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What to Cover Today?

Introduction to 3D Vision

Part |: Traditional 3D Representation

o Perception

e 3D Reconstruction

Part Il: Recent 3D Representation

o Neural Radiance Fields
o 3D Gaussian Splatting
Advanced Topics About NeRF & 3DGS

o Text-to-3D without 3D supervision

o 4D Gaussian Splatting



What is 3D Vision?

« Enable machine to perceive and reconstruct the 3D world
which we live in.




Applications of 3D Vision

e Robotics * Augmented Reality

e Autonomous driving

References:

Boston Dynamics: https://www.youtube.com/watch?v=gvzlifK-PiU&ab channel=BostonDynamics
Ikea: https://www.youtube.com/watch?v=UudV1VdFtuQ&ab_channel=IKEA

Waymo: https://www.youtube.com/watch?v=1zZcqCfA8 k&ab channel=Waymo



https://www.youtube.com/watch?v=gvzljfK-PiU&ab_channel=BostonDynamics
https://www.youtube.com/watch?v=UudV1VdFtuQ&ab_channel=IKEA
https://www.youtube.com/watch?v=IzZcqCfA8_k&ab_channel=Waymo

How to Represent the 3D World?

o Recap: 2D representations
o RGB pixels
o Images/videos
o Why 2D vision not good enough?

m Lack of depth, scene geometry, etc. information

« What about 3D representations?



How to Represent the 3D World? (cont’d)

o Multi-view RGB-D images




How to Represent the 3D World? (cont’d)




(cont’d)

How to Represent the 3D World?
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How to Represent the 3D World? (cont’d)

Point Cloud




Deep Learning for 3D Vision

Traditional 3D Representation (Part 1)
« Perception: extract information from 3D shapes

« Reconstruction: synthesis 3D shapes

g
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What to Cover Today?

Part |: Traditional 3D Representation

o Perception
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3D Perception

e Extract information from 3D shapes for
downstream tasks

o Classification

o Object/scene segmentation

o Pose estimation "bottle on top of the bathroom vanity"

Groundin
o Object detection 8

o Groundin
5 3D bounding boxes

airplane

Classification Segmentation Detection

12



3D Perception

e In this part, we will talk about feature extraction from:

Mt view
o—lexel

o Point cloud

3D shape model
rendered with 20 rendere
different virtual cameras images
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Point Cloud

e Point cloud is a point set, representing 3D shapes
® Each point is represented by coordinates (X, y, z)

® Point cloud is stored as a Nx3 matrix (N: point number, 3: coordinates)

(xlrJ’erl_)
(x2,¥Y2,22)
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Point Cloud (cont’d)

Range = Time * LightSpeed / 2

e Point cloud can be obtained from LiDAR sensors

o Can capture scene geometry

LiDAR Scanner

( o A122 Bionic Chip-- -+ )

Augmented Reality (AR)

Reference: Robot Perception, taught by Prof. Shenlong Wang, UIUC

https://shenlong.web.illinois.edu/teaching/cs598fall21/assets/slides/lecture3 sensors.pdf 15



https://shenlong.web.illinois.edu/teaching/cs598fall21/assets/slides/lecture3_sensors.pdf

Challenges in Point Cloud

Can we directly apply CNN on point cloud?

o No, because point cloud is not grid-structured.
The shape object can be represented in different orders

Unknown shape transformation (e.g., translation, rotation...)

8@0

Mff! 8'“69&00
S®
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Limitation of CNN

e Can we directly apply CNN on 3D data?
o Well, it depends...

forward /inference

>

<
_ backward /learning

3D Representation
Multi-view images

Voxel

Point Cloud

CNN applicable?

P = | Y d
4 3
) Nl |-
] L 9g | ’
%). 3
| "
3D shape model r
rendered with 20 rendere
different virtual cameras images

N
§
ﬂ ﬂ ﬁ © 00 21
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PointNet

Goal: Point cloud classification & segmentation

l PointNet I
. ;7' mug?
T table?
car?
Classification Part Seg;mentation Semantic Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017
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PointNet

e Goal: Point cloud classification & segmentation
o Classification

Classification Network
mmputm]p(6464)feamremlp(641281024)maxm]p
El } transform :ﬁ: . transform l:: pool 1024 (512,256,k)
S by ol |3 R ke | mae e
I e e e O R ) e S e

Multi-Layer Channel-wise max-pooling
Perceptron

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017 19



PointNet

e Goal: Point cloud classification & segmentation
o Classification

e Segmentation

Classification Network

input m]p(6464)featmemlp(641281024)mlp
]
E transform :ﬁ: . transform : pool 1024 (512,256.k)
. [an]
He LT e P % deq | nx1024 g%l
| 0 eature
{.E' ' I_Iﬂ—- g —-l_l_l—' x
| N output scores
""""""""" ,*'_*M-pomtfeaturesg
T g o :
n|x 1088 haed | S | shaed | E |3
| - | g
| = 3
CH

mlp (512,256,128) mlp (128,m)

Si -gmen.fa!fon Network

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017 20



PointNet

Goal: Point cloud classification & segmentation
Classification & segmentation

Qualitative results
Point: (xyz, rgb)

Input

Output

Part segmentation Scene segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017
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PointNet

Goal: Point cloud classification & segmentation
Classification & segmentation
Qualitative results
Remarks
o Pros: extract features from unordered points
o Cons:
m Outlier/noisy point cloud data
m Cannot capture detailed geometry (global pooling)

m Might not robust to transformation like translation, scaling, rotation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017
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Extensions of PointNet

