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What to Cover Today?

● Introduction to 3D Vision

● Part I: Traditional 3D Representation

● Perception

● 3D Reconstruction
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○ 3D Gaussian Splatting

● Advanced Topics About NeRF & 3DGS

○ Text-to-3D without 3D supervision

○ 4D Gaussian Splatting
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What is 3D Vision?

● Enable machine to perceive and reconstruct the 3D world 
which we live in.
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Applications of 3D Vision
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● Robotics • Autonomous driving • Augmented Reality

References:
Boston Dynamics: https://www.youtube.com/watch?v=gvzljfK-PiU&ab_channel=BostonDynamics

Ikea: https://www.youtube.com/watch?v=UudV1VdFtuQ&ab_channel=IKEA

Waymo: https://www.youtube.com/watch?v=IzZcqCfA8_k&ab_channel=Waymo

https://www.youtube.com/watch?v=gvzljfK-PiU&ab_channel=BostonDynamics
https://www.youtube.com/watch?v=UudV1VdFtuQ&ab_channel=IKEA
https://www.youtube.com/watch?v=IzZcqCfA8_k&ab_channel=Waymo


How to Represent the 3D World?

● Recap: 2D representations 

○ RGB pixels

○ Images/videos

○ Why 2D vision not good enough?

■ Lack of depth, scene geometry, etc. information

● What about 3D representations?
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How to Represent the 3D World? (cont’d)

● Multi-view RGB-D images
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How to Represent the 3D World? (cont’d)

● Multi-view RGB-D images

● Voxels
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How to Represent the 3D World? (cont’d)

● Multi-view RGB-D images

● Voxels

● Polygon Mesh
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How to Represent the 3D World? (cont’d)

● Multi-view RGB-D images

● Voxels

● Polygon Mesh

● Point Cloud

● …
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Deep Learning for 3D Vision

Traditional 3D Representation (Part 1)

● Perception: extract information from 3D shapes

● Reconstruction: synthesis 3D shapes
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3D Perception

● Extract information from 3D shapes for 
downstream tasks

○ Classification

○ Object/scene segmentation

○ Pose estimation

○ Object detection

○ Grounding
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Classification Segmentation Detection

Grounding



3D Perception

● In this part, we will talk about feature extraction from:

○ Multi-view images

○ Voxel

○ Point cloud

13



Point Cloud

14

● Point cloud is a point set, representing 3D shapes

● Each point is represented by coordinates (x, y, z)

● Point cloud is stored as a 𝑁×3 matrix  (N: point number, 3: coordinates)



Point Cloud (cont’d)

● Point cloud can be obtained from LiDAR sensors

● Can capture scene geometry

15

Autonomous driving

Augmented Reality (AR)

Reference: Robot Perception, taught by Prof. Shenlong Wang, UIUC
https://shenlong.web.illinois.edu/teaching/cs598fall21/assets/slides/lecture3_sensors.pdf

https://shenlong.web.illinois.edu/teaching/cs598fall21/assets/slides/lecture3_sensors.pdf


Challenges in Point Cloud

● Can we directly apply CNN on point cloud? 

○ No, because point cloud is not grid-structured.

● The shape object can be represented in different orders

● Unknown shape transformation (e.g., translation, rotation…)
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Limitation of CNN

● Can we directly apply CNN on 3D data?

○ Well, it depends…
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3D Representation CNN applicable?

Multi-view images 

Voxel 

Point Cloud

O

O

x



PointNet

● Goal: Point cloud classification & segmentation

18PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017



PointNet

● Goal: Point cloud classification & segmentation

● Classification

19PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017

(x,y,z)

MLP (NN)

1024-dim feature
3 4 7 4

0 2 9 6

5 2 1 8
5 4 9 8Max-pool
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Multi-Layer 

Perceptron

Channel-wise max-pooling



PointNet

● Goal: Point cloud classification & segmentation

● Classification

● Segmentation

20PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017

(x,y,

z)

MLP (NN)

1024-dim feature
3 4 7 4

0 2 9 6

5 2 1 8
5 4 9 8Max-pool
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PointNet

● Goal: Point cloud classification & segmentation

● Classification & segmentation

● Qualitative results

21PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017

Part segmentation Scene segmentation

Point: (xyz, rgb)



PointNet

● Goal: Point cloud classification & segmentation

● Classification & segmentation

● Qualitative results

● Remarks

○ Pros: extract features from unordered points

○ Cons:

