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What to Be Covered Today…

• Generative Model
• Generative Adversarial Network

• Adversarial Learning for Transfer Learning

• Recurrent Neural Networks
• From RNN to LSTM & GRU
• Sequence-to-Sequence Learning
• Attention in RNN

• Transformer (if time permits)
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Recap: From VAE to GAN

• Remarks
• We only need the decoder/generator in practice.
• We prefer fast generation.
• How do we know if the output images are sufficiently good?
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GAN (cont’d)

• Remarks
• A function maps normal distribution 𝑵𝑵 𝟎𝟎, 𝑰𝑰 to 𝑷𝑷𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅
• How good we are in mapping 𝑃𝑃𝑔𝑔 to 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑?

• Train & ask the discriminator!
• Conduct a two-player min-max game (see next slide for more details)
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Recap: Problem #1 - Vanishing Gradients

• What Might Go Wrong?
• GAN training is often unstable.
• In other words, training might not converge properly.
• The discriminator which we prefer is…
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Energy-Based GAN

• Energy Function
• Converting input data into scalar outputs, 

viewed as energy values
• Desired configuration is expected to 

output low energy values & vice versa.

• Energy Function as Discriminator 
• Use of autoencoder; can be pre-trained!
• Reconstruction loss outputs a range of values 

instead of binary logistic loss.
• Empirically better convergence

6Photo credit: https://github.com/znxlwm/pytorch-generative-model-collections

https://github.com/znxlwm/pytorch-generative-model-collections


Recap: Problem #2 - Mode Collapse

• Remarks
• The generator only outputs a limited number of image variants 

regardless of the inputs.
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MSGAN

• To address the mode collapse issue by conditional GANs 

• Mode Seeking Generative Adversarial Networks 
for Diverse Image Synthesis

• With the goal of producing diverse image outputs.

Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019 8



MSGAN (cont’d)

• Motivation (for unconditional GAN)

Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019
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• Proposed Regularization (for conditional GAN)

Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019
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MSGAN (cont’d)



• Qualitative results
• Conditioned on paired images

Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019
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MSGAN (cont’d)



Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019
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• Qualitative results
• Conditioned on text (will talk about Vision & Language later this semester)

MSGAN (cont’d)



Recap: Conditional GAN

• Goal
• Interpretable deep feature representation
• Disentangle attribute of interest c from the derived latent representation z

• Unsupervised: InfoGAN
• Supervised: AC-GAN

InfoGAN
Chen et al.

NIPS ’16

ACGAN
Odena et al.

ICML ’17

Chen et al., InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets., NIPS 2016.
Odena et al., Conditional image synthesis with auxiliary classifier GANs. ICML’17 13



What to Be Covered Today…

• Generative Model
• Generative Adversarial Network

• Adversarial Learning for Transfer Learning

• Recurrent Neural Networks 
• From RNN to LSTM & GRU
• Sequence-to-Sequence Learning
• Attention in RNN

• Transformer (if time permits)
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Revisit of CNN for Visual Classification

15LeCun & Ranzato, Deep Learning Tutorial, ICML 2013



(Traditional) Machine Learning vs. Transfer Learning

• Machine Learning
• Collecting/annotating data is typically expensive.

16
Image Credit: A. Karpathy
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https://techcrunch.com/2017/02/08/udacity-open-sources-its-self-driving-car-simulator-for-anyone-to-use/
https://googleblog.blogspot.tw/2014/04/the-latest-chapter-for-self-driving-car.html

• A More Practical Example

Transfer Learning: What, When, and Why? (cont’d)



Domain Adaptation
in Transfer Learning

• What’s DA?
• Leveraging info source to target domains, so that the same learning task 

across domains (or particularly in the target domain) can be addressed.
• Typically all the source-domain data are labeled.

• Settings
• Semi-supervised DA: few target-domain data are with labels.
• Unsupervised DA: no label info available in the target-domain.

(shall we address supervised DA?)
• Imbalanced DA: fewer classes of interest in the target domain
• Homogeneous vs. heterogeneous DA
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Deep Feature is Sufficiently Promising.

• DeCAF
• Leveraging an auxiliary large dataset to train CNN.
• The resulting features exhibit sufficient representation ability.
• Supporting results on Office+Caltech datasets, etc.