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric
Space, NIPS 2017

Dynamic Graph CNN for Learning on Point Clouds, TOG 2019
KPconv: Flexible and deformable convolution for point clouds, ICCV 2019

Convolution in the cloud: Learning deformable kernels in 3D graph
convolution networks for point cloud analysis, CVPR 2020 (VLLab @ NTU)

3D-SelfCutMix: Self-Supervised Learning for 3D Point Cloud Analysis, ICIP
2022 (VLLab @ NTU)

\ .
A ¢

”» r .“ "Té
g ol ‘ '
A !} ‘ <
4 ‘

£ |mage Point clouds

| . gm
: ' 9 L] o
e | g ’
5 o © b}
g g 9 ¢ G »

Local patch 2D Kernel Local region 3D-GCN Kernel
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What to Cover Today?

Part |: Traditional 3D Representation

e 3D Reconstruction
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3D Reconstruction

® Reconstruct 3D shapes/scenes from partial observations

O Single/multi-view images =
O Videos i i

1 H
O Incomplete point cloud | Jp—— |
O text

® In this part, we will talk about how to reconstruct

o voxets , ;_: . | -

O Point cloud

O Implicit Representation (Function) (??) W

25



FoldingNet

3D reconstruction via point cloud Input 2D grid st folding  2nd folding
(Auto Encoder)

Input: point cloud object

Output: reconstructed point cloud E

FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation, CVPR 2018
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FoldingNet

Input 2nd folding

3D reconstruction via point cloud
(Auto Encoder)

Input: point cloud object
Output: reconstructed point cloud

Decoder: concat 2D coordinates with object feature and pass to MLPs

Graph-based Encoder 3 layer 2 graph

. 2 global
input & perceptron layers

max-pooling

PointNet

> nNx12
64
|nx1024

2]
oo [1355 concatenate
o]

iUb d
covarianc replicate

Folding-based Decoder :
m times

concatenate
3 layer l 3 layer
i perceptron mx3 perceptron —5
outpu ) intermediate : g :
: - <— nokilictoud 2D grid points (fixed)
2nd 1st
folding folding

FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation, CVPR 2018
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FoldingNet

2nd folding

3D reconstruction via point cloud

Input: point cloud object
Output: reconstructed point cloud

| -
Loss function: Chamfer distance What if only one-sided"

den(PG) = IP\ me\lp all + g Zminllg—pll

A
prediction ground truth g& Q
®
min % )
dlstanc ./. min
distance

. prediction (P) \ prediction (P)
groun truth (G) .._. groun truth (G) ._..

1‘\. g.‘\.

FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation, CVPR 2018
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FoldingNet

Input 2nd folding

e 3D reconstruction via point cloud

e Input: point cloud object
e Output: reconstructed point cloud

e Example results

Input 5K iters 10K iters 20K iters 40K iters 100K iters 500K iters 4M iters

Table 2. Illustration of the training process. Random 2D manifolds gradually transform into the surfaces of point clouds.

FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation, CVPR 2018 29



Extensions of FoldingNet

Point Cloud completion: complete partial point clouds
e PCN: Point Completion Network, 3DV 2018
o VRCNet: Variational Relational Point Completion Network, CVPR 2021

e PoinTr: Diverse Point Cloud Completion with Geometry-Aware
Transformers, ICCV 2021

e Variational Transformer for Dense Point Cloud Semantic Completion,
NeurlPS 2022 (VLLab @ NTU)

Partial PCN PMPNet++ PoinTr VRCNet Ours GT

X
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Implicit Representation

e Represent shapes as “function”

e Tell us whether a point is on the surface

Q: Are these points on the
circle?

(0, 1)

(1,0)

(1, 1)

(0,0)

v

2D circle

31



Implicit Representation

Represent shapes as “function”
Unit sphere: f(x,y,z) = x* + y? + z?> — 1

o Surface is the solution setof f(.) =0

Point cloud Mesh

x*P+y* 42722 =1

Implicit function

32



Occupancy Network

Shape is a function that determines a point is inside/outside of it

(a) Voxel (b) Point (c¢) Mesh (d) Ours

Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019
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Occupancy Network

o Make model learn to predict occupancy at every possible 3D point p € R3
e Think of occupancy function as a “classifier”

e Condition on object feature X

fo :R® x X —[0,1]

Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019 24



Signed Distance Function

Make model learn to predict distance to surface at every possible 3D
pointp € R3

Think of signed distance function as a “regressor”

Condition on object feature X

8 Decision
___ boundary
e of implicit

: surface

TR | e o
e SDF>0
o‘\" ¢

fﬁ' R x X — [R] N

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR 2019
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Extension on Signed Distance Function

SDFusion (CVPR 2023)

e Train an Auto Encoder for SDF (input voxel)

Input Encoder Decoder

o Decision
< boundary

surface
.

o .
¢ SDEF >0
* .