■ Outlier/noisy point cloud data

■ Cannot capture 

■ Might not robust to transformation like

22PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017

detailed geometry (global pooling)

translation, scaling, rotation



Extensions of PointNet

● PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric 
Space, NIPS 2017

● Dynamic Graph CNN for Learning on Point Clouds, TOG 2019

● KPconv: Flexible and deformable convolution for point clouds, ICCV 2019

● Convolution in the cloud: Learning deformable kernels in 3D graph 
convolution networks for point cloud analysis, CVPR 2020 (VLLab @ NTU)

● 3D-SelfCutMix: Self-Supervised Learning for 3D Point Cloud Analysis, ICIP 
2022 (VLLab @ NTU)

23



What to Cover Today?

● Introduction to 3D Vision

● Part I: Traditional 3D Representation

● Perception

● 3D Reconstruction

● Part II: Recent 3D Representation

○ Neural Radiance Fields 

○ 3D Gaussian Splatting

● Advanced Topics About NeRF & 3DGS

○ Text-to-3D without 3D supervision

○ 4D Gaussian Splatting

24



3D Reconstruction

● Reconstruct 3D shapes/scenes from partial observations

○ Single/multi-view images

○ Videos

○ Incomplete point cloud

○ text 

● In this part, we will talk about how to reconstruct

○ Depth

○ Voxels

○ Point cloud

○ Mesh

○ Implicit Representation (Function) (??)
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FoldingNet

● 3D reconstruction via point cloud
(Auto Encoder)

● Input: point cloud object

● Output: reconstructed point cloud

26FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation, CVPR 2018



● 3D reconstruction via point cloud
(Auto Encoder)

● Input: point cloud object

● Output: reconstructed point cloud

● Decoder: concat 2D coordinates with object feature and pass to MLPs

27FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation, CVPR 2018

PointNet

FoldingNet



● 3D reconstruction via point cloud

● Input: point cloud object

● Output: reconstructed point cloud

● Loss function: Chamfer distance

28

groun truth (G)

prediction (P)  

min 

distance min 

distance

prediction (P)  

groun truth (G)

prediction ground truth

FoldingNet

FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation, CVPR 2018

What if only one-sided?



● 3D reconstruction via point cloud

● Input: point cloud object

● Output: reconstructed point cloud

● Example results

29

FoldingNet

FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation, CVPR 2018



Extensions of FoldingNet

Point Cloud completion: complete partial point clouds

● PCN: Point Completion Network, 3DV 2018

● VRCNet: Variational Relational Point Completion Network, CVPR 2021

● PoinTr: Diverse Point Cloud Completion with Geometry-Aware 
Transformers, ICCV 2021

● Variational Transformer for Dense Point Cloud Semantic Completion, 
NeurIPS 2022 (VLLab @ NTU)
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Implicit Representation

● Represent shapes as “function”

● Tell us whether a point is on the surface

31

2D circle

Q: Are these points on the 

circle?

(0, 1)

(1, 0)

(1, 1)

(0, 0)



Implicit Representation

32

Point cloud Mesh Implicit function

● Represent shapes as “function”

● Unit sphere: 𝑓 𝑥, 𝑦, 𝑧 = 𝑥2 + 𝑦2 + 𝑧2 − 1

○ Surface is the solution set of 𝑓(. ) = 0



Occupancy Network

● Shape is a function that determines a point is inside/outside of it

33
Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019



Occupancy Network

34
Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019



Signed Distance Function

35
DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR 2019

● Make model learn to predict distance to surface at every possible 3D 
point 𝑝 ∈ 𝑅3

● Think of signed distance function as a “regressor”

● Condition on object feature X

[R]



Extension on Signed Distance Function

36
SDFusion: Multimodal 3D Shape Completion, Reconstruction, and Generation, CVPR 2023

SDFusion (CVPR 2023)

● Train an Auto Encoder for SDF (input voxel)

Inupt: Voxel

Render mesh 

from SDF
SDF



Extension on Signed Distance Function

37
SDFusion: Multimodal 3D Shape Completion, Reconstruction, and Generation, CVPR 2023

SDFusion (CVPR 2023)

● Train an Auto Encoder for SDF (input voxel)

● Train a conditional LDM for latent vector z (text or image)



Extension on Signed Distance Function

38
SDFusion: Multimodal 3D Shape Completion, Reconstruction, and Generation, CVPR 2023

SDFusion (CVPR 2023)

