Deep Learning for Computer Vision

113-1/Fall 2024

https://cool.ntu.edu.tw/courses/41702 (NTU COOL)

http://vllab.ee.ntu.edu.tw/dlcv.html (Public website)

Yu-Chiang Frank Wang 王鈺強, Professor Dept. Electrical Engineering, National Taiwan University

2024/11/5

Pretrain & Finetune LLM/VLM/MLLM

Stage 1

Pre-training by self-supervised learning or supervised learning Stage 2

Finetuning by downstream tasks in target domains Stage 3

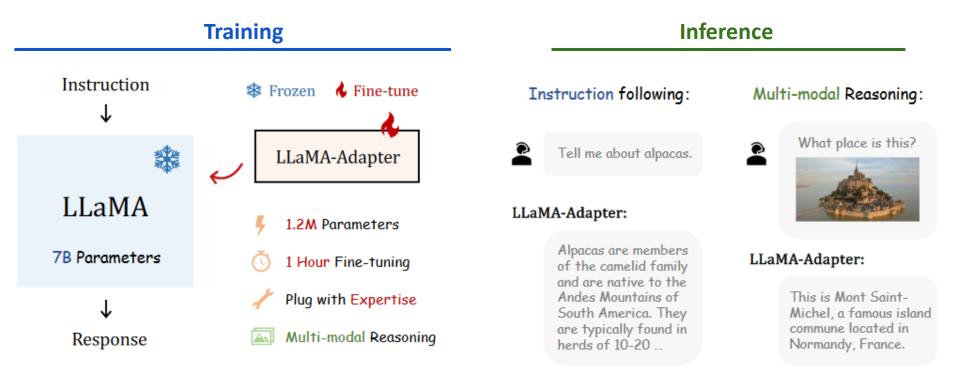
RLHF - Reinforcement Learning with Human Feedback (not covered)

What to Be Covered Today...

- Multimodal LLM
- Advanced Topics in LLM/VLM
 - Concept Editing
 - Concept Unlearning
 - Personalization
 - Continual Learning

LLaMA-Adapter (SAIL & CUHK, ICLR'24)

- A **lightweight** adaptation method to efficiently finetune LLaMA into an **multi-modal instruction-following** model
- Result:
 - 1. Equipping LLaMA the ability of understanding instruction-following data
 - 2. Capable of addressing multi-modal reasoning tasks



LLaMa-Adapter: Method

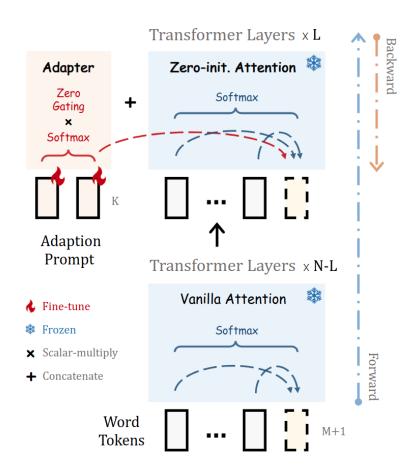
- Append K learnable prompts at each of the last L layers
- Adopt zero-initialized attention for fine-tuning stability and effectiveness
 - \circ use a zero-initialized learnable gating factor g_l to control the prompts' attention scores

$$S_l = Q_l K_l^T / \sqrt{C} \in \mathbb{R}^{1 \times (K+M+1)}$$

$$S_l^g = [\operatorname{softmax}(S_l^K) \cdot g_l; \ \operatorname{softmax}(S_l^{M+1})]^T$$

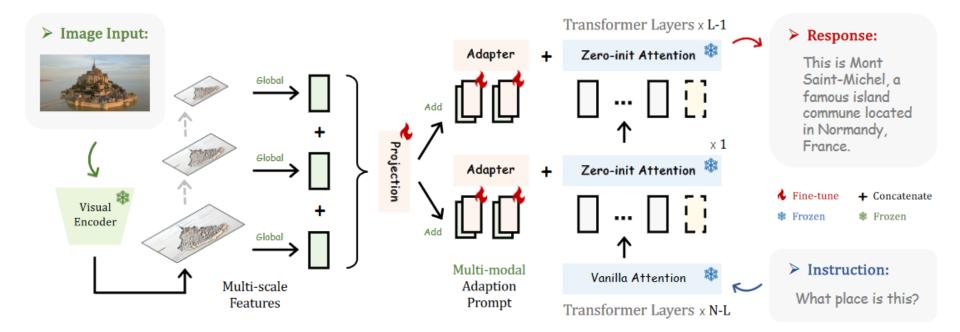
Stage 1

Stage 2



Multi-Modal LLaMA-Adaptor

• When being finetuned to a multi-modal reasoning task (e.g. VQA), a pre-trained visual encoder + a learnable projection layer are additionally utilized



Quantitative Result

• Methods comparison on the visual question answering (VQA) task (ScienceQA dataset)

Model	Tuned Params	Avg	NAT	SOC	LAN	TXT	IMG	NO	G1-6	G7-12
Random Choice [41]	-	39.83	40.28	46.13	29.25	47.45	40.08	33.66	39.35	40.67
Human [41]	-	88.40	90.23	84.97	87.48	89.60	87.50	88.10	91.59	82.42
MCAN [65]	95M	54.54	56.08	46.23	58.09	59.43	51.17	55.40	51.65	59.72
VisualBERT [33, 34]	111M	61.87	59.33	69.18	61.18	62.71	62.17	58.54	62.96	59.92
UnifiedQA [27]	223M	70.12	68.16	69.18	74.91	63.78	61.38	77.84	72.98	65.00
UnifiedQA _{CoT}	223M	74.11	71.00	76.04	78.91	66.42	66.53	81.81	77.06	68.82
GPT-3 [4]	0M	74.04	75.04	66.59	78.00	74.24	65.74	79.58	76.36	69.87
$GPT-3_{CoT}$	0M	75.17	75.44	70.87	78.09	74.68	67.43	79.93	78.23	69.68
ChatGPT $_{CoT}$ [2]	OM	78.31	78.82	70.98	83.18	77.37	67.92	86.13	80.72	74.03
GPT-4 $_{CoT}$ [45]	0M	83.99	85.48	72.44	90.27	82.65	71.49	92.89	86.66	79.04
$MM-COT_T$ [74]	223M	70.53	71.09	70.75	69.18	71.16	65.84	71.57	71.00	69.68
MM-COT	223M	84.91	87.52	77.17	85.82	87.88	82.90	86.83	84.65	85.37
LLaMA-Adapter $_T$ LLaMA-Adapter	1.2M 1.8M	78.31 85.19	79.00 84.37	73.79 88.30	80.55 84.36	78.30 83.72	70.35 80.32	83.14 86.90	79.77 85.83	75.68 84.05

metrics:

accuracy (%)

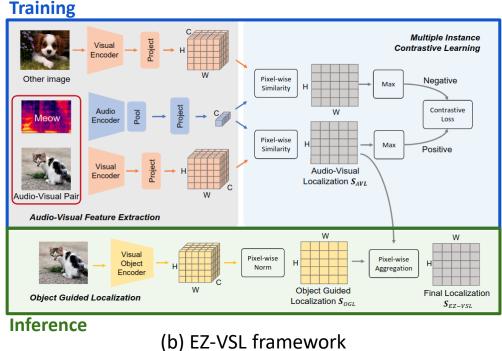
Easy Visual Sound Localization (EZ-VSL), CMU & UWisc., ECCV 2022

• Goal:

Stage 2

A simple yet effective method to unsupervised audio-visual sound localization

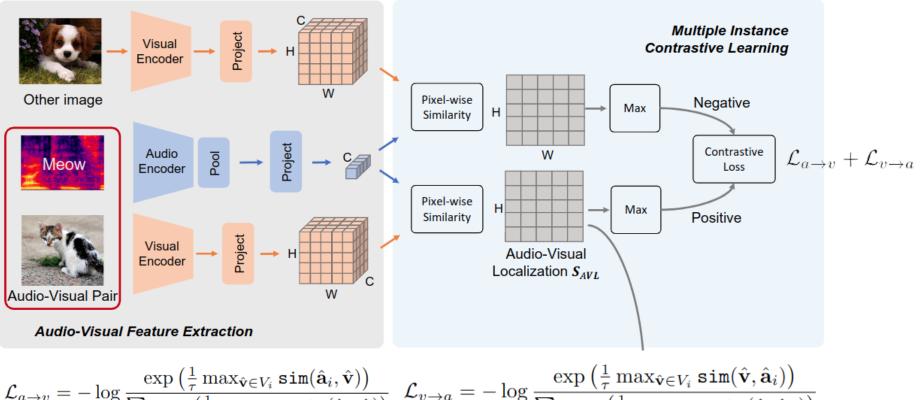
- Task: localize visible sound sources in a video without ground-truth localization
- **Result:** SOTA performance on two popular benchmarks, Flickr SoundNet & VGG-Sound Source



(a) audio-visual sound localization examples

Training Stage

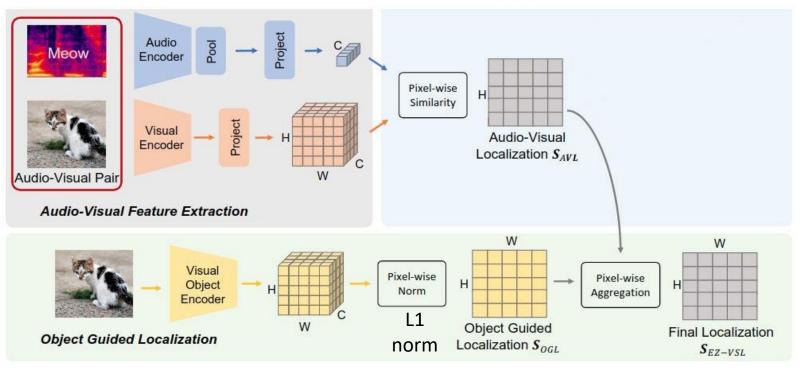
- Audio-Visual Matching by Multiple-Instance Contrastive Learning
 - Encourage audio representation to be aligned with the associate visual representations at least at one location and not being associated with any locations from other images



$$_{a \to v} = -\log \frac{\exp\left(\frac{1}{\tau} \max_{\hat{\mathbf{v}} \in V_i} \sin(\hat{\mathbf{a}}_i, \hat{\mathbf{v}})\right)}{\sum_k \exp\left(\frac{1}{\tau} \max_{\hat{\mathbf{v}} \in V_k} \sin(\hat{\mathbf{a}}_i, \hat{\mathbf{v}})\right)} \quad \mathcal{L}_{v \to a} = -\log \frac{\exp\left(\frac{1}{\tau} \max_{\hat{\mathbf{v}} \in V_i} \sin(\mathbf{v}, \mathbf{a}_i)\right)}{\sum_k \exp\left(\frac{1}{\tau} \max_{\hat{\mathbf{v}} \in V_i} \sin(\hat{\mathbf{v}}, \hat{\mathbf{a}}_k)\right)}$$

Inference Stage

- Object-Guided Localization
 - Improve localization precision by combining audio-visual similarity map
 with an **object localization map** from a pre-trained visual model