19Donahue et al., DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition, ICML 2014



Deep Domain Confusion (DDC)

• Deep Domain Confusion: Maximizing for Domain Invariance
• Tzeng et al., arXiv: 1412.3474, 2014
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Deep Domain Confusion (DDC)

21

shared
weights

✓Minimize classification loss:



Domain Confusion by Domain-Adversarial Training

• Domain-Adversarial Training of Neural Networks (DANN)
• Y. Ganin et al., ICML 2015
• Maximize domain confusion = maximize domain classification loss
• Minimize source-domain data classification loss
• The derived feature f can be viewed as a disentangled & domain-invariant feature.
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Beyond Domain Confusion

• Domain Separation Network (DSN)
• Bousmalis et al., NIPS 2016
• Separate encoders for domain-invariant and domain-specific features
• Private/common features are disentangled from each other.
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Beyond Domain Confusion

• Domain Separation Network, NIPS 2016
• Example results

32

Source-domain 
image Xs

Reconstruct private + shared features
D(Ec(xs)+Ep(xs))

Reconstruct shared feature only D(Ec(xs))

Reconstruct private feature D(Ep(xs))

Target-domain 
image XT



Beyond Domain Confusion

• Domain Separation Network, NIPS 2016
• Example results

32
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What to Be Covered Today…

• Generative Model
• Generative Adversarial Network

• Adversarial Learning for Transfer Learning

• Recurrent Neural Networks
• From RNN to LSTM & GRU
• Sequence-to-Sequence Learning
• Attention in RNN

• Transformer (if time permits)
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What Are The Limitations of CNN?

• Deal with image data
• Both input and output are images/vectors

• Simply feed-forward processing

DOG

CAT

MONKEY
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Example of (Visual) Sequential Data

https://quickdraw.withgoogle.com/#
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More Applications in Vision

Image Captioning

Figure from Vinyals et al, “Show and tell: A neural image caption generator”, CVPR 2015
29



How to Model Sequential Data?

• Deep learning for sequential data
• Possible solution: 3D convolution neural networks

3D convolution

30



How to Model Sequential Data?

• Deep learning for sequential data
• Possible solution: 3D convolution neural networks 
• Recurrent neural networks (RNN)

RNN

31



Recurrent Neural Networks

• Parameter sharing + unrolling
• Keeps the number of parameters fixed
• Allows sequential data with varying lengths

• Memory ability
• Capture and preserve information which has been extracted/processed
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Recurrence Formula

• Same function and parameters used at every time step:

ℎ𝑡𝑡 ,𝑦𝑦𝑡𝑡 = 𝑓𝑓𝑊𝑊 ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡

𝑥𝑥

RNN

𝑦𝑦
new state
for time t

state at
time t-1

input vector 
at time t

output vector
at time t

function
with parameters W
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Recurrence Formula

• Same function and parameters used at every time step:

ℎ𝑡𝑡 ,𝑦𝑦𝑡𝑡 = 𝑓𝑓𝑊𝑊 ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡

↓

ℎ𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑊𝑊ℎℎℎ𝑡𝑡−1 + 𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑡𝑡
𝑦𝑦𝑡𝑡 = 𝑊𝑊ℎ𝑦𝑦ℎ𝑡𝑡

𝑥𝑥

RNN

𝑦𝑦
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Multiple Recurrent Layers
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Multiple Recurrent Layers
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e.g., video indexinge.g., video predictione.g., image caption e.g., action recognition
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Sequence-to-Sequence Modeling



Training RNNs: 
Back Propagation Through Time

• Let’s focus on one training instance.

• The divergence to be computed is between 
the sequence of outputs by the network and the desired output sequence.

• Generally, this is not just the sum of the divergences at individual times.
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Back Propagation Through Time (BPTT)

39Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013



Gradient Vanishing & Exploding

● Computing gradient involves many factors of W

○ Exploding gradients : Largest singular value > 1

○ Vanishing gradients : Largest singular value < 1

40



Solutions…

● Gradients clipping : rescale gradients if too large

● How about vanishing gradients?