● Train an Auto Encoder for SDF (input voxel)

● Train a conditional LDM for latent vector z (text or image)



Recap: Diffusion model (intuitively)

● Can be viewed as denoising from a Gaussian noise image

● Each step makes little progress of denoising (total about 1000 steps)

● Output image of each step can be seen as the original image combining with 

a noise using specific ratio

● The process can also be seen as predicting the added noise

U-Net model

Pre-defined process 

(adding noise)

39

DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION



Implicit Representation (Occupancy, SDF)

40

Strength

● Flexible shape topology

● Arbitrary resolution 

● Few model parameters 

Weakness

● Require post-processing to get mesh

● Cannot handle complex scene



Extensions of Occupancy, SDF

Text-to-3D Generation

● Diffusion-SDF: Text-To-Shape via Voxelized Diffusion (CVPR 2023)

● Diffusion-SDF: Conditional Generative Modeling of Signed Distance 
Functions (CVPR 2023)

● Learning Shape-Color Diffusion Priors for Text-Guided 3D Object 
Generation (accepted to TMM 2024 Sept.)(VLLab @ NTU)

● GraphDreamer: Compositional 3d scene synthesis from scene graphs 
(CVPR 2024)
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Recap: 

Neural Networks as a Continuous Shape Representation

Slide credit: Jon Barron, cs598dwh

Occupancy Networks
(Mescheder et al. 2019)
(x,y,z) -> occupancy

Deep SDF
(Park et al. 2019)
(x,y,z) -> distance

Pros: Compact and expressive parameterization

Cons: Limited rendering, difficult to optimize
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NeRF:
Representing Scenes as 
Neural Radiance Fields for 
View Synthesis

Many slides from Jon Barron and cs598dwh (UIUC)

Ravi Ramamoorthi Ren Ng

UC Berkeley UC Berkeley Google Research UC San Diego UC BerkeleyUC Berkeley

Ben Mildenhall* Pratul Srinivasan* Matt Tancik* Jon Barron

Slide credit: cs598dwh

NeRF: Representing Scenes as Neural Radiance Fields for 

View Synthesis, ECCV 2020
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Inputs: sparsely sampled images of a scene Outputs: new views of the same scene

tancik.com/nerf
Slide credit: Jon Barron

NeRF: Representing Scenes as Neural Radiance Fields for 

View Synthesis, ECCV 2020
45

Problem: Novel view synthesis (NVS)



• Goal: learn 3D representation, and perform novel view synthesis

• Input: multi-view images + camera poses

• Output: 3D representation (neural radiance field)

NeRF: Representing Scenes as Neural Radiance Fields for 

View Synthesis, ECCV 2020
46

NeRF (Neural randiance field)



Generate views with traditional volume rendering

NeRF: Representing Scenes as Neural Radiance Fields for 

View Synthesis, ECCV 2020

Slide credit: Jon Barron
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{ {
Spatial 

location

Viewing 

direction

Fully-connected neural network

9 layers,

256 channels

Output 

color

{ {

Output 

density

NeRF: Representing Scenes as Neural Radiance Fields for 

View Synthesis, ECCV 2020

Slide credit: Jon Barron
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NeRF (Neural randiance field)



● How much light is blocked earlier along ray:
3D volume

𝑡1

Camera

Rendering model for ray r(t) = o + td:
Ray

colors

weights

● How much light is contributed by ray segment i:

-Density * Distance Between Points

Slide credit: Jon Barron

49

Generate views with traditional volume rendering



Optimize with gradient descent on rendering loss

NeRF: Representing Scenes as Neural Radiance Fields for 

View Synthesis, ECCV 2020

Slide credit: Jon Barron
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Training network to reproduce all input views of the scene

NeRF: Representing Scenes as Neural Radiance Fields for 

View Synthesis, ECCV 2020

Slide credit: Jon Barron
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Can we allocate samples more efficiently?
--Two pass rendering

3D volume

Camera

Ray

NeRF: Representing Scenes as Neural Radiance Fields for 

View Synthesis, ECCV 2020

Slide credit: Jon Barron
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Two pass rendering:coarse network

3D volume

Camera

Ray

treat weights as probability 

distribution for new samples

Nc = 64

NeRF: Representing Scenes as Neural Radiance Fields for 

View Synthesis, ECCV 2020

Slide credit: Jon Barron
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• Sparsely sample points along ray