@ SDF<0 "

e«  of implicit

Output

Inupt: Voxel SDF

Render mesh
from SDF

SDFusion: Multimodal 3D Shape Completion, Reconstruction, and Generation, CVPR 2023

—
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Extension on Signed Distance Function

SDFusion (CVPR 2023)
e Train an Auto Encoder for SDF (input voxel)
e Train a conditional LDM for latent vector z (text or image)

Input Encoder (T-1) x C Denoise m
<S>
‘ z Zr z
| ’l E Diffusion Attn | = | Attn L
2 @ process
. €
Condition . — /

™, Dropout

I Skip
rm - ® (oncat. - connection
“a bncﬁ: Task Denoising
h encoders 3D UNet
DH.S'E _}

SDFusion: Multimodal 3D Shape Completion, Reconstruction, and Generation, CVPR 2023
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Extension on Signed Distance Function

SDFusion (CVPR 2023)
e Train an Auto Encoder for SDF (input voxel)

e Train a conditional LDM for latent vector z (text or image)

Input Encoder

"
L e

Condition

(T = 1) x Cl Denoise Decoder

g

S =

Dropout

“a brick U
9 house

® Concat.

-
Task Denoising
encoders 3D UNet

. ” Decision

__ boundary

» of implicit

L surface
L ] L

¢ SDF >0

(@) SDF'{: 0 ’

Output

Skip
connection

SDFusion: Multimodal 3D Shape Completion, Reconstruction, and Generation, CVPR 2023
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Recap: Diffusion model (intuitively)

O

U-Net model

Pext 1|Xt
@H —@®@ O

xt|xt 1)

Pre-defined process
(adding noise)

e Can be viewed as denoising from a Gaussian noise image

e Each step makes little progress of denoising (total about 1000 steps)

e Output image of each step can be seen as the original image combining with
a noise using specific ratio

e The process can also be seen as predicting the added noise

39
DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION



Implicit Representation (Occupancy, SDF)

Strength
o Flexible shape topology

e Arbitrary resolution

Input Output Input Output
o Few model parameters d . £ P
» » 3
Weakness ‘ 3 \ -
e Require post-processing to get mesh t V & ‘
e Cannot handle complex scene “a somewhat circular chair”

TEFrY

“a round table with two surfaces”

40



Extensions of Occupancy, SDF

Text-to-3D Generation
o Diffusion-SDF: Text-To-Shape via Voxelized Diffusion (CVPR 2023)

o Diffusion-SDF: Conditional Generative Modeling of Signed Distance
Functions (CVPR 2023)

o Learning Shape-Color Diffusion Priors for Text-Guided 3D Object
Generation (accepted to TMM 2024 Sept.)(VLLab @ NTU)

o GraphDreamer: Compositional 3d scene synthesis from scene graphs
(CVPR 2024)

two leg table — TS )
having black .\ change color  the top is
—> SCDiff — = purple and —» SCDiff —

legs and

white top : \' lr: legs are grey
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What to Cover Today?

Part |I: Recent 3D Representation

Neural Radiance Fields

(@)

42



Recap:
Neural Networks as a Continuous Shape Representation

o8 Decision
__— boundary

Deep SDF e
(Park et al. 2019) o
(x,y,z) -> distance

Occupancy Networks
(Mescheder et al. 2019)

+ SDF >0
(x,y,z) -> occupancy o

(a) SDF <0 *

Pros: Compact and expressive parameterization

Cons: Limited rendering, difficult to optimize

Slide credit: Jon Barron, cs598dwh
43



NeRF:

Representing Scenes as
Neural Radiance Fields for
View Synthesis

Many slides from Jon Barron and cs598dwh (UIUC)

Ben Mildenhall* Pratul Srinivasan* Matt Tancik* Jon Barron

UC Berkeley UC Berkeley UC Berkeley Google Research UC San Diego UC Berkeley
g g 0> . s
fil Google @l Google é%‘(g Google  UCSanDiego fﬁ%’%

Slide credit: cs598dwh

NeRF: Representing Scenes as Neural Radiance Fields for 44
View Synthesis, ECCV 2020




Problem: Novel view synthesis (NVS)

Inputs: sparsely sampled images of a scene Outputs: new views of the same scene
tancik.com/nerf

. _ _ Slide credit: Jon Barron
NeRF: Representing Scenes as Neural Radiance Fields for 45

View Synthesis, ECCV 2020



NeRF (Neural randiance field)

e Goal: learn 3D representation, and perform novel view synthesis
* Input: multi-view images + camera poses

e Output: 3D representation (neural radiance field)

Input Images Optimize NeRF Render new views
TAw AR &Ry
AN TS

FAXIEFEE L0 S -

RN RIES il R .

P RE T RN — € et .-.".,’ 5 ©

SRAREE ST 9 @ e ©
¥lerergetEd o SR T o
THILUFEF I ES «é"f .

SR oA 8 | L BB
2E YRS 2.

NeRF: Representing Scenes as Neural Radiance Fields for 46

View Synthesis, ECCV 2020



Generate views with traditional volume rendering

. _ _ Slide credit: Jon Barron
NeRF: Representing Scenes as Neural Radiance Fields for

View Synthesis, ECCV 2020 4



NeRF (Neural randiance field)

('CB? y7 Z7 07 ¢) *III*(T7 g7 b? 0-)
—— ——
F

Spatial Viewing Output Output

location direction color density
Fully-connected neural network
9 layers,
256 channels

. _ _ Slide credit: Jon Barron
NeRF: Representing Scenes as Neural Radiance Fields for

View Synthesis, ECCV 2020
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Generate views with traditional volume rendering

Rendering model for ray r(t) = o + td:

N
('~ E Tiozicz-

1=1 \

colors

Ray

weights

e How much light is blocked earlier along ray: 4
volume

1—1

Ti = H(l — Oéj)

=1

Camera
e How much light is contributed by ray segment i:

0. 5t -Density * Distance Between Points
— 00t —
a; =1 —e 77
Slide credit: Jon Barron
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Optimize with gradient descent on rendering loss

(]
Y Y ®
540 R
‘s Vel
3 o ’ LU ) i Y
‘e y 1 ' e o1
wl-
¥

\

j der; (Fy) — L||?
melnzi:Hren er; (Fp) |

“\0~ : j a_"‘

5\
7

Slide credit: Jon Barron

NeRF: Representing Scenes as Neural Radiance Fields for 50
View Synthesis, ECCV 2020



Training network to reproduce all input views of the scene

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss

(x.3,2,6,0) —>|][[|—> RGBo) \
ay 1 o,
%o’”ai

. . , Slide credit: Jon Barron
NeRF: Representing Scenes as Neural Radiance Fields for 51

View Synthesis, ECCV 2020



Can we allocate samples more efficiently?
--Two pass rendering

Ray

3D volume

‘ Camera
Slide credit: Jon Barron

NeRF: Representing Scenes as Neural Radiance Fields for 52
View Synthesis, ECCV 2020



Two pass rendering.coarse network

* Sparsely sample points along ray

* Serve as a coarse guidance Ray

3D volume

treat weights as probability
distribution for new samples

'Camera

NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis, ECCV 2020

Slide credit: Jon Barron
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Two pass rendering:fine network

* Use the coarse predicted density to
resample new points along ray Ray

e Together compute all N_ + N points to
calculate final color for fine network

3D volume

N, =128

treat weights as probability
distribution for new samples

‘Camera

. 2 o 2
Ce(r) = ()| + Hcf(r) — ()

2} (coarse + fine)

. _ _ Slide credit: Jon Barron
NeRF: Representing Scenes as Neural Radiance Fields for 54

View Synthesis, ECCV 2020



Two pass rendering: optimization

Ray

e Optimize coarse network and fine network
together

e Only use the prediction of fine network
when rendering a hew scene

¢1mera

£=3" h Coe) - )+ 6] - C’(“)Hz]

(coarse + fine)

relR
predicted color predicted color
from coarse from fine
network network

. _ _ Slide credit: Jon Barron
NeRF: Representing Scenes as Neural Radiance Fields for 55

View Synthesis, ECCV 2020



Positional encoding

NeRF (Naive)

NeRF (with positional encoding)

Slide credit: Jon Barron

NeRF: Representing Scenes as Neural Radiance Fields for

View Synthesis, ECCV 2020
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Positional encoding

input signal
(position,
direction)

Naive

sin(v), cos(v)
sin(2v), cos(2v)

sin(4v), cos(4v)

sin(2X1v), cos(2F71v)

Positional encoding

. _ _ Slide credit: Jon Barron
NeRF: Representing Scenes as Neural Radiance Fields for 57

View Synthesis, ECCV 2020



Network Structure

independent from input

direction
Input
position /
s Predicted
© Density
N o
Input
position
7(x)
. —> —> —> —> —> —> 7 g "-).
(L = 10 for
positional
posiona (-Td ) Predicted
Y
lor
(L =4 for 24 P
positional Input
encoding) | direction

. . . Slide credit: Jon Barron
NeRF: Representing Scenes as Neural Radiance Fields for 58

View Synthesis, ECCV 2020



Viewing directions as input

e The specular reflection (or other changes influenced by lighting)
varies across different views

(b) View 2 | (c) Radiance Distributions

. _ _ Slide credit: Jon Barron
NeRF: Representing Scenes as Neural Radiance Fields for

View Synthesis, ECCV 2020
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Viewing directions as input

® The rendered color changes as the viewing direction
® |:image plane change with viewing direction
® R:fixing image plane while the viewing direction feeded to NeRF changes

NeRF: Representing Scenes as Neural Radiance Fields for 60
View Synthesis, ECCV 2020



Viewing directions as input

e Another example

NeRF: Representing Scenes as Neural Radiance Fields for 61
View Synthesis, ECCV 2020



C;

|

e The predicted density indicates the object surface d.
e The estimated depth perfectly shows :
the geometry of foreground object

. . N
Depth (geometry) Estimation O ~ ZTM
1=1

Distance from the points to camera

NeRF: Representing Scenes as Neural Radiance Fields for 62
View Synthesis, ECCV 2020



Depth (geometry) Estimation

e Another example

NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis, ECCV 2020

LS T

¢ * -
irvve ',’. .
QP HTA RS

....\.;. .-. L
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Depth (geometry) Estimation

e By correctly estimate the depth of the scene, virtual objects are
possible to interact with the real scene

- ...'

®

NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis, ECCV 2020
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NeRF: strength & weakness

Strength
* Photo-realistic texture

* Do not require 3D ground truth
* View-dependent effect

Weakness
» Only fit single scene
« Require much posed images

« Time-consuming rendering (30s per frame)
<- Fatal for real-time applications !!
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Extensions of NeRF

NeRF Acceleration, Generalization

Fourier Features Let Networks Learn High Frequency Functions in Low
Dimensional Domains (NeurlPS 2020) -> explain why positional
encoding works

pixelnerf: Neural radiance fields from one or few images (CVPR 2021)

KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny
MLPs (ICCV 2021)

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
(SIGGRAPH 2022)

NeurMiPs: Neural Mixture of Planar Experts for View Synthesis (CVPR
2022) (VLLab @ NTU)

Direct voxel grid optimization: Super-fast convergence for radiance
fields reconstruction (CVPR 2022)

GSNeRF: Generalizable Semantic Neural Radiance Fields with
Enhanced 3D Scene Understanding (CVPR 2024) (VLLab @ NTU)
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What to Cover Today?

