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What to Be Covered Today...

Generative Model
* Generative Adversarial Network

Adversarial Learning for Transfer Learning

Recurrent Neural Networks
* From RNN to LSTM & GRU
* Sequence-to-Sequence Learning
* Attention in RNN

Transformer (if time permits)
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Recap: From VAE to GAN

e Remarks

GAN: Adversarial
training

VAE: maximize
variational lower bound

Diffusion models:
Gradually add Gaussian
noise and then reverse

* We only need the decoder/generator in practice.

* We prefer fast generation.

 How do we know if the output images are sufficiently good?

Z

T
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:::::

Decoder
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| just want to learn generator!
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latent
code

unit gaussian
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Slide credit: W. Chiu
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generated image

might look like a fake image,
how to get it more realistic?

generative
model
(neural net)

generated distribution true data distribution
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p(x)

image space

image space

Generator

Decoder

po(x|2z)




GAN (cont’d)

* Remarks
A function maps normal distribution N(0,I) to P j,:4
* How good we are in mapping F; to Pygt47?
* Train & ask the discriminator!
e Conduct a two-player min-max game (see next slide for more details)

min max V (D, G) = Eqnpy(2)[108 D(@)] + Eznp, (2 [log(1 — D(G(2)))]

evaluate the difference

Realworld between pdata(x) and pa(x)

images

> Discriminator .

§507

Generator

o

Latent random variable
OQQ0]

Backprop error to
update discriminator
weights




Recap: Problem #1 - Vanishing Gradients

* What Might Go Wrong?
* GAN training is often unstable.
* In other words, training might not converge properly.
e The discriminator which we prefer is.




Energy-Based GAN

* Energy Function

e Converting input data into scalar outputs,
viewed as energy values

* Desired configuration is expected to
output low energy values & vice versa.
* Energy Function as Discriminator
* Use of autoencoder; can be pre-trained!

* Reconstruction loss outputs a range of values
instead of binary logistic loss.

e Empirically better convergence

real

fake

real

fake

Photo credit: https://github.com/znxlwm/pytorch-generative-model-collections



https://github.com/znxlwm/pytorch-generative-model-collections

Recap: Problem #2 - Mode Collapse

e Remarks

* The generator only outputs a limited number of image variants
regardless of the inputs.

N(0,I) —  Generator

Mode collapse!



MSGAN

* To address the mode collapse issue by conditional GANs

* Mode Seeking Generative Adversarial Networks
for Diverse Image Synthesis

e With the goal of producing diverse image outputs.

¢GANs

i
|
]
|

3 { . — -
ol 9 I (
|
] >

I
i
|
i
I

| Latent code z
|
|
# B G e S ’ e il . I
- —_ |
]
|
I
I
I

\
This bird has
feathers that are
black and has a red
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Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019 8



MSGAN (cont’d)

e Motivation (for unconditional GAN)

Real data Mode collapse Mode seeking
\Y, b M
M2 P 4 2
P 4 v M4
. M4 'f --------------- N
» | 4,a,.1)
M3 e dz(z(;,zb)
.I:/I ; . Ms 0.68 |
v ' B 0.58 |
0.62
0.17
Image space I
N VANNC N
Image data Laltent code Mode M Imagel 71 7 3
distribution distribution Latent space 7
9

Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019



MSGAN (cont’d)

* Proposed Regularization (for conditional GAN)

Conditional context

‘

Latent space Z

i

Conditional

Generative Model

G

G((:, :1)
* d1(G(c, 21), G(c, 22))

max

di(G(c,2), G(c, 23))

P 4

Image space [

‘@
G(C, Zz)

d,(z1,23)

Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ”

CVPR 2019
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MSGAN (cont’d)

Qualitative results
* Conditioned on paired images

XIdZXid
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Facades
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Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019



MSGAN (cont’d)

e Qualitative results

Input

has an orange
abdomen, vent,
and belly with a
black crest, neck,
and nape.

)

A small blue bird

with a small head

and pointed gray
beak.

)
This colorful bird

@

This 1s a bird
with a yellow
belly and black
wings.