• Serve as a coarse guidance



3D volume

Camera

Ray

treat weights as probability 

distribution for new samples

Nf = 128

(coarse + fine)

NeRF: Representing Scenes as Neural Radiance Fields for 

View Synthesis, ECCV 2020

Slide credit: Jon Barron
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Two pass rendering:fine network

• Use the coarse predicted density to 
resample new points along ray

• Together compute all Nc + Nf points to 
calculate final color for fine network



3D 

volume

Camera

Ray

Nf = 128

(coarse + fine)

NeRF: Representing Scenes as Neural Radiance Fields for 

View Synthesis, ECCV 2020

Slide credit: Jon Barron
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Two pass rendering: optimization

• Optimize coarse network and fine network 
together

• Only use the prediction of fine network 
when rendering a new scene

predicted color 

from coarse 

network

predicted color 

from fine 

network



NeRF (Naive) NeRF (with positional encoding)

NeRF: Representing Scenes as Neural Radiance Fields for 

View Synthesis, ECCV 2020

Slide credit: Jon Barron
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Positional encoding



input signal 
(position, 
direction)

Naive

Positional encoding
NeRF: Representing Scenes as Neural Radiance Fields for 

View Synthesis, ECCV 2020

Slide credit: Jon Barron
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Positional encoding



Input

position

Input

position

Predicted 

Density

Input

direction

Predicted

color

independent from input 
direction 

(L = 10 for 

positional 

encoding)

(L = 4 for 

positional 

encoding)

NeRF: Representing Scenes as Neural Radiance Fields for 

View Synthesis, ECCV 2020

Slide credit: Jon Barron
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Network Structure



Viewing directions as input

• The specular reflection (or other changes influenced by lighting) 
varies  across different views

NeRF: Representing Scenes as Neural Radiance Fields for 

View Synthesis, ECCV 2020

Slide credit: Jon Barron
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• The rendered color changes as the viewing direction
• L: image plane change with viewing direction
• R: fixing image plane while the viewing direction feeded to NeRF changes

NeRF: Representing Scenes as Neural Radiance Fields for 

View Synthesis, ECCV 2020
60

Viewing directions as input



• Another example

NeRF: Representing Scenes as Neural Radiance Fields for 

View Synthesis, ECCV 2020
61

Viewing directions as input



Depth (geometry) Estimation

• The predicted density indicates the object surface
• The estimated depth perfectly shows 

the geometry of foreground object

NeRF: Representing Scenes as Neural Radiance Fields for 

View Synthesis, ECCV 2020
62

Distance from the points to camera



• Another example

NeRF: Representing Scenes as Neural Radiance Fields for 

View Synthesis, ECCV 2020
63

Depth (geometry) Estimation



• By correctly estimate the depth of the scene, virtual objects are 
possible to interact with the real scene

NeRF: Representing Scenes as Neural Radiance Fields for 

View Synthesis, ECCV 2020
64

Depth (geometry) Estimation



NeRF: strength & weakness

Strength

• Photo-realistic texture

• Do not require 3D ground truth

• View-dependent effect

Weakness

• Only fit single scene

• Require much posed images

• Time-consuming rendering (30s per frame) 

<- Fatal for real-time applications !!
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Extensions of NeRF

NeRF Acceleration, Generalization

● Fourier Features Let Networks Learn High Frequency Functions in Low 
Dimensional Domains (NeurIPS 2020) -> explain why positional 
encoding works

● pixelnerf: Neural radiance fields from one or few images (CVPR 2021)

● KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny 
MLPs (ICCV 2021)

● Instant Neural Graphics Primitives with a Multiresolution Hash Encoding 
(SIGGRAPH 2022)

● NeurMiPs: Neural Mixture of Planar Experts for View Synthesis (CVPR 
2022) (VLLab @ NTU)

● Direct voxel grid optimization: Super-fast convergence for radiance 
fields reconstruction (CVPR 2022)

● GSNeRF: Generalizable Semantic Neural Radiance Fields with 
Enhanced 3D Scene Understanding (CVPR 2024) (VLLab @ NTU)
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3D Gaussian Splatting for Real-Time Radiance Field Rendering Link

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
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How to make renderings faster?

https://www.linkedin.com/pulse/structure-from-motion-manish-joshi/

● Borrow the idea from point cloud
○ Can be super fast using rasterization for rendering

○ Only preserves regions containing objects

https://www.linkedin.com/pulse/structure-from-motion-manish-joshi/
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Method – When old meets new