Part |I: Recent 3D Representation

@)

@)

3D Gaussian Splatting



3D Gaussian Splatting
for Real-Time Radiance Field Rendering

SIGGRAPH 2023

(ACM Transactions on Graphics)

* 1,2 1,2

Bernhard Kerbl™ 12 Georgios Kopanas Thomas Leimkiihler?  George Drettakis
" Denotes equal contribution

Ninria 2Université Cate d'’Azur 3MPI Informatik

c UNIVERSITE :7¢+. TER[DEE
1&2’21562.-—- 2COTED’AZUR - ? 3::?&.':3::&1\!.\‘..'.”.

48n
MipNeRF350

27.11
MipheRESEO 5 4 1|

SSIM PSNR FPS Train

3D Gaussian Splatting for Real-Time Radiance Field Rendering Link


https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

How to make renderings faster?

e Borrow the idea from point cloud
o Can be super fast using rasterization for rendering
o Only preserves regions containing objects

https://www.linkedin.com/pulse/structure-from-motion-manish-joshi/
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https://www.linkedin.com/pulse/structure-from-motion-manish-joshi/

Method — When old meets new

NeRF Gaussian Splatting

Ray Tracing

For F{E1G = (B1E548) For & {E 48
For S {E 45 For B{EIR %
HET B4R R TIED e i MBEEREEGE

*EARITEDME FEASRINMENEE

EERFESIREER MMEEXEER
b))
!

Slide credit: Al 218

3D Gaussian Splatting for Real-Time Radiance Field Rendering Link
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https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Method — When old meets new

NeRF Gaussian Splatting

Ray Tracing

For B{AG % (BRH4R) For &{E ¥R

For & {ERE For FHER %=
e S L B HIKE MEE R B EEIRE

Ray Tracing Rasterization

GIFRUN.COM GIFRUN.COM

Slide credit: Al HZ 18
71
3D Gaussian Splatting for Real-Time Radiance Field Rendering Link


https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Method — When old meets new

—O'i5ti

Camera C ~ T:o;c; T, = (1- aj)
i=1 =1

a;, =1—e€

For NeRF-based methods, despite there are only four primitives, they still require
intensive samples in empty space

Slide credit: fE#E Y
72
3D Gaussian Splatting for Real-Time Radiance Field Rendering Link


https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Method — When old meets new

d

N

Camera

Transmission:

e

’ a2 a3 a4
0.3 0.2 0.1 0.4
T1=1 T2=T1(1-a1) T3 =T2(1-a2) T4 =T3(1-a3)
1.0 0.7 0.56 0.504
N=4 N i1
=) Touci= Y cios [[1-a; a; = G(x2p) - 0;
i=1 j=1

For Rasterization, only 4 times of calculation for 4 object surface encountered

3D Gaussian Splatting for Real-Time Radiance Field Rendering Link

Slide credit; fEZEFH
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https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

How to make renderings faster?

e Borrow the idea from point cloud
o Can be super fast using rasterization for rendering
o Only preserves regions containing objects

Points are too sparse !! (no volume)

How to make it work??

https://www.linkedin.com/pulse/structure-from-motion-manish-joshi/
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https://www.linkedin.com/pulse/structure-from-motion-manish-joshi/

Method — How to solve sparsity problem of point cloud?

Recall Gaussian distribution

G(x — ) = exp (—%(x ) (x - n))

u is the mean, ¥ is the covariance matrix

Resemble ellipsoid

{x)d

Slide credit: FRZE 7Y
3D Gaussian Splatting for Real-Time Radiance Field Rendering Link
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https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Method — How to solve sparsity problem of point cloud?

Use numerous 3D Gaussians distributed in the space, each having volume,
direction and color

— Solve the discontinuity problem of point-based method

(a) Image Space Gaussians
/" 1 —
e G(x — p) = exp (—g(x—#)TZ l(x—u))
Splatting
A — mean, covariance, color, opacity
/

Slide credit: fE# Y
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https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Method — When old meets new

e Structure from Motion:
o from multi-view image to sparse point cloud

SfM Points

—_—

Initialization

Camera

3D Gaussians

ST e

Sparse model of central Rome using 21K photos produced by COLMAP’s SfM pipeline.

Projection

Adaptive
Density Control

\

Differentiable
Tile Rasterizer

Image

‘ —» Operation Flow

—p CGradient Flow

We start with a set of cameras and a point cloud
provided by Structure from Motion during calibration.

3D Gaussian Splatting for Real-Time Radiance Field Rendering Link
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https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Method ,
Overview of our Method

Camera | —p
- /' Projection N
® e - ; i :
I K Differentiabl —_
° —» | Initialization ||—» ,l elentn‘)e < Image
° Tile Rasterizer —
- ) Adaptive A
SfM Points 3D Gaussians Densi }C ol
ensity Contro ‘ — Operation Flow — Gradient Flow

densify/pruning

Next, we optimize the set of 3D Gaussians to
represent the scene

e The whole Gaussian Splat model have N Gaussians
® Dynamically adjust by densify/pruning

e Each 3D Gaussians composed of four parameters:
® position (X, Y, 2),
® covariance (how it’s stretched/scaled: 3x3),
® color (RGB)
® alpha (density)
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https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Method

SfM Points

—

Overview of our Method

Initialization

Camera

o~

-_
-

—_—

3D Gaussians

!