○ Change RNN architecture!

standard gradient descent trajectories

gradient clipping to fix problem

41



Variants of RNN

• Long Short-term Memory (LSTM) [Hochreiter et al., 1997]

• Additional memory cell 
• Input/Forget/Output Gates
• Handle gradient vanishing
• Learn long-term dependencies

• Gated Recurrent Unit (GRU) [Cho et al., EMNLP 2014]

• Similar to LSTM
• handle gradient vanishing & learn long-term dependencies

• No additional memory cell
• Reset / Update Gates
• Fewer parameters than LSTM
• Comparable performance to LSTM [Chung et al., NIPS Workshop 2014]
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Input in time tOutput in time t

tanh

tanh

tanh
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Vanilla RNN, LSTM, & GRU

𝑥𝑥

RNN

𝑦𝑦

RNN

LSTM GRU



Vanilla RNN vs. LSTM vs. GRU

Vanilla RNN LSTM GRU

Cell state X O O

Number of Gates N/A 3 2

Parameters Least Most Fewer

Gradient Vanishing / 
Exploding   
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What to Be Covered Today…

• Generative Model
• Generative Adversarial Network

• Adversarial Learning for Transfer Learning

• Recurrent Neural Networks
• From RNN to LSTM & GRU
• Sequence-to-Sequence Learning
• Attention in RNN

• Transformer (if time permits)
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Sequence-to-Sequence Modeling 

• Setting
• An input sequence X1, …, XN

• An output sequence Y1, …, YM

• Generally N ≠ M, i.e., no synchrony between X and Y

• Examples
• Speech recognition: speech goes in, and a word sequence comes out
• Machine translation: word sequence goes in, and another comes out
• Video captioning: video goes in, word sequence comes out

Deep learning rocks!

深度學習好棒棒!

46



S-to-S Models with Alignment

• The input and output sequences happen in the same order
• The input/output sequences may be asynchronous.
• E.g., speech recognition or video captioning, in which the input sequence 

corresponds to the phoneme/caption sequence out.
• Recall that…

e.g., video captioninge.g., video predictione.g., image caption e.g., action recognition

47



• Original model proposed in NIPS 2014
• An encoder-decoder model

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014

Sequence-to-Sequence Modeling (cont’d) 

48



Example of Seq-to-Seq Modeling:
Image Captioning

Figure from Karpathy et a, “Deep Visual-Semantic Alignments for Generating Image Descriptions”, CVPR 2015
49



50

CNN
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Input in time tOutput in time t

RNN
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Input in time tOutput in time t

RNN



Example of Seq-to-Seq Modeling:
Video Prediction

• Input: A few known frames
• Output: Unknown future frames

How about the future frames? 
(i.e., t > 5)
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• Unsupervised Learning of Video Representations using LSTMs
(Srivastava et al., ICML’15)

- LSTM Encoder-Decoder model
- Two tasks: Reconstruction & Prediction

- Results (L: ref video, R: output video) 
- Bouncing (Moving) MNIST

- Video patches of UCF-101

LSTM
Cell 1

LSTM
Cell 2

LSTM
Cell 3

Cross Entropy Loss 
or L2 Loss

Cross Entropy Loss 
or L2 Loss
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• Learning to Generate Long-Term Future via Hierarchical Prediction
(Villegas et al., ICML’17)

Stage 2:
Future Pose Prediction 

Stage 3:
Image Generation 

Stage 1:
Pose Estimation Hourglass network (Newell et al., ECCV’16)

Sequence-to-Sequence model on high-level structure

Visual-Structure Analogy

58



• Learning to generate long-term future via hierarchical prediction 
(Villegas et al., ICML’17)

Step 2:
Future Pose Prediction Sequence-to-Sequence model on high-level structure

Objective Function:
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Step 3:
Image Generation Visual-Structure Analogy

• Learning to generate long-term future via hierarchical prediction
(Villegas et al., ICML’17)

Objective Function: Adversarial Training -> alternately minimize L & LDisc

Update Image Generation Network (G)

Update Discriminator (D)

D

G

Real

Fake

Fake

60



• Example Results

• Note that the above two video prediction works are deterministic, not stochastic!

Results on Penn Action Dataset:
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What to Be Covered Today…

• Generative Model
• Generative Adversarial Network

• Adversarial Learning for Transfer Learning

• Recurrent Neural Networks
• From RNN to LSTM & GRU
• Sequence-to-Sequence Learning
• Attention in RNN

• Transformer (if time permits)
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What’s the Potential Problem in RNN?

• Each hidden state vector extracts/carries information across time steps 
(some might be diluted downstream).