3D Gaussian Splatting for Real-Time Radiance Field Rendering Link

NeRF Gaussian Splatting

Slide credit: AI 甘安捏

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
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Method – When old meets new

3D Gaussian Splatting for Real-Time Radiance Field Rendering Link

NeRF Gaussian Splatting

Slide credit: AI 甘安捏

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
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Method – When old meets new

3D Gaussian Splatting for Real-Time Radiance Field Rendering Link

Slide credit: 陳楚融

= 128

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
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Method – When old meets new

3D Gaussian Splatting for Real-Time Radiance Field Rendering Link

Slide credit: 陳楚融

= 4

For Rasterization, only 4 times of calculation for 4 object surface encountered

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
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How to make renderings faster?

https://www.linkedin.com/pulse/structure-from-motion-manish-joshi/

● Borrow the idea from point cloud
○ Can be super fast using rasterization for rendering

○ Only preserves regions containing objects

Points are too sparse !! (no volume)

How to make it work??

https://www.linkedin.com/pulse/structure-from-motion-manish-joshi/
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Method – How to solve sparsity problem of point cloud?

3D Gaussian Splatting for Real-Time Radiance Field Rendering Link

Slide credit: 陳楚融

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/


76

Method – How to solve sparsity problem of point cloud?

3D Gaussian Splatting for Real-Time Radiance Field Rendering Link

Slide credit: 陳楚融

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/


● Structure from Motion: 

○ from multi-view image to sparse point cloud
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Method – When old meets new

3D Gaussian Splatting for Real-Time Radiance Field Rendering Link

Photo credit: colmap

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
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Method

3D Gaussian Splatting for Real-Time Radiance Field Rendering Link

● The whole Gaussian Splat model have N Gaussians
● Dynamically adjust by densify/pruning

● Each 3D Gaussians composed of four parameters: 
● position (x, y, z), 

● covariance (how it’s stretched/scaled: 3x3), 

● color (RGB)

● alpha (density)

densify/pruning

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
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Method

3D Gaussian Splatting for Real-Time Radiance Field Rendering Link

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
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Result

3D Gaussian Splatting for Real-Time Radiance Field Rendering Link

● The render results

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
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Result

3D Gaussian Splatting for Real-Time Radiance Field Rendering Link

● The render results if we set all 3D gaussians’ alpha to 1, without transparency.

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/


82

Result

3D Gaussian Splatting for Real-Time Radiance Field Rendering Link

● Better visual quality with order of magnitude rendering speed difference.

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
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Pros and Cons

3D Gaussian Splatting for Real-Time Radiance Field Rendering Link

NeRF

Slide credit: AI 甘安捏

Gaussian Splatting

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/


Extensions of 3DGS

● Relightable 3D Gaussians: Realistic Point Cloud Relighting with BRDF 
Decomposition and Ray Tracing (ECCV 2024)

● Gaussian Grouping: Segment and Edit Anything in 3D Scenes (ECCV 
2024)
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DREAMFUSION: 

TEXT-TO-3D USING 2D DIFFUSION

2023 ICLR

DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION

https://dreamfusion3d.github.io/

https://dreamfusion3d.github.io/


Goal

● Take description as input and generate corresponding 3D results 

(via 2D rendering)

● Without paired “text and 3D object”

● Combining NeRF and 2D text-to-image diffusion model

87

DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION



Recap: Diffusion model (intuitively)

● Can be viewed as denoising from a Gaussian noise image

● Each step makes little progress of denoising (total about 1000 steps)

● Output image of each step can be seen as the original image combining with 

a noise using specific ratio

● The process can also be seen as predicting the added noise

U-Net model

Pre-defined process 

(adding noise)

88

DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION



Method 

vector from light source

89

● The left part is a standard NeRF with shading condition

● Combine the rendered NeRF image with random noise to simulate a state of 

the text-to-image diffusion model

● The difference between the predicted noise and the inserted noise is treated 

as the rendering loss to guide NeRF 

DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION

random chosen



Result

90

DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION
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DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION

Result
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DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION

Result
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Project page

Slide credit: 吳彬世

https://redxouls.github.io/TPA3D/


Task

● Text-to-3D generation with detailed descriptions

94

Slide credit: 吳彬世



Motivation

● Lack of supervision: Need large 3D dataset with paired detailed descriptions

● Lack of detailed: Omitted details for the texture and geometry in the text prompt

a red car a white chair with 

rounded back and wooden legs
95

Slide credit: 吳彬世



Problem Settings

● Achieve text-guided 3D generation without human-annotated text-3D pairs

96
Slide credit: 吳彬世



Methods

● Model overview

97

Slide credit: 吳彬世



Methods

● Pseudo caption generation

98

Slide credit: 吳彬世



Pseudo Caption Generation

● Given prompt: “In the image, the background is black. Describe the design 

and appearance of the {category} in detail.”

