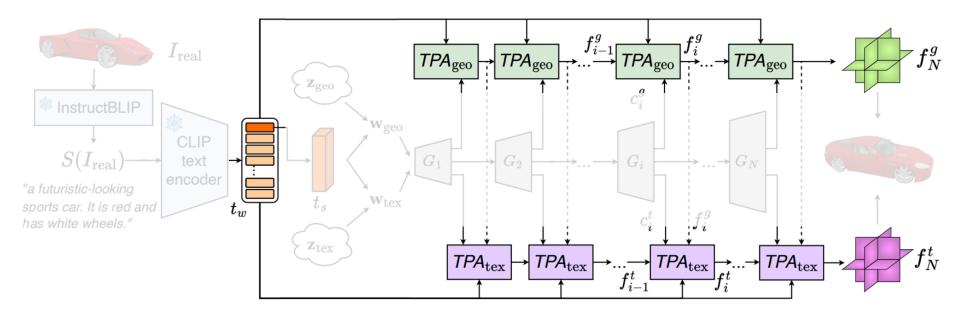
Methods

• Generate sentence-level triplane features



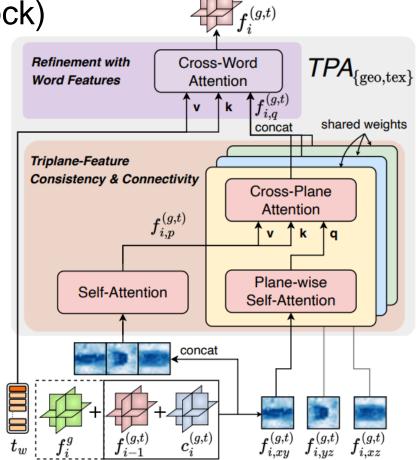
Methods

• Generate word-level triplane features



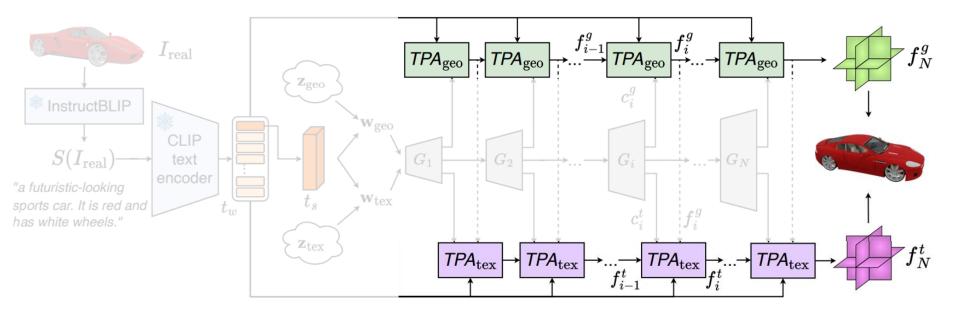
Triplane Attention Block (TPA Block)

- Plane-wise Self-Attention
 - Intra-plane consistency
 - Extract plane-wise content features
- Cross-Plane Attention
 - Inter-plane connectivity
 - Ensure multi-aspect correspondence across different planes
- Cross-Word Attention
 - Word-level refinement
 - Incorporate word-level information into triplane features



Methods

• Predict SDF values, deformations, and colors



107

Training Objectives

- Text-guided discriminators
 - Use camera pose & text features as condition
 - On both rendered RGB images & silhouette masks
- Mismatching loss
 - Use negative pairs to increase discriminative ability
- CLIP loss
 - CLIP similarity score

$$\mathcal{L} = \mathcal{L}(D_{\rm rgb}, G) + \mathcal{L}(D_{\rm mask}, G) + \mathcal{L}_{\rm mis} + \mathcal{L}_{\rm clip}$$