• Information of the entire input sequence is embedded into 
a single hidden state vector.
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• Outputs at different time steps have particular meanings.

• However, synchrony between input and output seqs is not required.

What’s the Potential Problem? (cont’d)
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• Connecting every hidden state between encoder and decoder?

• Infeasible! 
• Both inputs and outputs are with varying sizes.
• Overparameterized
• Possible solution: attention

What’s the Potential Problem? (cont’d)

65



Solution #1: Attention Model

• What should the attention model be?
• A NN whose inputs are z and h while output is a scalar, 

indicating the similarity between z and h.

• Most attention models are jointly learned 
with other parts of network (e.g., recognition, etc.)

66



0.5                              0.5                                  0                            0   

𝒄𝒄𝟎𝟎 = ∑𝜶𝜶𝐡𝐡
= 0.5h1 + 0.5h2

Solution: Attention Model
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Solution: Attention Model
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0                               0                              0.5                            0.5

𝒄𝒄𝟏𝟏 = ∑𝜶𝜶𝐡𝐡
= 0.5h3 + 0.5h4

Solution: Attention Model
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Repeat the process until 
<EOS> token was generated

Solution: Attention Model
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Example: Image Captioning with Attention

• RNN focuses visual attention at different spatial locations when 
generating corresponding words during captioning.

Xu et al, “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015 71



Image Captioning with Attention

72



Weighted combination of features

Distribution of attention weights over L locations

Image Captioning with Attention
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Image Captioning with Attention
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Weighted combination of features

Distribution of attention weights over L locations

Image Captioning with Attention
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Repeat the process until 
<EOS> token was generated

Image Captioning with Attention

76



Attention helps image recognition…
What else?
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What to Be Covered Today…

• Generative Model
• Generative Adversarial Network

• Adversarial Learning for Transfer Learning

• Recurrent Neural Networks 
• From RNN to LSTM & GRU
• Sequence-to-Sequence Learning
• Attention in RNN

• Transformer
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• Attention in a pre-defined sequential order

• Information loss due to long sequences…

• Connecting every hidden state between encoder and decoder?

• Infeasible! 
• Both inputs and outputs are with varying sizes.
• Overparameterized

79

RNN with Attention is Good, But..



RNN with Attention is Good, But..

• Any better way to perform attention across features?

80



Solution #2: Transformer

• “Attention is all you need”, NIPS/NeurIPS 2017

• Self-attention for text translation 

• Say goodbye to CNN & RNN

• More details available at:
https://www.youtube.com/watch?v=rcWMRA9E5RI
http://jalammar.github.io/illustrated-transformer/

81

https://www.youtube.com/watch?v=rcWMRA9E5RI
http://jalammar.github.io/illustrated-transformer/
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Encoder

I bought an apple and an orange

Token
Embedding

Embedded
Tokens

Tokens

𝑊𝑊𝐸𝐸 𝑊𝑊𝐸𝐸 𝑊𝑊𝐸𝐸 𝑊𝑊𝐸𝐸 𝑊𝑊𝐸𝐸 𝑊𝑊𝐸𝐸 𝑊𝑊𝐸𝐸
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I bought an apple and an orange
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Self-Attention

93Slide credit: Prof. J.-B. Huang @ U. Maryland
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Embedded
Tokens

Tokens I bought an apple watch

Self-Attention
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Embedding Space
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Embedded
Tokens

Tokens I bought an apple watch

Self-Attention

apple

Embedding Space

97Slide credit: Prof. J.-B. Huang @ U. Maryland



Self-Attention (1/5)
• Query q, key k, value v vectors 

are learned from each input x

98

𝑞𝑞𝑖𝑖 = 𝑊𝑊𝑄𝑄𝑥𝑥𝑖𝑖
𝑘𝑘𝑖𝑖 = 𝑊𝑊𝐾𝐾𝑥𝑥𝑖𝑖
𝑣𝑣𝑖𝑖 = 𝑊𝑊𝑉𝑉𝑥𝑥𝑖𝑖

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑁𝑁

𝑞𝑞1 𝑘𝑘1 𝑣𝑣1 𝑞𝑞2 𝑘𝑘2 𝑣𝑣2 𝑞𝑞𝑁𝑁 𝑘𝑘𝑁𝑁 𝑣𝑣𝑁𝑁

…



Self-Attention (2/5)
• Relation between each input is modeled 

by inner-product of query q and key k. 