 $S_{EZ-VSL} = \alpha S_{AVL} + (1-\alpha)S_{OGL}$

Quantitative Results

• Comparison results on Flickr SoundNet testset

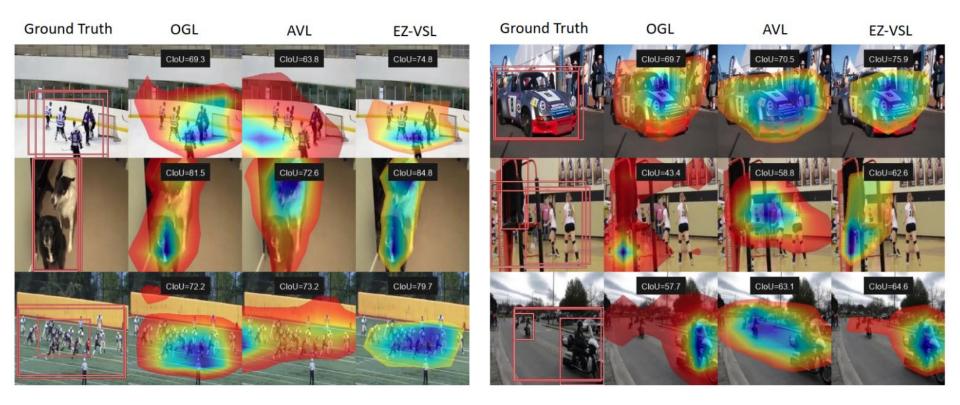
Training set	Method	CIoU(%)	AUC(%)
	Attention10k [30]	43.60	44.90
	CoarsetoFine [28]	52.20	49.60
Flickr 10k	AVObject [2] 54.60 LVS [6] 58.20	50.40	
	LVS [6]	58.20	52.50
	EZ-VSL (ours)	43.60 52.20 54.60	62.58
	Attention10k [30]	66.00	55.80
Flickr 144k	DMC [17]	67.10	56.80
ГПСКГ 1 44 К	LVS [6]	69.90	57.30
	HardPos [31]	75.20	59.70
	EZ-VSL (ours)	83.13	63.06

• Methods comparison on Flickr SoundNet and VGG-SS testset

Training oat	Method	Flickr-So	oundNet	VGG-SS		
Training set	Method	66.00 55.80 73.50 59.00	AUC(%)	CIoU(%)	AUC(%)	
	Attention10k [30]	66.00	55.80	18.50	30.20	
	CoarsetoFine [28]	-	-	29.10	34.80	
VGG-Sound 144k	AVObject [2]	-	-	29.70	35.70	
	LVS [6]	73.50	59.00	34.40	38.20	
	HardPos [31]	76.80	59.20	34.60	38.00	
	EZ-VSL (ours)	83.94	63.60	38.85	39.54	

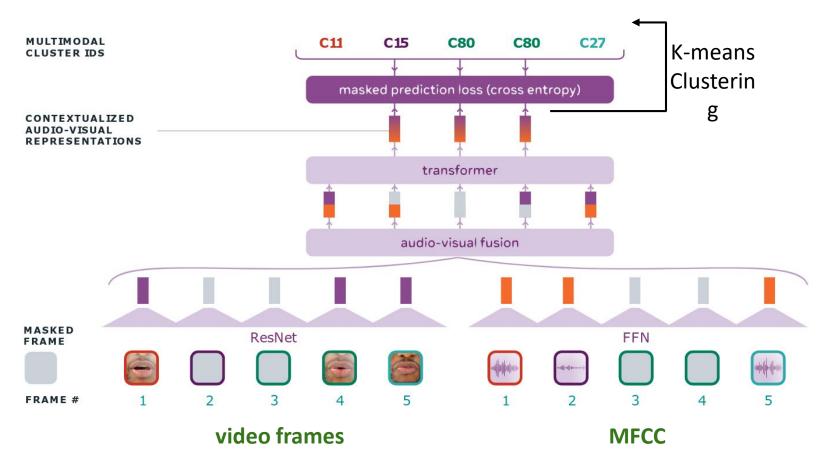
Visualization

• Sound source localization predictions with other methods

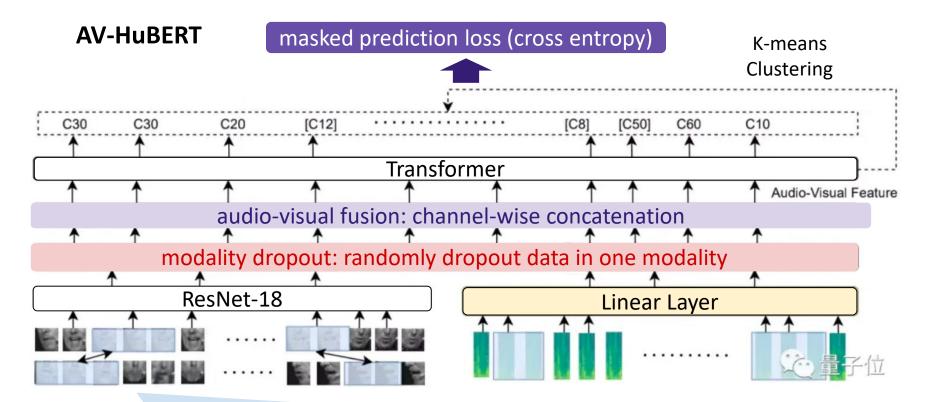


AV-HuBERT, Meta, ICLR'22

- Goal: A self-supervised representation learning framework for audio-visual speech recognition
- **Result:** SOTA performance on the largest downstream lip-reading benchmark



Pre-training Framework



Masking by Substitution

Goal: enforce the model to learn the temporal relationship between the frames **Method**: replace the masked segments with random segments from the same video

https://zhuanlan.zhihu.com/p/455426545

Quantitative Result

•	Method	comparison	on	lip-reading	benchmark	(LRS3	dataset)
---	--------	------------	----	-------------	-----------	-------	----------

Method	Backbone	Criterion	Labeled iso (hrs)	Labeled utt (hrs)	Unlabeled data (hrs)	WER (%)
	Su	pervised				
Afouras et al. (2020)	CNN	CTC	157	433	-	68.8
Zhang et al. (2019b)	CNN	S2S	157	698	-	60.1
Afouras et al. (2018a)	Transformer	S2S	157	1,362	-	58.9
Xu et al. (2020)	RNN	S2S	157	433	-	57.8
Shillingford et al. (2019)	RNN	CTC	-	3,886	-	55.1
Ma et al. (2021b)	Conformer	CTC+S2S	-	433	-	46.9
Ma et al. (2021b)	Conformer	CTC+S2S	157	433	-	43.3
Makino et al. (2019)	RNN	Transducer	-	31,000	-	33.6
	Semi-Supervis	ed & Self-Supe	ervised			
Afouras et al. (2020)	CNN	CTC	157	433	334	59.8
		626	-	30	433	71.9
Ma et al. (2021a)†	Transformer-BASE	Transformer-BASE S2S		433	1,759	49.6
Prop	osed (Self-Supervised &	Self-Supervise	d + Semi-S	upervised)		
*			- 30 - 30	30	-	94.3
				30	433	51.8
	Transformer-BASE	S2S	-	30	1,759	46.1
	Transformer D/10L	020	-	433	-	60.3
			-	433	433	44.0
AV-HuBERT			-	433	1,759	34.8
			-	30	-	92.3
			-	30	433	44.8
	Transformer-LARGE	S2S	-	30	1,759	32.5
	Transformer-LAROE	020	-	433	-	62.3
			-	433	433	41.6
			-	433	1,759	28.6
		600	-	30	1,759	28.6
AV-HuBERT + Self-Training	Transformer-LARGE	S 2 S	S2S		1,759	26.9

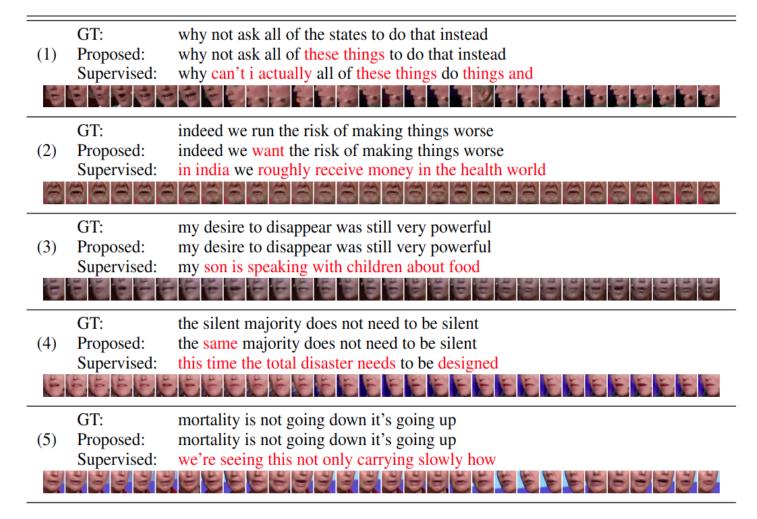
CTC: connectionist temporal classification

S2S: attention-based sequence-to-sequence cross entropy

Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction

Qualitative Result

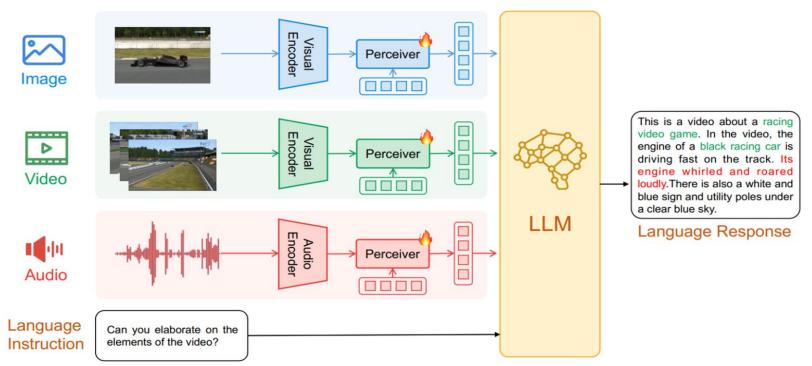
• Transcriptions comparison between AV-HuBERT (Proposed) and a supervised model



ChatBridge (CAS, arxiv'23)

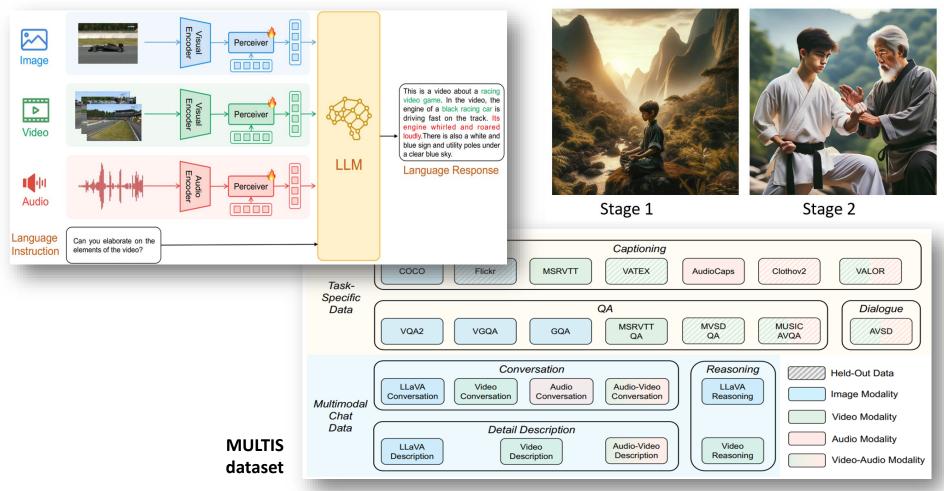
- **Goal:** Transform a LLM into a **multi-modal (text, image, video, audio) language model** using **language** to bridge the gap between various modalities
- Result: Outstanding zero-shot performance on various multi-modal tasks

modality-shared perceiver (Q-Former) but modality-independent learnable queries



Pre-training Strategy

- Two-stage Pre-training
 - Stage 1 multi-modal alignment: pre-train perceivers with large-scale language-paired two-modality data (image-text, video-text, audio-text)
 - Stage 2 multi-modal instruction tuning: instruction-finetune perceivers with the proposed multi-modal instruction-tuning dataset MULTIS