» Conditioned on text (will talk about Vision & Language later this semester)
StackGAN++ MSGAN
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Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019
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Recap: Conditional GAN

* Goal
* Interpretable deep feature representation
* Disentangle attribute of interest ¢ from the derived latent representation z
* Unsupervised: InfoGAN
* Supervised: AC-GAN

<,
Hi
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m‘-
a

(y (real)) (Z c)) (y(real) (G(zc))
(c uatem,] (Z nose) [Ltu] (C tater) (Z o)
InfoGAN ACGAN
Chen et al. Odena et al.
NIPS 16 ICML’17

Chen et al., InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets., NIPS 2016.
Odena et al., Conditional image synthesis with auxiliary classifier GANs. ICML'17 13



What to Be Covered Today...

ll::ﬁi‘;”hﬁ%jﬂj?%'lI:iiiﬁ‘“‘.
* Adversarial Learning for Transfer Learning -\ -.
o
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Revisit of CNN for Visual Classification

Deep Learning =Learning HierarchicalRepresentations

MA Ranzatg

@ It's deep if it has more than one stage of non-linear feature
ion

Low-Level Mid-Level High-Level Trainable
i =i =

Feature Feature Feature Classifier
4 | Y

o Convolutions w/ Pooling: Convs: Pooling: Convs: . -
Local Divisive k ‘ Linear Cbject
Normalization fits bank: 20dxd 100x7x7 2 80077 Classifier Categories / Posttions

20x7x7 kernsls kernels kernels kernels kernels

»{ C‘ }at (i

F6: 4 Patba
Nkses | Y

‘ Q%‘L:] Jat by

LeCun & Ranzato, Deep Learning Tutorial, ICML 2013 15

§2: 20x123x123

Input Image Normalizec Image

1x500x500 1x5600x200 S54: 20x29x29

C1: 20x494x494 C3: 20x117x117




(Traditional) Machine Learning vs. Transfer Learning

* Machine Learning
* Collecting/annotating data is typically expensive.

o i

] P T o\ . i)
h.--‘-*-—'-r £ - e T be 7. | T e i\ . opailn =7
Bl _ " — O . N &

Image Credit: A. Karpathy
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Transfer Learning: What, When, and Why? (cont’d)

* A More Practical Example

https://techcrunch.com/2017/02/08/udacity-open-sources-its-self-driving-car-simulator-for-anyone-to-use/
https://googleblog.blogspot.tw/2014/04/the-latest-chapter-for-self-driving-car.html 17



Sources

Domain Adaptation
in Transfer Learning

° What’s DA? Image: Courtesy to S.J. Pan

* Leveraging info source to target domains, so that the same learning task
across domains (or particularly in the target domain) can be addressed.

* Typically all the source-domain data are labeled.
* Settings
* Semi-supervised DA: few target-domain data are with labels.

* Unsupervised DA: no label info available in the target-domain.
(shall we address supervised DA?)

* Imbalanced DA: fewer classes of interest in the target domain
* Homogeneous vs. heterogeneous DA

18



Deep Feature is Sufficiently Promising.

e DeCAF

* Leveraging an auxiliary large dataset to train CNN.
* The resulting features exhibit sufficient representation ability.
* Supporting results on Office+Caltech datasets, etc.

bike desk chair
k \ 4 3 } - I l V
(D) dslir ' R ]
(a1 amazon| G GO GYO 3«,—. ¢ %
W __a ¢ . L
T 3 >
(1 eean o iy gy a w8
Feature SURF Decafs
JGSA JGSA JGSA JGSA JGSA JGSA
data Raw SA SDA GFK TCA JDA TIM SCA primal linear RBE JDA OTGL primal linear RBF
A—D 35.67 33.76 33.76 40.13 33.76 39.49 4522 30.49 47.13 45.86 4522 81.53 85.00 88.54 85.35 84.71
AW 31.19 33.22 30.85 36.95 36.27 37.97 42.03 34.92 45.76 49.49 45.08 80.68 83.05 81.02 84.75 80.00
D—A 28.29 39.87 38.73 28.71 31.00 33.09 32.78 31.63 38.00 36.01 38.73 91.96 92.31 91.96 92.28 91.96
D—-W 83.73 76.95 76.95 80.34 86.10 89.49 85.42 84.41 91.86 91.86 93.22 99.32 96.29 99.66 98.64 98.64
W—A 31.63 39.25 39.25 27.56 28.91 32.78 29.96 29.96 39.87 41.02 40.81 90.71 90.62 90.71 91.44 91.34
W—-D 84.71 75.16 75.80 85.35 89.17 89.17 89.17 87.26 90.45 90.45 88.54 100 096.25 100 100 100
Donahue et al., DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition, ICML 2014 19