108

• Qualitative comparison

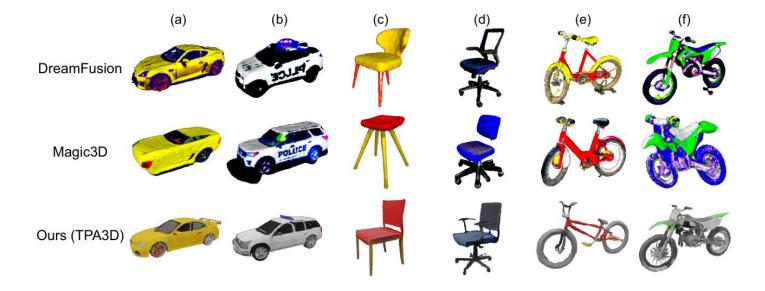
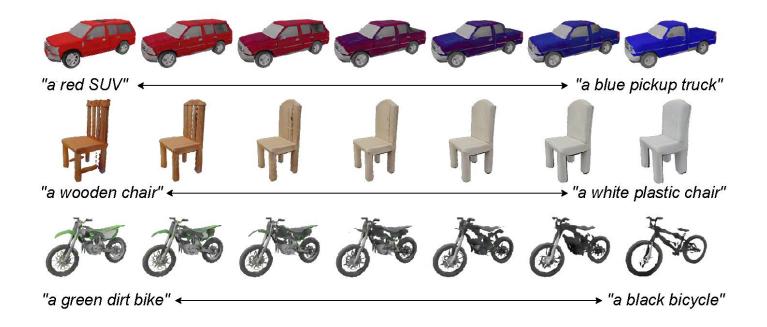


Fig. 6: Qualitative comparisons with SDS-based methods. Each column takes a unique text prompt of (a) "a yellow sports car with red wheel and tinted window", (b) "a white SUV with a blue police light on top of it", (c) "the chair has a red seat and yellow legs", (d) "a black office chair with a blue seat", (e) "a red bicycle with yellow pedals", and (f) "a green and white dirt bike".

• Inference time comparison

Method	Device	Output	Time
DreamFusion [40]	TPUv4 machine	Rendering	90 min
Magic3D [31]	NVIDIA A100 x8	Rendering	40 min
TITG3SG [32]	Telsa V100-32G	Voxel	2.21 sec
TAPS3D [55]	Telsa V100-32G	Rendering	0.05 sec
TAPS3D [55]	Telsa V100-32G	Mesh	1.03 sec
Ours (TPA3D)	Telsa V100-32G	Rendering	0.09 sec
Ours (TPA3D)	Telsa V100-32G	Mesh	2.87 sec

• Interpolation



• Incremental manipulation

motorbike is white + ____

"and purple"

"and purple with a yellow headlight"

with rounded back and white cushion 112

with white cushion

n with rounded back

More references about further topics of 3D supervision-free text-to-3D

- **Magic3D**: High-Resolution Text-to-3D Content Creation (CVPR 2023)
- **MVDream:** Multi-view Diffusion for 3D Generation
- **TAPS3D**: Text-Guided 3D Textured Shape Generation From Pseudo Supervision (CVPR 2023)
- LucidDreamer: Towards High-Fidelity Text-to-3D Generation via Interval Score Matching (CVPR 2024)
- **GALA3D**: Towards Text-to-3D Complex Scene Generation via Layoutguided Generative Gaussian Splatting (ICML 2024)

What to Cover Today?

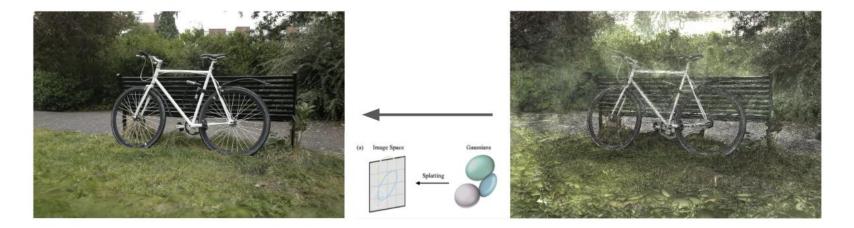
- Introduction to 3D Vision
- Part I: Traditional 3D Representation
 - Perception
 - 3D Reconstruction
- Part II: Recent 3D Representation
 - Neural Radiance Fields
 - 3D Gaussian Splatting

• Advanced Topics About NeRF & 3DGS

- Text-to-3D without 3D supervision
- 4D Gaussian Splatting

Recap 3DGS

Represent a static 3D scene by many 3D Gaussians with learnable size, position, color, etc.