Quantitative Result

• Zero-shot evaluation of SOTA methods on various downstream tasks

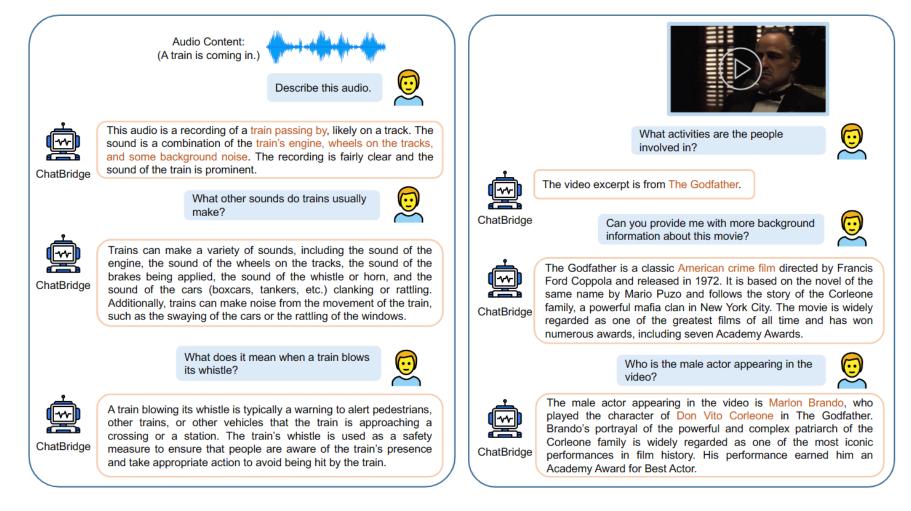
Methods	OKVQA QA	Image-7 GQA QA	Fext Tasks Flickr30k Caption	NoCaps Caption	Video-Te MSVD QA	ext Tasks VATEX Caption	Audio-Text Tasks Clothov2 Caption
Finetuned SoTA	66.1 [18]	65.1 [7 0]	67.4 [72]	121.6 [31]	60.0 [12]	95.8 [12]	48.8 [38]
Flamingo-9B [3]	44.7	-	61.5	-	30.2	39.5	-
Flamingo-80B [3]	50.6	-	67.2	-	35.6	46.7	-
BLIP-2 (FlanT5-XXL) [17]	-	42.4	73.7	98.4	34.4	-	-
BLIP-2 (Vicuna-13B) [17]	-	32.3	71.6	103.9	20.3	-	-
ChatBridge w/o MULTIS	41.4	37.4	77.7	107.5	23.5	47.7	22.4
ChatBridge	45.2	41.8	82.5	115.7	45.3	48.9	26.2

metrics: accuracy for QA tasks, CIDEr score for captioning tasks

Input Modality	AVSD BLEU-4	Dialogue CIDEr	VALOR OBLEU-4	Captioning CIDEr	MUSIC-AVQA Acc.
Finetuned SoTA	40.0 [44]	108.5 [44]	9.6 [12]	61.5 [12]	78.9 [12]
Video	28.3	73.1	2.8	22.3	33.1
Audio	20.2	46.2	0.3	5.2	28.9
Video+Audio	29.8	75.4	4.2	24.7	43.0

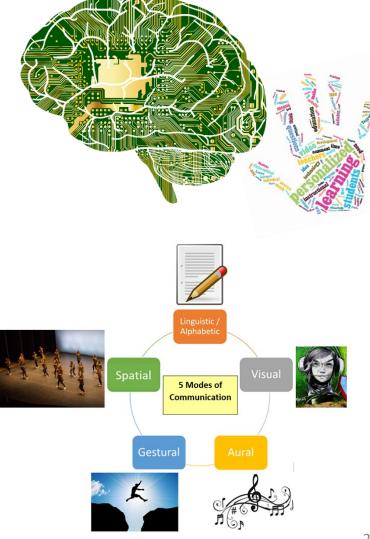
Qualitative Results

• Multi-round conversation cases with audio or video inputs



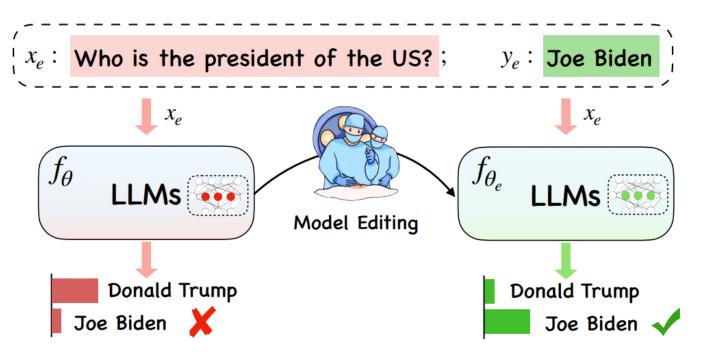
What to Be Covered Today...

- Multimodal LLM
- Advanced Topics in LLM/VLM
 - Concept Editing
 - Concept Unlearning
 - Personalization
 - Continual Learning



LLM Editing (i.e., Concept/Knowledge Editng)

- Motivation
 - The knowledge in LLM will be outdated over time.
 - E.g., The knowledge cutoff of LLaMA3-70B is Dec. 2023.
 - → Need an effective and efficient way to *inject* new knowledge w/o re-training.

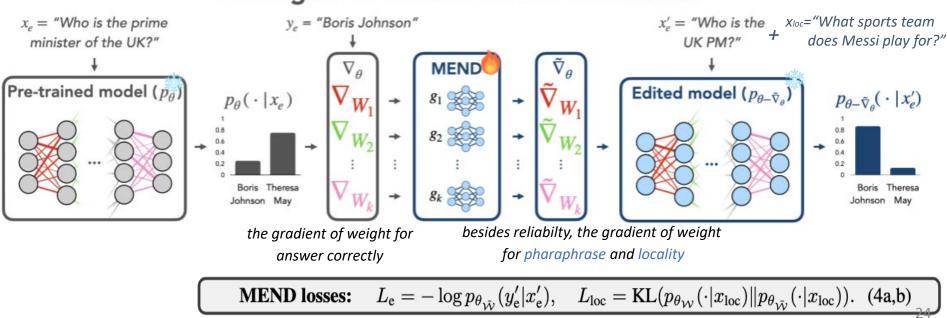


Recent works on LLM editing

- Editing with Hypernetwork:
 - MEND (ICLR'22)
- Editing with External Memory:
 - T-Patcher (ICLR'23)
 - WISE (NeurIPS'24)

Fast Model Editing at Scale, Stanford, ICLR'22

- Goal:
 - Inspired by meta-learning, update the pre-trained model by learning a hypernetwork (called Model Editor Networks with Gradient Decomposition, MEND).
- Method:
 - Train MEND with edited samples, supervised by equivalent (paraphrased), and unrelated (locality) samples.
- Limitation? Batch-mode training...



Editing a Pre-Trained Model with MEND

Transformer-Patcher: One Mistake Worth One Neuron Mila & WeChat, ICLR'23 (1/2)

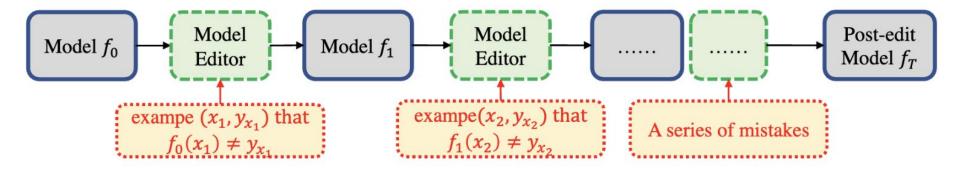
• Idea:

- Previous works (e.g., MEND) typically only handle "one-step" editing
- Need a method to handle "lifelong" editing
- Example: one-step vs. lifelong editing
 - We have model edited from x_{e1} to x_{en} (e.g., x_{e1} = who is the UK prime minister?). Now, we want to edit model at (n+1)-th sample

(e.g., $x_{e(n+1)}$ = who is the president in Taiwan?).

In "one-step" editing, we need to **re-train** model from x_{e1} to $x_{e(n+1)}$.

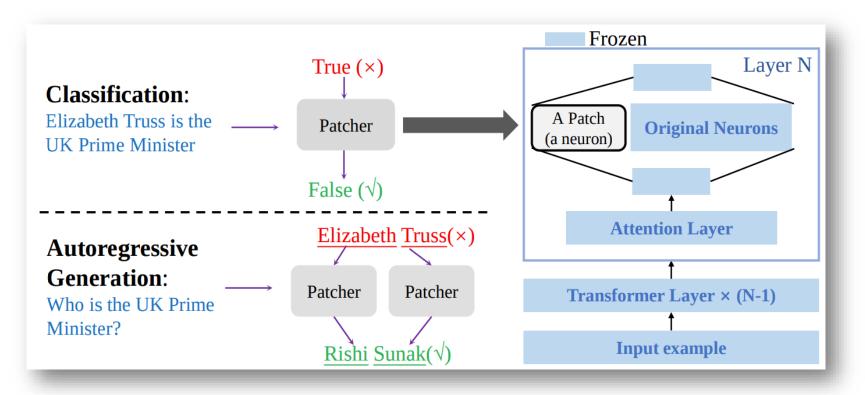
In "lifelong" editing, only need to train model at $x_{e(n+1)} =>$ more efficient.