Projection

Adaptive
Density Control

N/

Differentiable
Tile Rasterizer

Image

—» Operation Flow

—p Gradient Flow

3D Gaussian Splatting for Real-Time Radiance Field Rendering Link

Finally, we render transparent anisotropic Gaussians and
backpropagate the gradients to their properties.



https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Result

e The render results

3D Gaussian Splatting for Real-Time Radiance Field Rendering Link
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Result

e The render results if we set all 3D gaussians’ alpha to 1, without transparency.

2 A #L
T Ay S /
N Y _¥"
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Result

e Better visual quality with order of magnitude rendering speed difference.

Dataset Mip-NeRF360 Tanks&Temples Deep Blending

Method|Metric | SSIMT  PSNR' LPIPS!  Train FPS Mem | SSIM! PSNR! LPIPS! Train FPS Mem | SSIMT PSNR! LPIPS! Train FPS Mem

Plenoxels 0.626 23.08 0463  25m49s 679 2.1GB | 0.719 21.08 0379  25m5s 13.0 23GB | 0.795 23.06 0510 27md49s 112 2.7GB
INGP-Base 0.671 2530 0.371 5m37s 117 13MB | 0.723 21.72 0330  5m26s 17.1 13MB | 0.797 23.62 0423  6m3ls 3.26 13MB
INGP-Big 0.699 25.59 0.331 7m30s 943 48MB | 0.745 21.92 0305  6m59s 144 48MB | 0.817 24.96 0.390 8m 2.79  48MB
M-NeRF360 07927 | 27697 02377 48h 006 86MB | 0.759 22.22 0.257 48h 0.4 86MB | 0.901 29.40 0.245 48h  0.09 8.6MB
Ours-7K 0.770 25.60 0.279  6m25s 160 523MB | 0.767 21.20 0.280  6m55s 197 270MB | 0.875 27.78 0317  4m35s 172 386MB
Ours-30K 0.815 27.21 0.214  41m33s 134 734MB | 0.841 23.14 0.183 | 26m54s 154 411MB | 0.903 29.41 0243  36m2s 137 676MB

Ground Truth i InstantNGP Plenoxels

3D Gaussian Splatting for Real-Time Radiance Field Rendering Link


https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Pros and Cons

NeRF Gaussian Splatting

Ray Tracing

Quality +BR7E
(RAEKRRARRAEE—H )

HE - RRILEEE

[R5t~ Gt~ BB% ~ B

1=

BELITRE
ok

Slide credit: Al 218

3D Gaussian Splatting for Real-Time Radiance Field Rendering Link
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Extensions of 3DGS

o Relightable 3D Gaussians: Realistic Point Cloud Relighting with BRDF
Decomposition and Ray Tracing (ECCV 2024)

e Gaussian Grouping: Segment and Edit Anything in 3D Scenes (ECCV
2024)

Rendering

F N
i. 9

(a) Rendered Views (b) Rendered Anything Masks g
4




What to Cover Today?

@)
(@)

Advanced Topics About NeRF & 3DGS

o Text-to-3D without 3D supervision

©)
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DREAMFUSION:
TEXT-TO-3D USING 2D DIFFUSION

Ben Poole |+ Ian Jonathan T. Barron Ben Milden *| ll
Google Research I C Berkele -.’jo:grzﬁca-;‘.-a’;." Google Researc

2023 ICLR

https://dreamfusion3d.qgithub.io/

DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION


https://dreamfusion3d.github.io/

Goal

an orangutan making a clay bowl on a throwing wheel*

a raccoon astronaut holding his helmet

a blue jay standing on a large basket of rainbow macarons*

e Take description as input and generate corresponding 3D results
(via 2D rendering)

e \Without paired “text and 3D object”

e Combining NeRF and 2D text-to-image diffusion model

87
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Recap: Diffusion model (intuitively)

O

U-Net model

Pext 1|Xt
@H —@®@ O

xt|xt 1)

Pre-defined process
(adding noise)

e Can be viewed as denoising from a Gaussian noise image

e Each step makes little progress of denoising (total about 1000 steps)

e Output image of each step can be seen as the original image combining with
a noise using specific ratio

e The process can also be seen as predicting the added noise

88
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Method

vector from light source

"a DSLR photo of a
peacock on a surfboard" [magen

2,1 ~ U(0,1) 2o (zely;t)

rendering

+

P(camera)

random chosen
NeRF MLP(-; 0) Backpropagate onto NeRF weights

color ¢

€s(2ely;t) — €

e The left part is a standard NeRF with shading condition

e Combine the rendered NeRF image with random noise to simulate a state of
the text-to-image diffusion model

e The difference between the predicted noise and the inserted noise is treated
as the rendering loss to guide NeRF
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Result

x

a corgi taking a selfie*® a table with dim sum on it"

s A i

Michelangelo style statue of dog reading news on a cellphone a tiger dressed as a doctor* a steam engine train, high resolution*

Sydney opera house, aerial view

a frog wearing a sweater* a humanoid robot playing the cello*
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@
%

a chimpanzee dressed like Henry VIII king of England*

a robot and dinosaur playing chess,

zoomed out view of Tower Bridge made out of gingerbread and candy high resolution* a squirrel gesturing in front of an easel showing colorful pie charts
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Result

a DSLR wearing riding a on a road
photo of a leather ~ motorcycle - made of ice

THR
PR

by
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rsity

TPA3D: Triplane Attention for Fast
Text-to-3D Generation

Project page

'National Taiwan University, 2NVIDIA

Sheng-Yu Huang' Yu-Chiang Frank Wang!2
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https://redxouls.github.io/TPA3D/

Task

e Text-to-3D generation with detailed descriptions

Input detailed descriptions

a black sports car with a red stripe  The chair is made of wood and
down the middle of the hood. has a green seat.