99

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑁𝑁

𝑞𝑞1 𝑘𝑘1 𝑣𝑣1

𝒂𝒂𝟏𝟏,𝟏𝟏

𝑞𝑞2 𝑘𝑘2 𝑣𝑣2

𝒂𝒂𝟏𝟏,𝟐𝟐

𝑞𝑞𝑁𝑁 𝑘𝑘𝑁𝑁 𝑣𝑣𝑁𝑁

𝒂𝒂𝟏𝟏,𝑵𝑵

…

𝑎𝑎1,𝑖𝑖 = 𝑞𝑞1�𝑘𝑘𝑖𝑖
𝑑𝑑

, where 𝑎𝑎 ∈ 𝑅𝑅, 𝑞𝑞, 𝑘𝑘 ∈ 𝑅𝑅𝑑𝑑



Self-Attention (3/5)

• SoftMax is applied:

0 ≤ �𝑎𝑎𝑖𝑖 = 𝑒𝑒𝑎𝑎𝑖𝑖/∑𝑗𝑗N 𝑒𝑒𝑎𝑎𝑗𝑗 ≤ 1 , for I =1, …, N
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𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑁𝑁

𝑞𝑞1 𝑘𝑘1 𝑣𝑣1

𝒂𝒂𝟏𝟏,𝟏𝟏

𝑞𝑞2 𝑘𝑘2 𝑣𝑣2

𝒂𝒂𝟏𝟏,𝟐𝟐

𝑞𝑞𝑁𝑁 𝑘𝑘𝑁𝑁 𝑣𝑣𝑁𝑁

𝒂𝒂𝟏𝟏,𝑵𝑵

…

SoftMax

�𝒂𝒂𝟏𝟏,𝟏𝟏 �𝒂𝒂𝟏𝟏,𝟐𝟐 �𝒂𝒂𝟏𝟏,𝑵𝑵



Self-Attention (4/5)

• Value vectors v are aggregated 
with attention weight  �𝑎𝑎 , i.e., 𝑦𝑦1 = ∑𝑖𝑖𝑁𝑁 �𝑎𝑎𝑖𝑖 � 𝑣𝑣𝑖𝑖
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𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑁𝑁

𝑞𝑞1 𝑘𝑘1 𝑣𝑣1

�𝒂𝒂𝟏𝟏,𝟏𝟏

𝑞𝑞2 𝑘𝑘2 𝑣𝑣2

�𝒂𝒂𝟏𝟏,𝟐𝟐

𝑞𝑞𝑁𝑁 𝑘𝑘𝑁𝑁 𝑣𝑣𝑁𝑁

�𝒂𝒂𝟏𝟏,𝑵𝑵

…

x x x

𝑦𝑦1



Self-Attention (5/5)

• All 𝑦𝑦𝑖𝑖 can be computed in parallel

• Each 𝑦𝑦𝑖𝑖 considers 𝑥𝑥1~𝑥𝑥𝑁𝑁, modeling their long-distance dependencies.

• Global feature can be obtained by average-pooling over 𝑦𝑦1~𝑦𝑦𝑁𝑁
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𝑣𝑣𝑁𝑁𝑣𝑣𝑁𝑁

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑁𝑁…

𝑦𝑦1

Self-attention layer

𝑦𝑦2 𝑦𝑦3…



Self-Attention: Implementation

• Input sequence can be represented as a N x 𝑑𝑑𝑖𝑖𝑖𝑖 matrix

• * denotes matrix multiplication
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𝑁𝑁

𝑑𝑑𝑖𝑖𝑖𝑖

Input matrix

* 𝑑𝑑𝑖𝑖𝑖𝑖

𝑑𝑑

𝑊𝑊𝑄𝑄

* 𝑑𝑑𝑖𝑖𝑖𝑖

𝑑𝑑

𝑊𝑊𝐾𝐾

* 𝑑𝑑𝑖𝑖𝑖𝑖

𝑑𝑑

𝑊𝑊𝑉𝑉

𝑁𝑁

𝑑𝑑

𝑄𝑄

𝑁𝑁

𝑑𝑑

𝐾𝐾

𝑁𝑁

𝑑𝑑

𝑉𝑉

𝑥𝑥1
𝑥𝑥2

𝑥𝑥𝑁𝑁

𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑑𝑑𝑖𝑖𝑖𝑖

.