Transformer-Patcher: One Mistake Worth One Neuron Mila & WeChat, ICLR'23 (2/2)

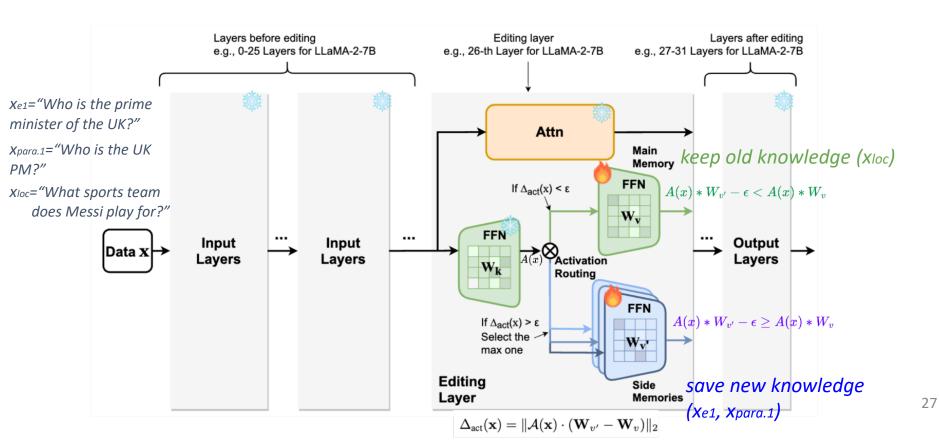
• Goal:

- Previous work (i.e., MEND): only handle "one-step" editing in batch modes
- Propose T-Patcher to handle "lifelong" editing
- Method:
 - Patch transformers by adding **neurons** for each edited knowledge



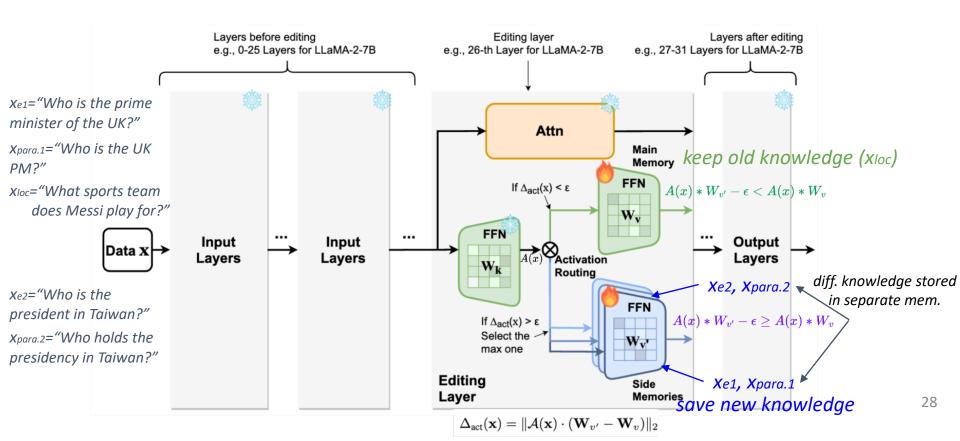
Rethinking the Knowledge Memory for Lifelong Model Editing of Large Language Models, Alibaba, NeurIPS'24 (1/2)

- Goal:
 - Previous work (i.e., T-Patcher): linear growing memory complexity
- Method:
 - Employ *finite* side memories and design a *routing* mechanism to choose them



Rethinking the Knowledge Memory for Lifelong Model Editing of Large Language Models, Alibaba, NeurIPS'24 (2/2)

- Goal:
 - Previous work (i.e., T-Patcher): linear growing memory complexity
- Method:
 - Employ *finite* side memories and design a *routing* mechanism to choose them



What to Be Covered Today...

- Multimodal LLM
- Advanced Topics in LLM/VLM
 - Concept Editing
 - Concept Unlearning
 - Personalization
 - Continual Learning

Diffusion Models Concept Unlearning

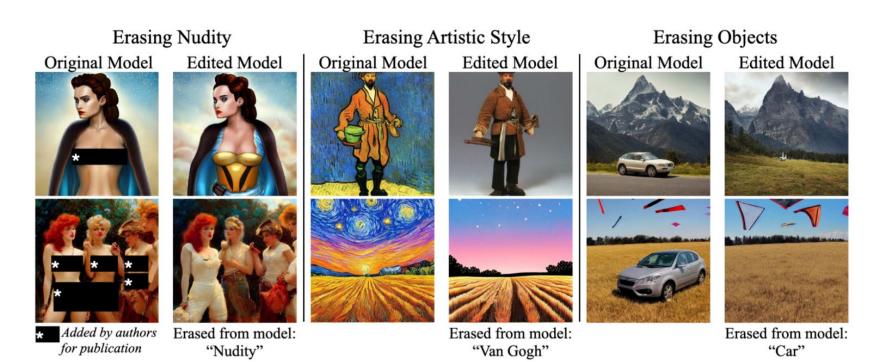
- Motivation
 - Recently, diffusion models have made significant advances in GenAI.
 - E.g., DALL·E 3, Midjourney, Stable Diffusion, Sora...
 - However, improper use may result in generating harmful, NSFW, or copyrighted content.
 - → Need an effective and efficient way to *unlearn* these undesired concepts.

Credit: Stable Diffusion copyright lawsuits could be a legal earthquake for AI

Diffusion Models Concept Unlearning (cont'd)

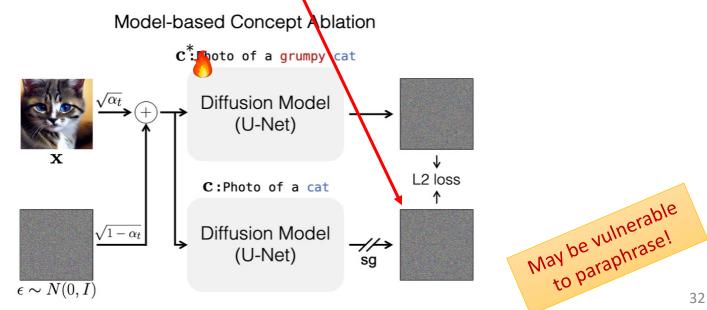
• Task definition:

- **Unlearn** the <u>undesired concepts</u> from pre-trained Diffusion Model, so that it no longer generates images containing that concept.
- Including high-level concept, artistic style, object, or personality.



Ablating Concepts in Text-to-Image Diffusion Models CMU & Adobe Research, ICCV 2023

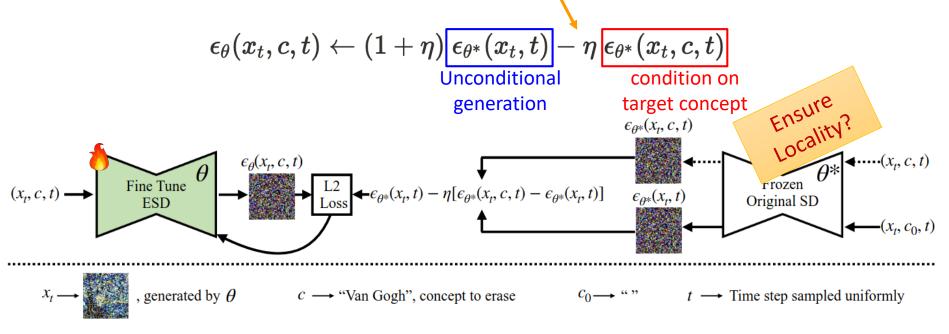
- Idea: Replace the output of target concept with predefined anchor concept.
- For example, after unlearning "grumpy cat":
 - Input: Text of target concept (e.g., "a photo of grumpy cat")
 - **Output:** Image of anchor concept (e.g., Image of cat)
- Method:
 - Simply use the **predicted noise of anchor** as ground truth for fine-tuning.



ICCV'23 Ablating Concepts in Text-to-Image Diffusion Models

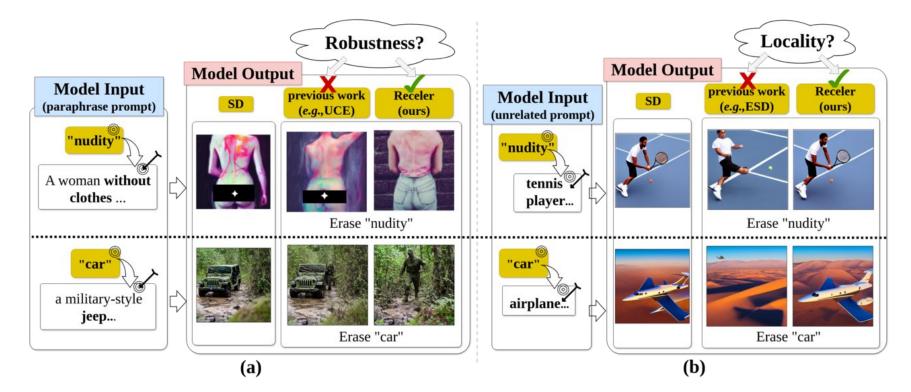
Erasing Concepts from Diffusion Models Northeastern & MIT, ICCV 2023

- Idea:
 - **Reduce** the probability p(c|x) that the output image belongs to target concept
- Method:
 - Utilize **classifier-free guidance** in a <u>reverse direction</u> to fine-tune model.
 - Move the output distribution away from target concept.



Reliable Concept Erasing of Text-to-Image Diffusion Models via Lightweight Erasers (Receler), VL Lab (NTU), ECCV 2024

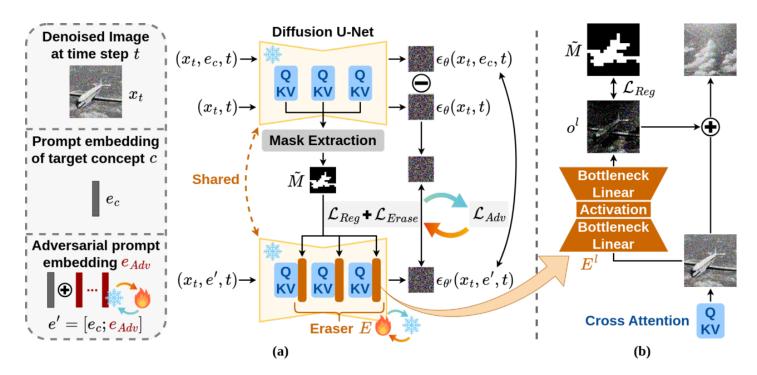
- Define *Reliable Concept Erasing* by two desirable properties:
 - **Robustness:** resistance when inputting paraphrased/adversarial attack prompts
 - **Locality:** capability on preserving the generation of <u>non-target concepts</u>.



Receler, VL Lab (NTU), ECCV 2024

• Method

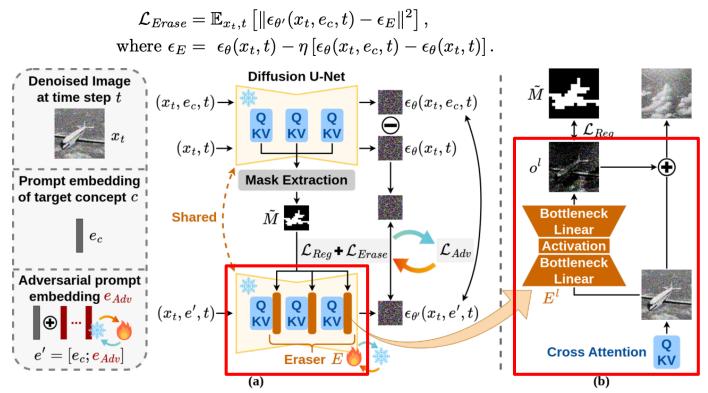
- Lightweight Eraser (PEFT)
- Concept-localized Regularization
- Adversarial Prompt Learning



ECCV'24 Receler: Reliable Concept Erasing of Text-to-Image Diffusion Models via Lightweight Erasers

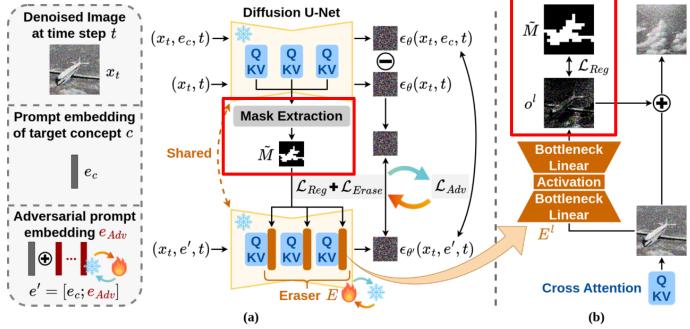
Receler, VL Lab (NTU), ECCV'24 (cont'd)

- Method (1/3)
 - Lightweight Eraser (PEFT)
 - Adapter-based module with only 0.37% param. of UNet
 - Inserted after cross-attention layer to remove target concept features
 - We use the CFG objective to fine-tune this eraser (like ESD did).