How about dynamic scenes? (given videos from multiple views)

Slide credit: 陳楚融

4D-Rotor Gaussian Splatting: Towards Efficient Novel View Synthesis for Dynamic Scenes

Yuanxing Duan* Peking University China mjdyx@pku.edu.cn Fangyin Wei* Princeton University USA fwei@princeton.edu

Qiyu Dai Peking University China State Key Laboratory of General AI China qiyudai@pku.edu.cn

Yuhang He Peking University China 2100014725@stu.pku.edu.cn Wenzheng Chen[†] Peking University China NVIDIA Canada wenzhengchen@pku.edu.cn Baoquan Chen[†] Peking University China State Key Laboratory of General AI China baoquan@pku.edu.cn

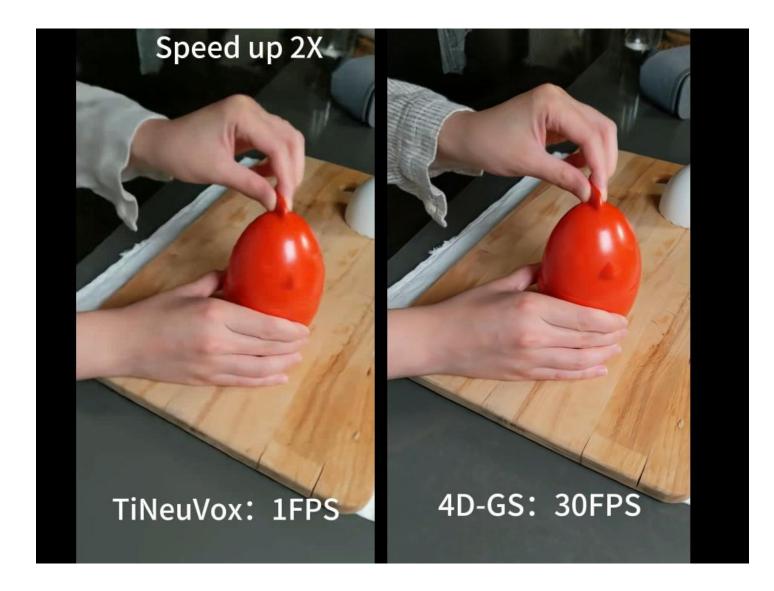
Dynamic Video Input

The Proposed Method

HyperReel [Attal et al. 2023]

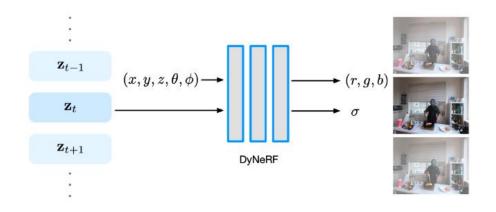
Evaluation on PSNR vs. FPS

SIGGRAPH 2024



Previous Methods using NeRF

Add additional temporal dimension or a latent vector conditioned on time to the input of MLP



Why using NeRF is not appropriate?

Slide credit: 陳楚融

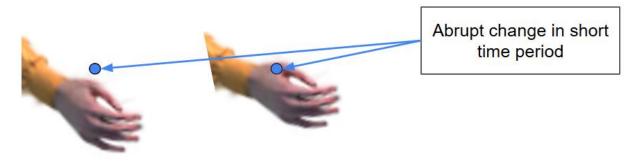
Previous Methods using NeRF

Add additional temporal dimension or a latent vector conditioned on time to the input of MLP

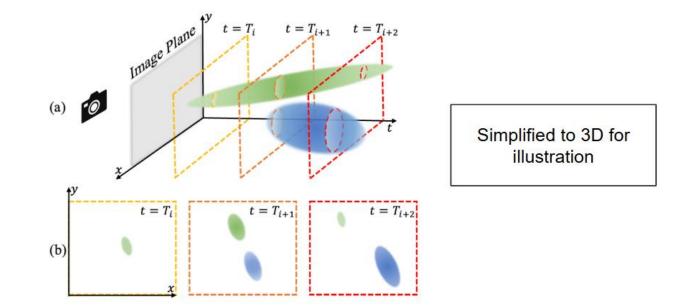
Challenges:

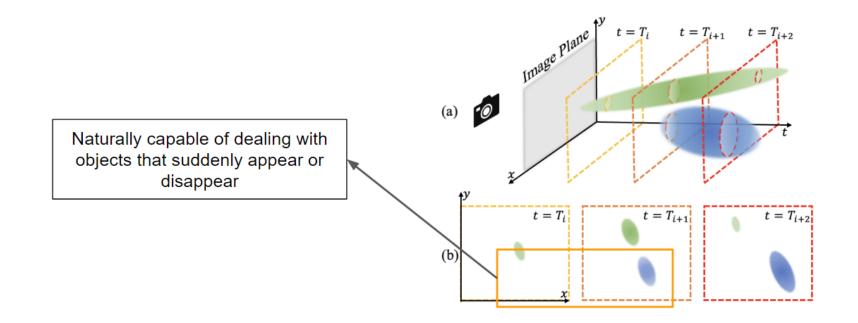
Inherited from NeRF, both training and inference are very slow

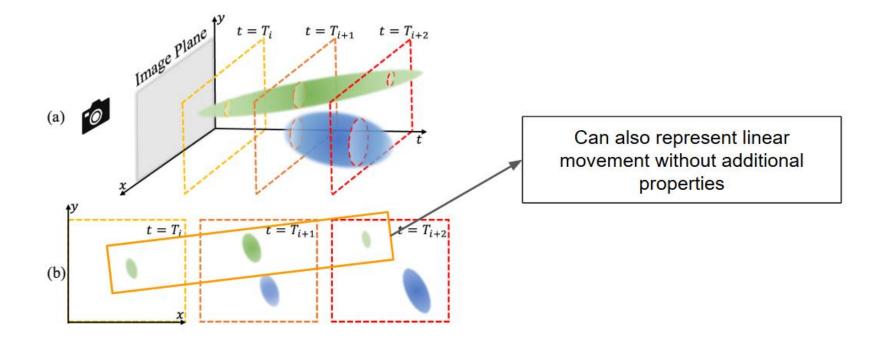
Hard to solve the complexities introduced by temporal-spatial entanglement



Directly lift 3D Gaussians to 4D space (simple and intuitive)

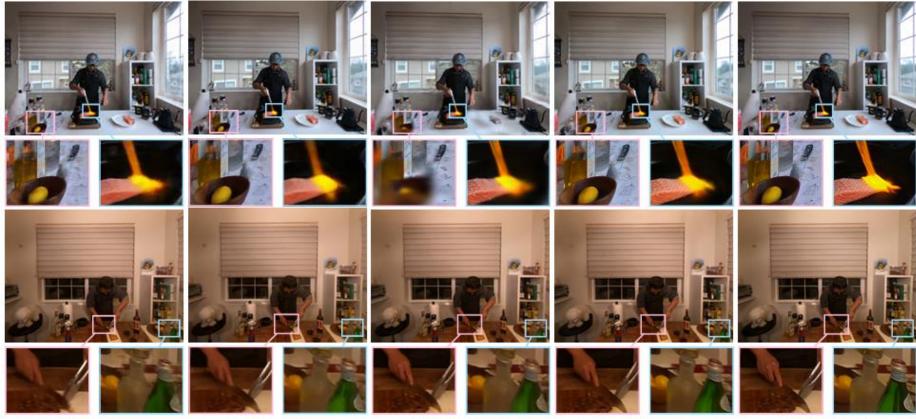






To ensure that nearby Gaussians have similar motion, the speed of close Gaussians are regularized to be close

$$L_{\text{consistent4D}} = \frac{1}{N} \sum_{i=1}^{N} \left\| \left\| \mathbf{s}_{i} - \frac{1}{K} \sum_{j \in \Omega_{i}} \mathbf{s}_{j} \right\|_{1} \right\|_{1}$$
Average speed of nearby Gaussians



HyperReel

MixVoxels

RealTime4DGS

Ours

Ground Truth

What We've Covered Today?

- Introduction to 3D Vision
- Part I: Traditional 3D Representation
- Part II: Recent 3D Representation
 - Neural Radiance Fields
 - 3D Gaussian Splatting
- Advanced Topics About NeRF & 3DGS
 - Text-to-3D without 3D supervision
 - Text-to-4D

a blue jay standing on a large basket of rainbow macarons*