.

.
=



Self-Attention: Implementation

• Output matrix Y

• All operations are matrix multiplication, can be parallelized on GPU.
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𝑁𝑁

𝑑𝑑

𝑄𝑄
𝑁𝑁

𝑑𝑑 𝐾𝐾𝑇𝑇* 𝐴𝐴𝑁𝑁
SoftMax

𝐴̂𝐴𝑁𝑁
/ 𝑑𝑑

𝐴̂𝐴𝑁𝑁

𝑁𝑁

* 𝑁𝑁 𝑉𝑉

𝑑𝑑

𝑁𝑁 𝑌𝑌

𝑑𝑑



Multi-Head Self-Attention (1/4)

• Perform self-attention at different subspaces,
implying performing attention over different input feature types 
(e.g., representations, modalities, positions, etc.)
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Multi-Head Self-Attention (2/4)

• Perform self-attention at different subspaces,
implying performing attention 
over different input feature types

• See example below
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Attention weights 
of Head 1

Attention weights 
of Head 2



Multi-Head Self-Attention (3/4)

• A 2-head example, output of two heads are concatenated.
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x x

𝑦𝑦𝑖𝑖,1

𝑥𝑥𝑖𝑖 𝑥𝑥𝑗𝑗

𝑞𝑞𝑖𝑖 𝑘𝑘𝑖𝑖 𝑣𝑣𝑖𝑖 𝑞𝑞𝑖𝑖 𝑘𝑘𝑖𝑖 𝑣𝑣𝑖𝑖 𝑞𝑞𝑁𝑁𝑞𝑞𝑗𝑗 𝑘𝑘𝑗𝑗 𝑣𝑣𝑗𝑗 𝑞𝑞𝑗𝑗 𝑘𝑘𝑗𝑗 𝑣𝑣𝑗𝑗

Head 1 Head 2 Head 1 Head 2



Multi-Head Self-Attention (4/4)

• A 2-head example, output of two heads are concatenated.
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𝑥𝑥𝑖𝑖 𝑥𝑥𝑗𝑗

𝑞𝑞𝑖𝑖 𝑘𝑘𝑖𝑖 𝑣𝑣𝑖𝑖 𝑞𝑞𝑖𝑖 𝑘𝑘𝑖𝑖 𝑣𝑣𝑖𝑖 𝑞𝑞𝑁𝑁

x x

𝑦𝑦𝑖𝑖,1

𝑞𝑞𝑗𝑗 𝑘𝑘𝑗𝑗 𝑣𝑣𝑗𝑗 𝑞𝑞𝑗𝑗 𝑘𝑘𝑗𝑗 𝑣𝑣𝑗𝑗

Head 1 Head 2 Head 1 Head 2

𝑦𝑦𝑖𝑖,2 = 𝑦𝑦𝑖𝑖



The Residuals 
• A residual connection followed by layer normalization
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The Decoder in Transformer 
• Encoder-decoder attention 

• Q from self-attn in decoder, K & V from encoder outputs

• Masked multi-head attention 
• Design similar to that of encoder, except for decoder #1

which takes additional inputs (of GT/predicted word embeddings).
• Mask unpredicted tokens during softmax: why?
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The Decoder in Transformer (cont’d) 
• Encoder-decoder attention 

• Q from self-attn in decoder, K & V from encoder outputs

• Masked multi-head attention 
• Design similar to that of encoder, except for decoder #1

which takes additional inputs (of GT/predicted word embeddings).
• Mask unpredicted tokens during softmax: why?
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Overview of Decoding in Transformer 

• Encoder/Decoder Cross-Attention + Decoder self-attention

112https://medium.com/ml-note/autoencoder-%E4%B8%89-self-attention-transformer-c37f719d222

https://medium.com/ml-note/autoencoder-%E4%B8%89-self-attention-transformer-c37f719d222


Recap: Transformer

• “Attention is all you need”, NeurIPS 2017

• We didn’t cover positional encoding 
(particularly for language translation)

• Potential problems of Transformer?
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What We’ve Covered Today…

• Generative Model
• Generative Adversarial Network

• Adversarial Learning for Transfer Learning

• Recurrent Neural Networks 
• From RNN to LSTM & GRU
• Sequence-to-Sequence Learning
• Attention in RNN

• Transformer
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