- Method (2/3)
 - Concept-localized Regularization
 - To achieve locality, we use <u>attention-maps</u> extracted from UNet to regularize eraser learning
 - With this regularization, Eraser focus only on regions of target concept

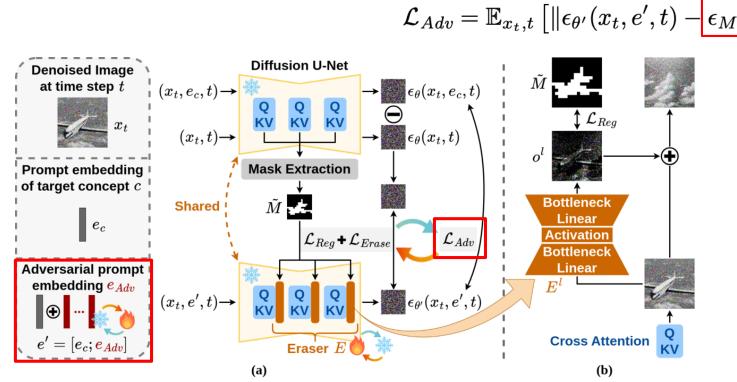
$$\mathcal{L}_{Reg} = rac{1}{L} \sum_{l=1}^{L} \lVert o^l \odot (1 - ilde{M})
Vert^2$$



ECCV'24 Receler: Reliable Concept Erasing of Text-to-Image Diffusion Models via Lightweight Erasers

- Method (3/3)
 - Adversarial Prompt Learning
 - To enhance robustness, we train <u>adversarial embeddings</u> to mimic malicious attacks
 - Prompt embeddings and Eraser are trained iteratively against each other.
 - **Prompt embeddings** \Rightarrow try to generate target concept
 - Eraser is try to remove target concept

Predicted noise of target concept



ECCV'24 Receler: Reliable Concept Erasing of Text-to-Image Diffusion Models via Lightweight Erasers

• Quantative Results

- Dataset: I2P (Inappropriate Prompt dataset)
- o Any idea how to perform objective evaluation?
- Achieve **SOTA** in erasing inappropriate concepts with **robustness** & **locality**

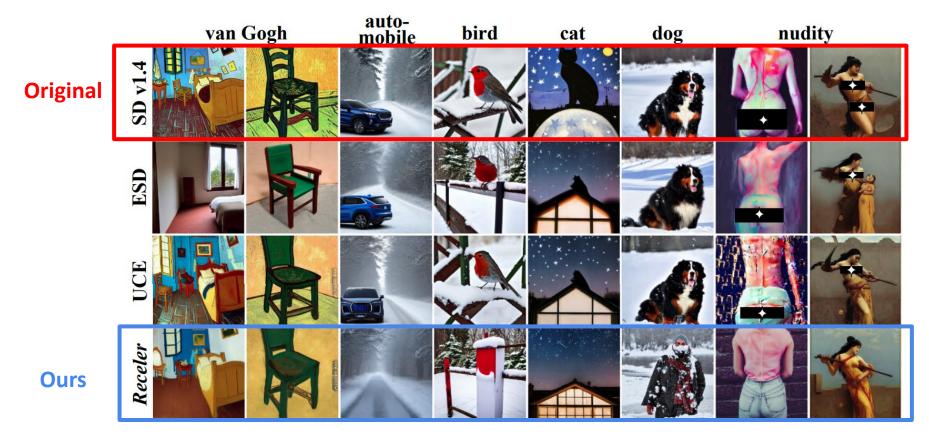
Class name	Inappropriate proportion (%) (\downarrow)							
	SD	FMN	SLD	ESD	UCE	Receler		
Hate	44.2	37.7	22.5	26.8	36.4	28.6		
Harassment	37.5	25.0	22.1	24.0	29.5	21.7		
Violence	46.3	47.8	31.8	35.1	34.1	27.1		
Self-harm	47.9	46.8	30.0	33.7	30.8	24.8		
Sexual	60.2	59.1	52.4	35.0	25.5	29.4		
Shocking	59.5	58.1	40.5	40.1	41.1	34.8		
Illegal activity	40.0	37.0	22.1	26.7	29.0	21.3		
Overall	48.9	47.8	33.7	32.8	31.3	27.0		

Fig 1. Erase inappropriate concepts in I2P dataset using NudeNet

	Robustness	Locality					
Method	$\begin{array}{c} \text{Nudity-erased} \\ \text{ratio}(\uparrow) \end{array}$	$\text{CLIP-30K}(\uparrow)$	$\text{FID-30K}(\downarrow)$				
SD	-	31.32	14.27				
FMN	44.2%	30.39	13.52				
SLD	71.6%	30.90	16.34				
\mathbf{ESD}	81.3%	30.24	15.31				
UCE	75.9%	30.85	14.07				
Receler	84.5%	31.02	14.10				

Fig 2. Robustness and locality metrics

• Qualitative Results (1/2)



• Qualitative Results (2/2)

What to Be Covered Today...

- Multimodal LLM
- Advanced Topics in LLM/VLM
 - Concept Editing
 - Concept Unlearning
 - Personalization
 - Continual Learning

Diffusion Model for Personalization

(Recap) Single Concept •

- Textual Inversion, ICLR'23 0
- DreamBooth, CVPR'23 0

Multiple Concepts

- CustomDiffusion, CVPR'23 0
- Mix-of-Show, NeurIPS'23 0

Beyond Image: Video Motion Customization

 \rightarrow

Video Motion Customization, CVPR'24 0

Input samples \xrightarrow{invert} "S_{*}"



"App icon of S_* "

"Elmo sitting in the same pose as S_* "

"Crochet S_{*}"

Input samples \xrightarrow{invert} "S_{*}"

"An oil painting of S_* "

"Painting of two S_* fishing on a boat"

"A S_{*} backpack"

"Banksy art of S_* " "A S_* themed lunchbox"

Single Concept Personalization

fishing on a boat"

Definition

Given a number of subject images, 0 fine-tune a **pre-trained diffusion model** to enable the generation of that special subject.

Input samples \xrightarrow{invert} "S_{*}"

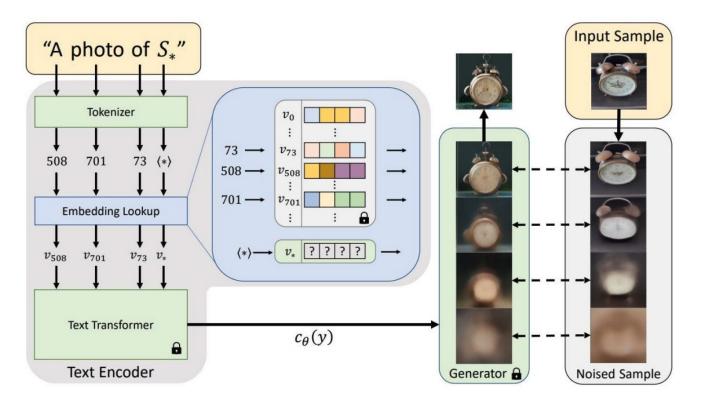
"A S_{*} backpack"

"Banksy art of S_{*}"

Recap: Textual Inversion, ICLR'23

• Method: Learning of special token S*

- Pre-train and fix text encoder & diffusion model (i.e., generator)
- Randomly initialize a token as the text encoder input
- Optimize this token via image reconstruction objectives

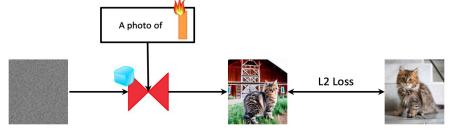


ICLR'23 An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion

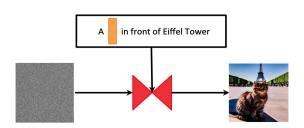
Recap: Textual Inversion, ICLR'23

• Method: Learning of special token S*

- Pre-train and fix text encoder & diffusion model (i.e., generator)
- Randomly initialize a token as the text encoder input
- Optimize this token via image reconstruction objectives
- Training:



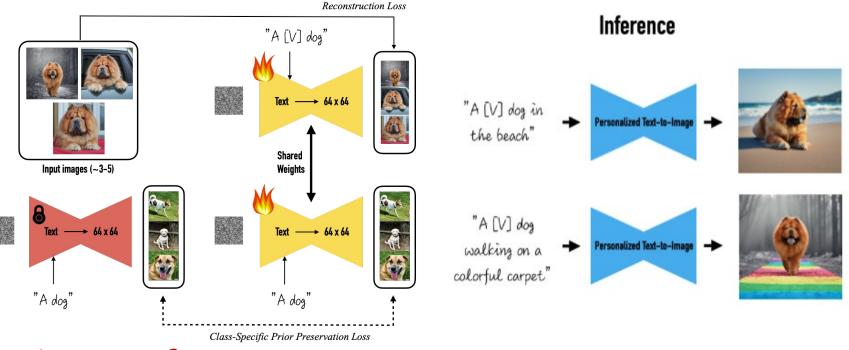
• Inferences:



• Potential concern?

Recap: Single-Concept Personalization - DreamBooth

- Proposed by Google Research, CVPR 2023
- Finetune the diffusion model w/ a fixed token to represent the image concept
 - Determine and fix a rare token (e.g., [V])
 - Finetune the diffusion model for image restoration objectives
 - Enforce a class-specific prior (why?)



Any concern?