● Remove redundant information 

paper link

99

Slide credit: 吳彬世

https://arxiv.org/abs/2305.06500


Methods

● Encode text prompt to word-level features & sentence-level features

100

Slide credit: 吳彬世



Encode Text Features

● CLIP (Contrastive Language-Image Pretraining)

● Word-level: second-last layer of VIT

● Sentence-level: after projection

101

Slide credit: 吳彬世

https://arxiv.org/abs/2103.00020


Methods

● Generate triplane features

102

Slide credit: 吳彬世



Triplane Features

● Use 2D planes to learn 3D features (efficient)

ref: EG3D

103

https://arxiv.org/abs/2112.07945


Methods

● Generate sentence-level triplane features

104

Slide credit: 吳彬世



Methods

● Generate word-level triplane features
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● Plane-wise Self-Attention
○ Intra-plane consistency

○ Extract plane-wise content features

● Cross-Plane Attention
○ Inter-plane connectivity

○ Ensure multi-aspect correspondence

across different planes

● Cross-Word Attention
○ Word-level refinement

○ Incorporate word-level information 

into triplane features 

Triplane Attention Block (TPA Block) 
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Slide credit: 吳彬世



Methods

● Predict SDF values, deformations, and colors
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Slide credit: 吳彬世



Training Objectives

● Text-guided discriminators
○ Use camera pose & text features as condition

○ On both rendered RGB images & silhouette masks

● Mismatching loss
○ Use negative pairs to increase discriminative ability

● CLIP loss
○ CLIP similarity score
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Slide credit: 吳彬世



Experiments

● Qualitative comparison
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Slide credit: 吳彬世



Experiments

● Inference time comparison
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Slide credit: 吳彬世



Experiments

● Interpolation
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Slide credit: 吳彬世



Experiments

● Incremental manipulation
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Slide credit: 吳彬世



More references about further topics of 3D 

supervision-free text-to-3D

113

● Magic3D: High-Resolution Text-to-3D Content Creation (CVPR 2023)

● MVDream: Multi-view Diffusion for 3D Generation

● TAPS3D: Text-Guided 3D Textured Shape Generation From Pseudo 
Supervision (CVPR 2023)

● LucidDreamer: Towards High-Fidelity Text-to-3D Generation via 
Interval Score Matching (CVPR 2024)

● GALA3D: Towards Text-to-3D Complex Scene Generation via Layout-
guided Generative Gaussian Splatting (ICML 2024)



What to Cover Today?

● Introduction to 3D Vision

● Part I: Traditional 3D Representation

● Perception

● 3D Reconstruction

● Part II: Recent 3D Representation

○ Neural Radiance Fields 

○ 3D Gaussian Splatting

● Advanced Topics About NeRF & 3DGS

○ Text-to-3D without 3D supervision

○ 4D Gaussian Splatting
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Recap 3DGS 

How about dynamic scenes? (given videos from multiple views)

Slide credit: 陳楚融

115



SIGGRAPH 2024
116



https://guanjunwu.github.io/4dgs/ 117

https://guanjunwu.github.io/4dgs/


Previous Methods using NeRF

Slide credit: 陳楚融

Why using NeRF is not appropriate?
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Previous Methods using NeRF

Slide credit: 陳楚融
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Methods: 4D GS

Slide credit: 陳楚融
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Methods: 4D GS

Slide credit: 陳楚融
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Methods: 4D GS

Slide credit: 陳楚融
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Methods: 4D GS

Slide credit: 陳楚融

123



Results

Slide credit: 陳楚融
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What We’ve Covered Today?

● Introduction to 3D Vision

● Part I: Traditional 3D Representation

● Part II: Recent 3D Representation

○ Neural Radiance Fields 

○ 3D Gaussian Splatting

● Advanced Topics About NeRF & 3DGS

○ Text-to-3D without 3D supervision

○ Text-to-4D
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