TPA3D

= o

Output 3D shapes

ek MEi—Rh

Slide credit: 2t




Motivation

e Lack of supervision: Need large 3D dataset with paired detailed descriptions
e Lack of detailed: Omitted details for the texture and geometry in the text prompt

ared car

a white chair with

rounded back and wooden legs
95
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Problem Settings

e Achieve text-guided 3D generation without human-annotated text-3D pairs

Input Output
. R
raining \‘:f’/ —
2D Rendering (RGB) RGB + Silhouette
Testing “A red sports car ”

Slide credit: =i/t
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Methods

e Model overview

* -

** InstructBLIP
™

' cLIP

S(Lreal)—| text

"a futuristic-looking oncoder

sports car. It is red and
has white wheels."

Slide credit; 2ttt
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Methods

e Pseudo caption generation

Q I real

|

% InstructBLIP

l
S (I real )___’
"a futuristic-looking

sports car. It is red and
has white wheels."

Slide credit; 2ttt
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Pseudo Caption Generation InstructBLIP &

paper link

e Given prompt: “In the image, the background is black. Describe the design

|”

and appearance of the {category} in detali
e Remove redundant information

a yellow sports car with a black the chair is made of wood a 1950s-style Harley Davidson.

stripe down the middle of its body. and has a brown leather seat. It has a red and white color scheme.

Slide credit; 2ttt
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https://arxiv.org/abs/2305.06500

Methods

e Encode text prompt to word-level features & sentence-level features

* InstructBLIP

!
S ( I real )—’
"a futuristic-looking

sports car. It is red and
has white wheels."
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Encode Text Features

e CLIP (Contrastive Language-Image Pretraining)
e Word-level: second-last layer of VIT
e Sentence-level: after projection

pepp}ar the Text
uuuuuu pup Encoder 1 ] 1 1
T T Tz TN
— 1 LT, LT, IT I, Ty
I, I R L e Py
— M
o
% i Image —_—
"‘ Image i IpT, I3T, Igpf; - I,
4 i'
S § IyT, IyT, IyTg IyTy
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https://arxiv.org/abs/2103.00020

Methods

e Generate triplane features

: i fi
TPAgeo | TPAgeo ... TPAgeo [r...—{ TPAgeo [—— a&i
.‘zgm : : : o

. : ﬁ -G : !
TPA, A TPA: s TP . TPA —»Q N
1 S 1 F 3
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Triplane Features

e Use 2D planes to learn 3D features (efficient)

Position Direction /1 \74\
| A AT
= Z___ N
Position il |
/A | L |} Position ™,
P s ey
rff ny‘\\ FXZ/"‘/’/FYZ
| &
T v ?
Density Color Density Color Density Color
(a) NeRF (Implicit)  |(b) Voxels (Explicit or Hybrid) (c) Ours (Hybrid)  ref: EG3D
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https://arxiv.org/abs/2112.07945

Methods

e Generate sentence-level triplane features

- z
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Slide credit; 2ttt



Methods

e Generate word-level triplane features

* * i fi g
TPAgeO > TPAgeo _;"..._) TPAgeo _;_“..._" TPAgeO _;_’ - N
f f N o :
—
—
tw
| i | oy l s t
TPAtex | TPAtex [ TPAtex [->... TPAtex [ I
T T fia 1 i 1
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Triplane Attention Block (TPA Block) A@fﬂw

e Plane-wise Self-Attention

o Intra-plane consistency
o Extract plane-wise content features

e Cross-Plane Attention
o Inter-plane connectivity
o Ensure multi-aspect correspondence
across different planes

e Cross-Word Attention
o Word-level refinement
o Incorporate word-level information
into triplane features

Refinement with Cross-Word TP A
Word Features Attention {geo,tex}
A [ A (g,t)
v K fivq
concat shared weights
[ 1 AN
[ | P

Triplane-Feature [ i

Consistency & Connectivity [ [

f_(g’t} Yy A A
i,p v k |[q

Plane-wise
Self-Attention

F 3

g ae e

ORI 0 I £ i N £V P v
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Methods

e Predict SDF values, deformations, and colors

TPAgeo

>
1

TPAgeo ...

fia

—

TPAgeo ...

TPAtex | TPAtex [ ---

i

1

— TPA s

f it— 1 T

\ g
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Training Objectives

e Text-guided discriminators

o Use camera pose & text features as condition
o On both rendered RGB images & silhouette masks

e Mismatching loss
o Use negative pairs to increase discriminative ability

e CLIP loss

o  CLIP similarity score

,C p— £(.Drgb, G) _I_ E(Dmask7 G) + £1’I118 —l_ ['clip
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Experiments

e Qualitative comparison

DreamFusion

Magic3D

Ours (TPA3D)

4 s -
M,

Fig. 6: Qualitative comparisons with SDS-based methods. Each column takes a
unique text prompt of (a)“a yellow sports car with red wheel and tinted window”, (b)“a
white SUV with a blue police light on top of it”, (c)“the chair has a|red seatland yellow

legs”, (d)“a black office chair with a blue seat”; (e)“a red bicycle withlyellow pedals]
and (f)“a|green and white| dirt bike”.