Diffusion Model for Personalization

- (Recap) Single Concept
 - Textual Inversion, ICLR'23 0
 - DreamBooth, CVPR'23 0

Multiple Concepts

- CustomDiffusion, CVPR'23 0
- Mix-of-Show, NeurIPS'23 0
- Beyond Image: Video Motion Customization

 \rightarrow

VMC, CVPR'24 0

Input samples \xrightarrow{invert} "S_{*}"

"Elmo sitting in the same pose as S_* "

"Crochet S*"

Input samples \xrightarrow{invert} "S_{*}"

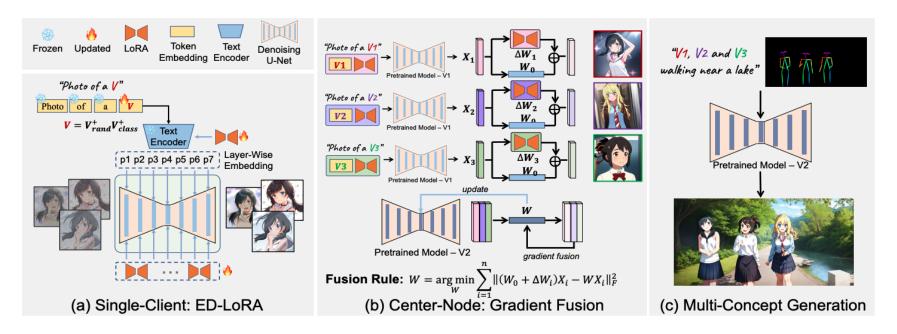
"An oil painting of S_* "

"Painting of two S_* fishing on a boat"

"App icon of S_{*}"

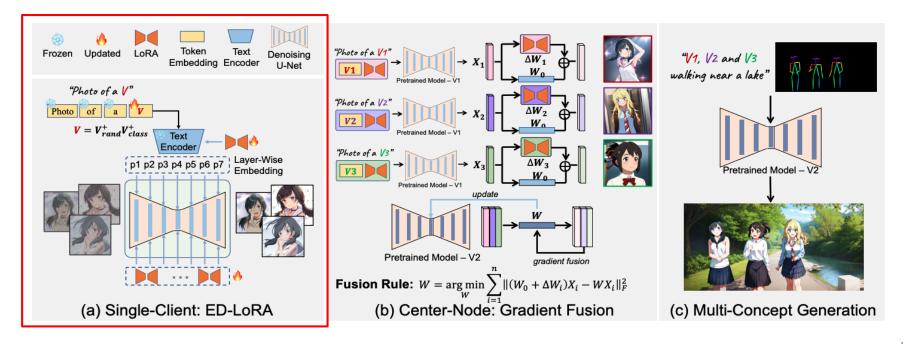
Multi-concept Personalization: Mix-of-Show, NUS & Tecent, NeurIPS'23

- Training Method
 - Single-Client Learning: learn LoRA for each concept separately
 - Center-Node Fusion: LoRA fusion
- Inference
 - Use the fused LoRA to generate multi-concept images



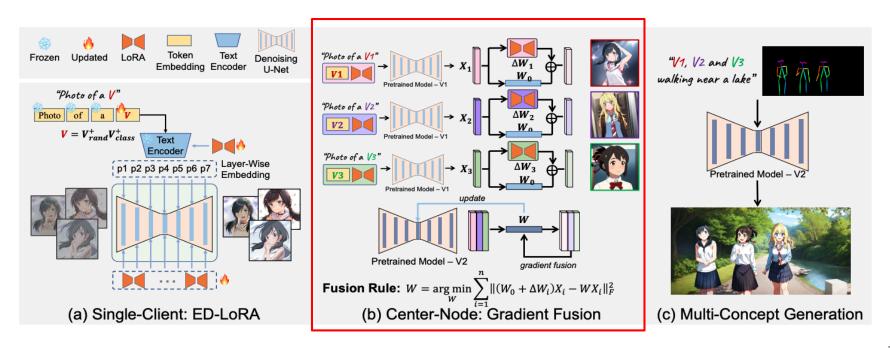
Multi-concept Personalization: Mix-of-Show, NeurIPS'23

- Training Method
 - **Single-Client Learning:** learn LoRA for each concept separately.
 - Center-Node Fusion: LoRA fusion
- Inference
 - Use the fused LoRA to generate multi-concept images



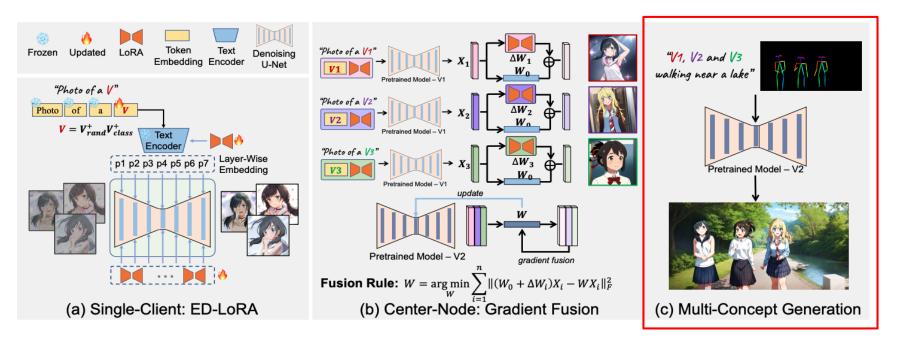
Multi-concept Personalization: Mix-of-Show, NeurIPS'23

- Training Method
 - **Single-Client Learning:** learn LoRA for each concept separately.
 - **Center-Node Fusion**: fuse the above LoRAs into a single LoRA...how?
- Inference
 - Use the fused LoRA to generate multi-concept images



Multi-concept Personalization: Mix-of-Show, NeurIPS'23

- Training Method
 - Single-Client Learning: learn LoRA for each concept separately.
 - **Center-Node Fusion**: fuse the above LoRAs into a single LoRA...how?
- Inference
 - Use the fused LoRA to generate multi-concept images



Multi-concept Personalization: CustomDiffusion, CMU/Tsinghua/Adobe, CVPR'23

- Similar to Mix-of-Show, CustomDiffusion also has two stages:
 - Stage 1: Fine-tune for each concept separately 0
 - Stage 2: Merge different concepts into one Ο

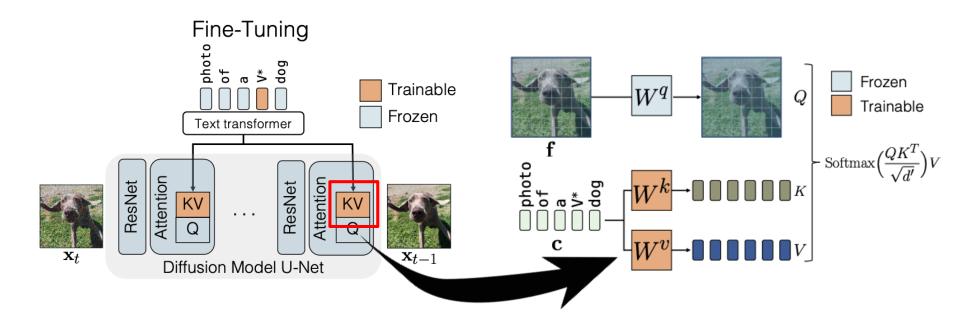
digital illustration of a V* dog in front of a moongate

V* dog wearing sunglasses in front of a moongate

Multi-concept composition

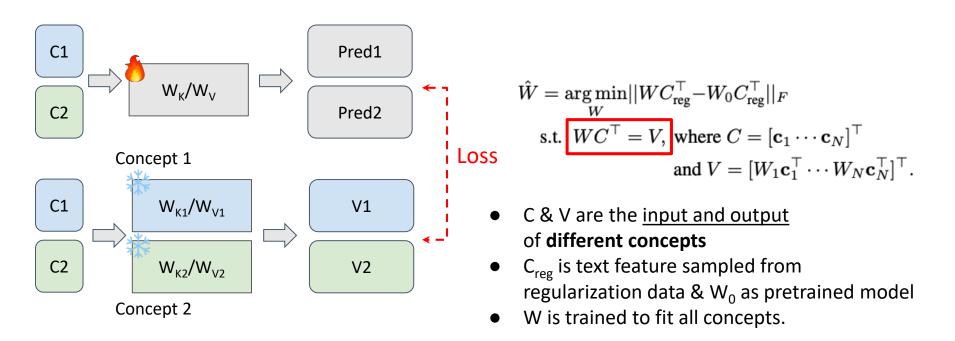
Multi-concept Personalization: CustomDiffusion (cont'd)

- Similar to Mix-of-Show, CustomDiffusion also has two stages:
 - Stage 1: Fine-tune V* & cross-attention layer for each concept separately
 - Stage 2: Merge different concepts into one



Multi-concept Personalization: CustomDiffusion (cont'd)

- **Stage 1**: Fine-tune for each concept separately
- Stage 2: Merge different concepts into one
 - Fuse $W_{ki} \& W_{vi}$ of different concepts into a single $W_k \& W_v$ by minimizing the loss below
 - It's a closed-form solution since the WK & WV are linear matrices (via Lagrange multiplier)
 ~4x faster than Mix-of-Show for merging multiple concepts



Diffusion Model for Personalization

- (Recap) Single Concept
 - o Textual Inversion, ICLR'23
 - DreamBooth, CVPR'23
- Multiple Concepts
 - CustomDiffusion, CVPR'23
 - o Mix-of-Show, NeurIPS'23

• Beyond Image: Video Motion Customization

• Video Motion Customization, CVPR'24

Input samples \xrightarrow{invert} "S_{*}"

"Elmo sitting in the same pose as S_* " "Crochet S_* "

Input samples \xrightarrow{invert} "S_{*}"

"An oil painting of S_* "

"Painting of two S_* fishing on a boat"

"App icon of S_{*}"

Video Motion Customization (VMC) KAIST, CVPR'24

- Task
 - **Given**: reference video + text prompt
 - **Output**: video that matchs

(1) the motion of reference video & (2) the semantic of text prompt

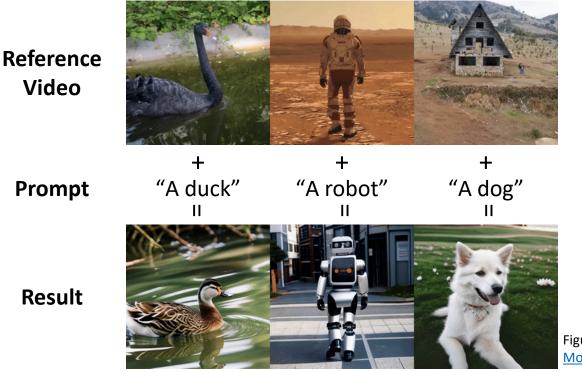


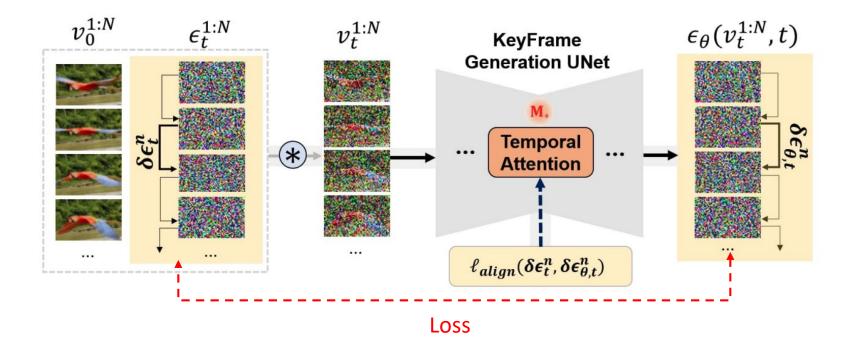
Figure Credit: MotionClone

CVPR'24 VMC: Video Motion Customization using Temporal Attention Adaption for Text-to-Video Diffusion Models

Video Motion Customization (VMC)

• Training

- Instead of calculating the MSE loss between noise prediction and GT,
 VMC calculates that btw the **noise residual** of prediction and GT
- To focus on learning temporal info (i.e., motion), only fine-tune the temporal attention layer

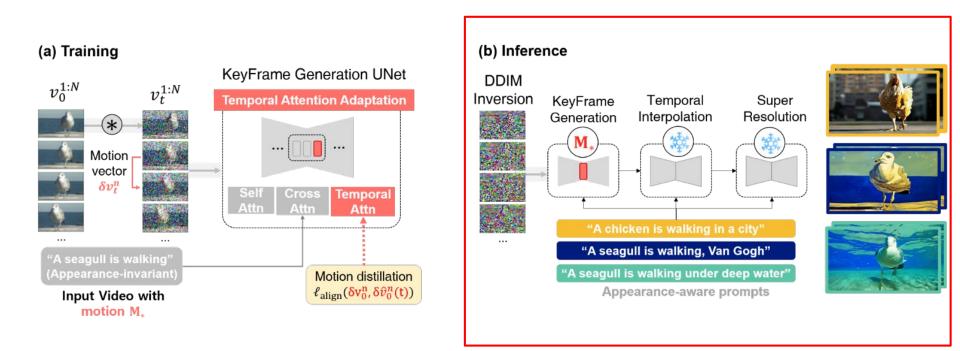


CVPR'24 VMC: Video Motion Customization using Temporal Attention Adaption for Text-to-Video Diffusion Models

Video Motion Customization (VMC)

• Inference

- **Input**: DDIM inversed noise of reference video + text prompt
- **Output**: output video with desirable motion + appearance



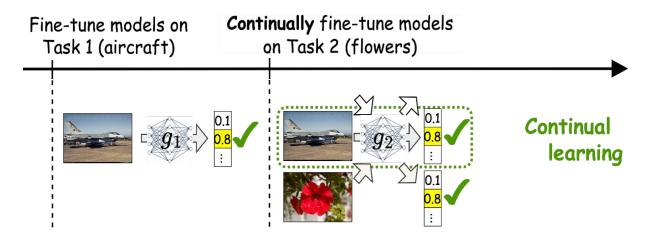
What to Be Covered Today...

- Multimodal LLM
- Advanced Topics in LLM/VLM
 - Concept Editing
 - Concept Unlearning
 - Personalization
 - Continual Learning

Continual Learning (aka Incremental Learning)

• Motivation

- Always new dataset, knowledge, etc, to finetune the LLM/VLM
 - No practical to re-train foundation models from scratch
- It is a naive learning way, since human is a continual learner.
- → Goal: learn downstream tasks/datasets in a sequential (or incremental) way, while not forgetting what models have learned before.



Continual Learning (cont'd)

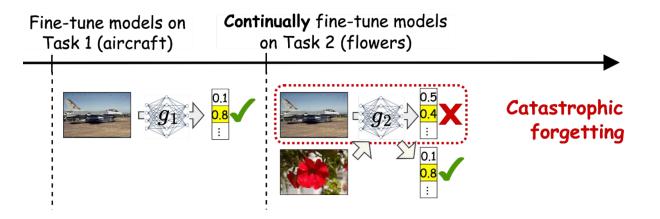
• Task Definition

• Learning a list of datasets in a sequential manner **without forgetting** previous knowledge.

• The most straight forward strategy

- Directly fine-tune a pre-trained model on a new dataset
- Challenge: Suffer from the well-known catastrophic forgetting issue,

as the model weights can be totally distorted toward the new task only



Previous works on Continual Learning

- Rehearsal-based methods
 - o iCaRL (CVPR'17)
- Regularization-based methods
 - EWC (PNAS'17)
- Continual Learning for open-vocab. Vision-Language Models
 - o ZSCL (ICCV'23)
 - Select and Distill (ECCV'24)

iCaRL: Incremental Classifier and Representation Learning, Oxford, CVPR'17

- Rehearsal-based method
- Idea:
 - Maintain a subset of previous data in a class exemplar sets $P = (P_1, \dots, P_{s-1})$ where {1, 2, ..., k-1} are the learned classes
 - Joint training with the current data X^s, \ldots, X^t with classes {s, ..., t}
- Method
 - For data in P, enforce the learned model θ output as that of θ_{old} .
 - Can be viewed as **Knowledge Distillation**
 - For the newer data, training with the standard cross entropy loss.

$$Y_{\text{old}} = \{ f_{\theta_{\text{old}}}(x) | \forall x \in P \}$$

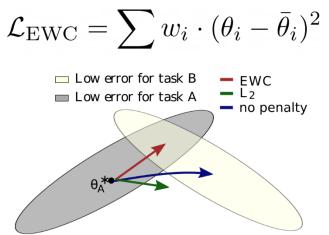
$$\mathcal{L}(\theta) = \sum_{(x,y)\in D} \left[\sum_{y=s}^{t} \mathcal{L}(Y_{\text{new}}, \hat{Y}) + \sum_{y=1}^{s-1} \mathcal{L}(Y_{\text{old}}, \hat{Y}) \right]$$

EWC: Overcoming catastrophic forgetting in neural networks, DeepMind, PNAS'17

- Regularization-based method
- Idea:
 - <u>Weight Consolidation: Restrict the updated weights not to be too different from</u> the original model weights.

$$\mathcal{L}_{\mathrm{WC}} = \sum_{i} (\theta_i - \bar{\theta}_i)^2$$

- <u>Elastic Weight Consolidation</u>: Each^a parameter should not be restricted with the same weights
 - o i: the index of the model parameters.



Overcoming catastrophic forgetting in neural networks

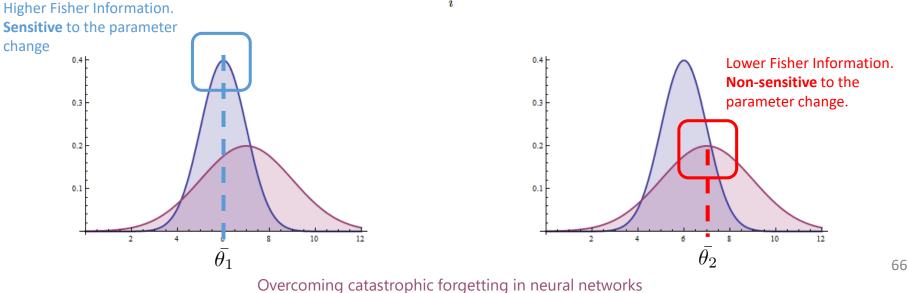
EWC, DeepMind, PNAS'17 (cont'd)

- Method (cont'd)
 - Using Fisher Information (F) to determine the importance of a parameter to the previous task.
 - O Fisher information: the expectation of second derivative of negative log-likelihood at $\overline{ heta}$

$$\mathcal{L}_{ ext{EWC}} = \sum_i rac{\lambda}{2} F_i (heta_i - ar{ heta}_i)^2$$

O λ : a hyper-parameter to determine the overall importance of previous tasks.

$$\mathcal{L}(\theta) = \mathcal{L}_B(\theta) + \sum_i \frac{\lambda}{2} F_i (\theta_i - \theta_{A,i}^*)^2$$



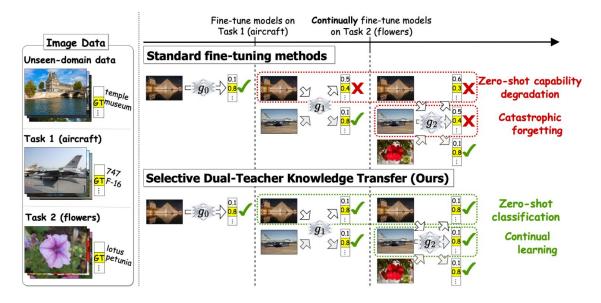
Continual Learning for Open-Vocab Vision-Language Models

• Motivation

With the prevalence of large-scale Vision-Language Models (VLMs),
 Continual Learning for VLMs has emerged as a potential research trends.

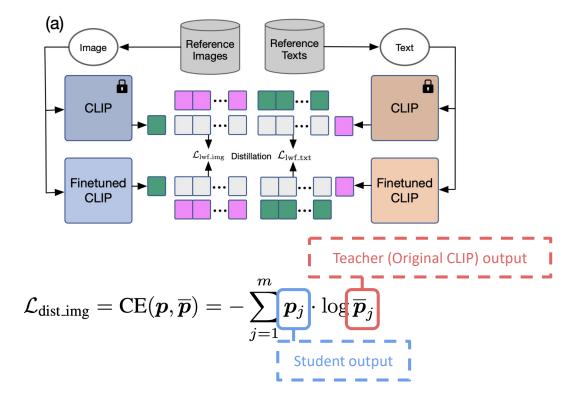
• Goal

- Sequentially learning from new datasets
- O Preserve the original zero-shot ability for unseen data
- O Maintain knowledge learned from previous stages (as existing continual learning methods do)



ZSCL: Preventing Zero-Shot transfer degradation in Continual Learning of vision-language models, NUS, ICCV'23

- Method
 - Utilize an auxiliary reference dataset (e.g., ImageNet), and perform **Knowledge Distillation** from **the original CLIP model**.
 - (1) Distill knowledge on **both visual and textual sides**.



ZSCL, NUS, ICCV'23 (cont'd)

• Method (cont'd)

0

- (2) WE: <u>Weight space Ensemble to regularize the weights</u>
 - The learned model weights would not be too different from the weights of the previous stage

$$\hat{\theta}_t = \begin{cases} \theta_0 & t = 0\\ \frac{1}{t+1}\theta_t + \frac{t}{t+1} \cdot \hat{\theta}_{t-1} & \text{every I iterations} \end{cases}$$

Same form as EMA (exponetial moving average)
 Training strategy: (1) -> (2) -> (1) -> (2) -> ...

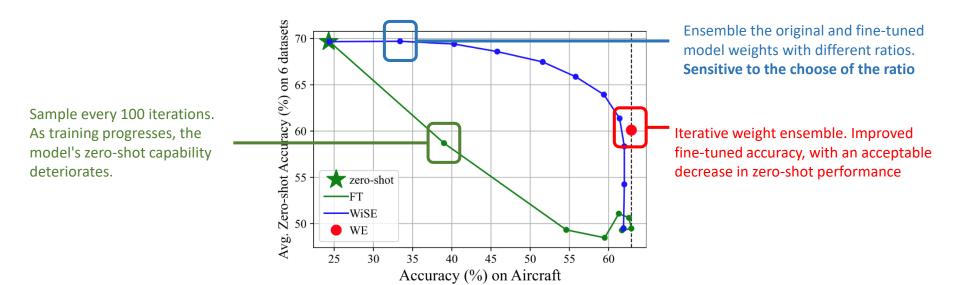
(1)
$$\mathcal{L} = \mathcal{L}_{ce} + \lambda \cdot (\mathcal{L}_{lwf_img} + \mathcal{L}_{lwf_txt})$$

(2)
$$\hat{\theta}_t = \begin{cases} \theta_0 & t = 0 \\ \frac{1}{t+1}\theta_t + \frac{t}{t+1} \cdot \hat{\theta}_{t-1} & \text{every I iterations} \end{cases}$$

ZSCL, NUS, ICCV'23 (cont'd)

• Comparisons

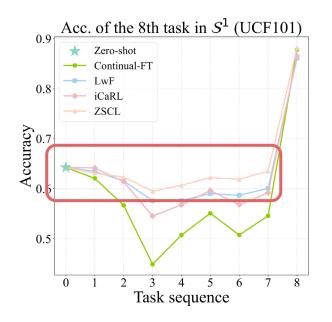
• Zero-shot accuracy vs. accuracy on novel task



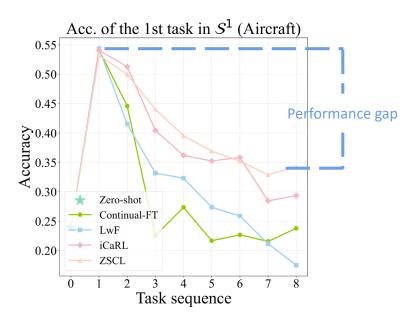
ZSCL, NUS, ICCV'23 (cont'd)

• Limitation

• ZSCL still largely suffer from catastrophic forgetting for previous tasks.