?
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Experiments

Inference time comparison

Method Device Output Time

DreamFusion [40] TPUv4 machine Rendering 90 min
Magic3D [31] NVIDIA A100 x8 Rendering 40 min
TITG3SG [32] Telsa V100-32G Voxel 2.21 sec
TAPS3D |[55] Telsa V100-32G Rendering 0.05 sec
TAPS3D |[55] Telsa V100-32G Mesh 1.03 sec
Ours (TPA3D) Telsa V100-32G Rendering 0.09 sec
Ours (TPA3D ) Telsa V100-32G Mesh 2.87 sec

Slide credit; 2ttt
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Experiments

e [nterpolation

R R 50 i 9l u

“ared SUV" <

A

"a wooden chair' <

"a green dirt bike" < » "a black bicycle”
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Slide credit; 2ttt



Experiments

e Incremental manipulation

"and purple with a
yellow headlight"

EEr

I . " " . with rounded back  with rounded back
with linen seat with white cushion  with rounded back T T— afid whitecushion

112

motorbike is white + "and purple"

a wooden chair +

Slide credit; 2ttt



More references about further topics of 3D
supervision-free text-to-3D

Magic3D: High-Resolution Text-to-3D Content Creation (CVPR 2023)
MVDream: Multi-view Diffusion for 3D Generation

TAPS3D: Text-Guided 3D Textured Shape Generation From Pseudo
Supervision (CVPR 2023)

LucidDreamer: Towards High-Fidelity Text-to-3D Generation via
Interval Score Matching (CVPR 2024)

GALA3D: Towards Text-to-3D Complex Scene Generation via Layout-
guided Generative Gaussian Splatting (ICML 2024)
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What to Cover Today?

@)

« Advanced Topics About NeRF & 3DGS

O

o 4D Gaussian Splatting
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Recap 3DGS

Represent a static 3D scene by many 3D Gaussians with learnable size, position,
color, etc.

(a)  Image Space Giaussian

.
—
Splatting
- ¥,

How about dynamic scenes? (given videos from multiple views)

Slide credit; fFEZEFH
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4D-Rotor Gaussian Splatting: Towards Efficient Novel View
Synthesis for Dynamic Scenes

Yuanxing Duan’ Fangyin Wer’ Qiyu Dai
Peking University Princeton University Peking University
China USA China
mjdyx@pku.edu.cn fwei@princeton.edu State Key Laboratory of General Al
China
qiyudai@pku.edu.cn
Yuhang He Wenzheng Chen’ Baoquan Chen’
Peking University Peking University Peking University
China China China
2100014725@stu.pku.edu.cn NVIDIA State Key Laboratory of General Al
Canada China
wenzhengchen@pku.edu.cn baoquan@pku.edu.cn

frames per Second (FPS)
0.01 o1 1 10 100 1000
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Ours
°
s .
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| NeRFPl.“er k<) z
=T K-Planes Hyp«:ﬂeel >
RealTimedDGS | 5
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. DyNeRF 2
- ¥
. 3

DeformdaDGS

S(reszF

Evaluation on PSNR vs. FPS

SIGGRAPH 2024
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Speed up 2X«

TiNeuVox: 1FPS™ 4D-GS: 30FPS

https://guanjunwu.qgithub.io/4dgs/ 117



https://guanjunwu.github.io/4dgs/

Previous Methods using NeRF

Add additional temporal dimension or a latent vector conditioned on time to the
input of MLP

Zy—
(CII, Y, z, 0, ¢)_’

Zy

Zt41

Why using NeRF is not appropriate?

Slide credit; [R5
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Previous Methods using NeRF

Add additional temporal dimension or a latent vector conditioned on time to the
input of MLP

Challenges:
Inherited from NeRF, both training and inference are very slow

Hard to solve the complexities introduced by temporal-spatial entanglement

Abrupt change in short
time period

Slide credit; FEZE RN
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Methods: 4D GS

Directly lift 3D Gaussians to 4D space (simple and intuitive)

Simplified to 3D for
illustration

Slide credit; [R5
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Methods: 4D GS

Naturally capable of dealing with
objects that suddenly appear or
disappear

-
—— - )

N\ =~
*
*
hY
b
o+

”

T L L L T ———

(b)\

Slide credit; fFEZEFH



Methods: 4D GS

Can also represent linear
movement without additional
properties

Slide credit; [R5
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Methods: 4D GS

To ensure that nearby Gaussians have similar motion, the speed of close
Gaussians are regularized to be close

N

Lconsistenth :% Z — 7= Z S j

=1 369

~

Average speed of nearby Gaussians

Slide credit; fFEZEFH
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HyperReel MixVoxels RealTime4DGS Ours Ground Truth

Slide credit; fFEZEFH
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What We’ve Covered Today?

Introduction to 3D Vision

Part |: Traditional 3D Representation
Part |I: Recent 3D Representation

o Neural Radiance Fields

o 3D Gaussian Splatting
Advanced Topics About NeRF & 3DGS

o Text-to-3D without 3D supervision

o Text-to-4D

% . e ! S ——“-‘ ‘ ;,,,7 S
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a blue jay standing on a large basket of rainbow macarons*