ZSCL can preserve zero-shot ability for unseen data



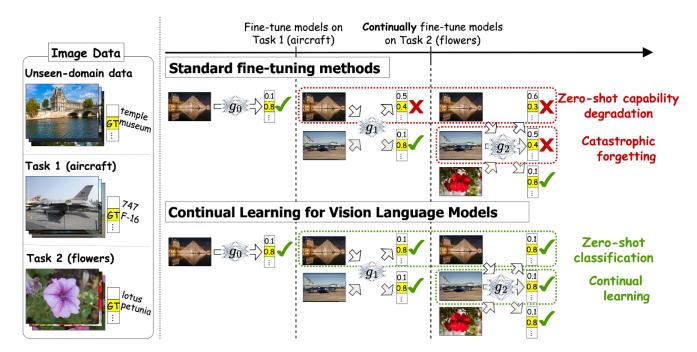
There is still a gap for previous task after training on multiple datasets

Preventing Zero-Shot transfer degradation in Continual Learning of vision-language models

Select and Distill: Selective Dual-Teacher Knowledge Transfer for Continual Learning on Vision-Language Models, NTU, ECCV'24

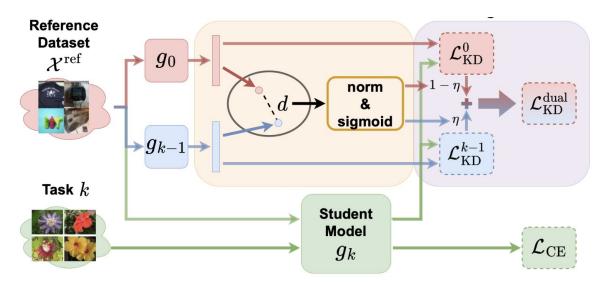
• Goal

- Same as ZSCK, adapt to new datasets sequentially while:
 - preserving the original pre-trained zero-shot ability
 - o maintaining the knowledge learned from previous stages.



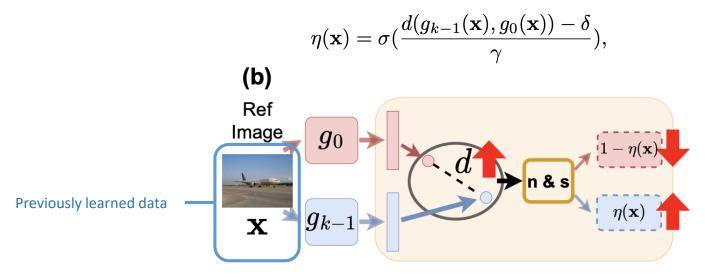
• Idea

- Follow ZSCL, utilize a reference dataset for knowledge distillation
- Dual-Teacher Knowledge Distillation
 - Distill from **the original pre-trained VLM** to preserve **zero-shot ability**.
 - Distill from the most recent fine-tuned VLM to preserve prior knowledge.
- Key
 - For any data point in the reference dataset,
 - we need to select a proper model and distill its knowledge.



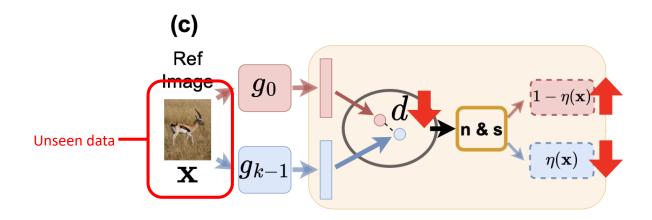
Select and Distill: Selective Dual-Teacher Knowledge Transfer for Continual Learning on Vision-Language Models

- Observation
 - If a data point is a previously learned data.
 - It must be seen by g_{k-1} , but never been seen by g_0
 - The **feature distance d** between g_0 and g_{k-1} can be large or small?
 - Select g_{k-1} as the teacher model to maintain previous knowledge
 - $\eta(\mathbf{x})$: A normalized distance between 0~1, determine how much should we distill from g_{k-1}



Select and Distill: Selective Dual-Teacher Knowledge Transfer for Continual Learning on Vision-Language Models

- Observation
 - If a data point has never been seen by both g_{k-1} and g_0 (unseen data)
 - The feature distance d between g_0 and g_{k-1} can be relatively small
 - In this case, we should select g_0 as the teacher model to preserve the original zero-shot ability.



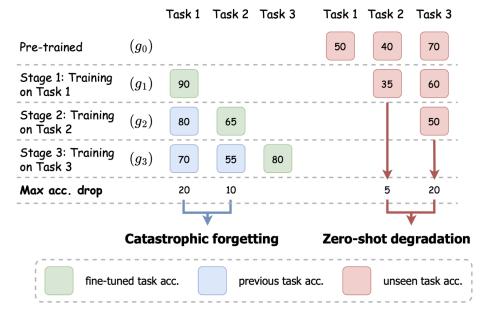
• Objective

$$\mathcal{L}_{\mathrm{KD}}^{k-1} = d(g_{k-1}(\mathbf{x}), g_k(\mathbf{x})) , \quad \mathcal{L}_{\mathrm{KD}}^0 = d(g_0(\mathbf{x}), g_k(\mathbf{x}))$$

$$\mathcal{L}_{\mathrm{KD}}^{\mathrm{dual}} = \sum_{\mathbf{x} \sim \mathcal{X}^{\mathrm{ref}}} \eta(\mathbf{x}) \cdot \mathcal{L}_{\mathrm{KD}}^{k-1} + (1 - \eta(\mathbf{x})) \cdot \mathcal{L}_{\mathrm{KD}}^0$$

$$\overset{\text{Reference}}{\underset{\mathcal{X}^{\mathrm{ref}}}{\underset{\mathbf{y}_{\mathrm{ref}}}{\underset{\mathbf{y}_{\mathrm{ref}}}{\underset{\mathbf{y}_{\mathrm{ref}}}{\underset{\mathbf{y}_{\mathrm{kD}}}{\underset{\mathbf{y}_{\mathrm{k}-1}}{\underset{\mathbf{x}_{\mathrm{KD}}}{\underset{\mathbf{y}_{\mathrm{KD}}}{\underset{\mathbf{x}_{\mathrm{KD}}}{\underset{\mathbf{y}_{\mathrm{KD}}}{\underset{\mathrm{KD}}}}}}}}}$$

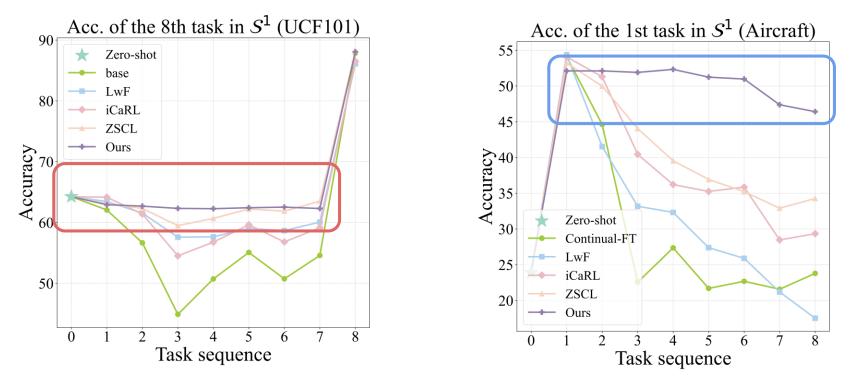
- Metrics
 - Average Accuracy
 - Average of the last performance on each dataset
 - Catastrophic forgetting
 - Max. performance gap after the task has been fine-tuned
 - Zero-shot degradation
 - Max. performance gap before the task has been fine-tuned



Select and Distill: Selective Dual-Teacher Knowledge Transfer for Continual Learning on Vision-Language Models

• Results

- Successfully preserve the zero-shot ability for unseen data
- o Mitigate the catastrophic forgetting of previously learned data



Successfully preserve zero-shot ability for unseen data

Largely mitigate the performance gap

Robustness

- We shuffle the training orders, producing 8 different training sequences.
- Our methods showing state-of-the-art performance on all metrics, and the results are stable across all training sequences.

Method / Sequence	\mathcal{S}^1	\mathcal{S}^2	\mathcal{S}^3	\mathcal{S}^4	\mathcal{S}^5	\mathcal{S}^6	\mathcal{S}^7	\mathcal{S}^8	Mean
Catastrophic forgetting (\downarrow)									
Continual FT	10.98	10.60	8.80	19.17	10.11	11.95	15.19	9.48	12.04
LwF [24]	10.38	6.52	6.37	10.22	7.99	7.70	10.41	8.91	8.56
iCaRL [35]	8.42	7.00	6.45	10.21	7.03	7.33	9.68	8.23	8.04
ZSCL [50]	4.67	2.35	2.13	2.97	3.15	4.28	4.89	4.70	3.64
MoE-Adapters [48]	2.74	4.71	4.28	1.15	1.50	1.60	2.94	2.77	2.71
Ours	1.70	1.16	0.89	1.04	0.59	1.34	1.12	1.79	1.20
Zero-shot degradation (\downarrow)									
Continual FT	24.81	23.58	19.54	16.46	22.22	19.02	19.54	24.02	21.15
LwF [24]	10.75	10.23	8.63	8.25	12.02	10.33	8.98	11.01	10.03
iCaRL [35]	13.77	12.68	11.28	12.14	13.20	13.20	13.09	14.01	12.92
ZSCL [50]	3.44	3.94	4.02	2.85	3.79	2.31	1.86	1.84	3.00
MoE-Adapters [48]	1.62	2.58	1.04	2.37	4.31	3.05	1.77	0.63	2.17
Ours	1.55	2.04	1.21	1.92	2.79	2.18	1.90	2.08	1.96
Average accuracy (\uparrow)									
Continual FT	76.16	76.24	78.03	68.69	76.64	75.44	72.71	77.45	75.17
LwF [24]	76.78	80.45	80.65	77.52	79.64	79.45	77.31	78.70	78.81
iCaRL [35]	77.99	79.77	79.93	76.66	79.26	79.08	77.06	78.61	78.55
ZSCL [50]	81.89	83.98	84.30	83.49	83.41	82.38	81.92	81.97	82.92
MoE-Adapters [48]	82.71	80.74	81.15	83.97	83.68	83.68	82.73	79.68	82.29
Ours	84.48	84.92	84.97	84.89	85.50	85.07	85.02	$\boldsymbol{84.52}$	84.92

Select and Distill: Selective Dual-Teacher Knowledge Transfer for Continual Learning on Vision-Language Models

What We Have Covered Today...

- Multimodal LLM
- Advanced Topics in LLM/VLM
 - Concept Editing
 - Concept Unlearning
 - Personalization
 - Continual Learning