Deep Domain Confusion (DDC)

* Deep Domain Confusion: Maximizing for Domain Invariance
* Tzeng et al., arXiv: 1412.3474, 2014

Source

Minimize classification
errar

Maximize domain
confusion

Target

20



Deep Domain Confusion (DDC)

MMD(Xs, Xr1) =
1 1
— : / Xs| Z\ﬁb(xs)—@ Z ¢(z¢)
classification domain zs€Xs zt€XT
loss loss
/ fca \\ .......... /f fCB \
v Minimize classification loss:
L= Le(X,y) + AMMD?(Xg, X7)
fc_adapt fc_adapt
fc?' ................ fC?
fc6 fcé
convb convs
shared
weights
convl oo ' convi
NG J NG J
e —-

Labeled Images

e —
Unlabeled
Images
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Domain Confusion by Domain-Adversarial Training

 Domain-Adversarial Training of Neural Networks (DANN)
* Y. Ganin et al., ICML 2015
* Maximize domain confusion = maximize domain classification loss
* Minimize source-domain data classification loss
e The derived feature f can be viewed as a disentangled & domain-invariant feature.

E> E class label y
J

Y
label predictor G, (- 6,)

domain classifier G4(-;04)
A

s A
g, E> E:) ® domain label d
oL, N -
|:> o0 \[T @
004

forwardprop backprop (and produced derivatives)

d;logd; + (1—4d;)log(1l— Ciz)
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Beyond Domain Confusion

 Domain Separation Network (DSN)
* Bousmalis et al., NIPS 2016
» Separate encoders for domain-invariant and domain-specific features
* Private/common features are disentangled from each other.
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Beyond Domain Confusion
* Domain Separation Network, NIPS 2016
* Example results

Source-domain Reconstruct private + shared features
image X, D(E(x;)+E,(x;))

\ / / Reconstruct private feature D(E,(x;))

(a) MNIST%SDUI‘CE) (b) IQ‘N(ST-M (target)

Target-domain

Reconstruct shared feature only D(E (x,)) image X; 32



Beyond Domain Confusion

* Domain Separation Network, NIPS 2016
* Example results

Source-domain
image X,

~.

(a) MNIST (M MNIST-?A (target)

Target-domain
image X;
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What to Be Covered Today...

* Recurrent Neural Networks
* From RNN to LSTM & GRU
* Sequence-to-Sequence Learning
* Attention in RNN
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What Are The Limitations of CNN?

* Deal with image data
* Both input and output are images/vectors

* Simply feed-forward processing

DOG

CAT

MONKEY

27



Example of (Visual) Sequential Data

707‘6%/ St gfey = FOREIGN MINISTER
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https://quickdraw.withgoogle.com/#
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More Applications in Vision

Image Captioning

Vision

O

Language

Deep CNN Generating

RNN

—>

o

A group of people
shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.

Figure from Vinyals et al, “Show and tell: A neural image caption generator”, CVPR 2015
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How to Model Sequential Data?

* Deep learning for sequential data
e Possible solution: 3D convolution neural networks

=l

—>

(C) 3D convolution

3D convolution

output

30



How to Model Sequential Data?

* Deep learning for sequential data

* Recurrent neural networks (RNN)

® ® ® ®
o —u I S S
& & & &

RNN

@—>—®




Recurrent Neural Networks

* Parameter sharing + unrolling
* Keeps the number of parameters fixed
* Allows sequential data with varying lengths

 Memory ability
» Capture and preserve information which has been extracted/processed

® ® ®)
1 I
A -] A A
b & b

@—>—@

®)
A
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Recurrence Formula

« Same function and parameters used at every time step:

[l

new state output vector state at  input vector
X fortimet attimet timet-1 attimet
function
with parameters W
RNND

33



Recurrence Formula

« Same function and parameters used at every time step:

)

he, ye = fwr(heoq, x¢)

v

hy = tanh(W,,,he_1 + W, x¢)

Yt =

hy



Multiple Recurrent Layers

’

GO
C
Y(t)
R momERRE
B _T -T _T -T _T _T ‘T
t f f t t t t
X(t)

Time
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Multiple Recurrent Layers

& & G a
G

X(t)

tESSEEE




Sequence-to-Sequence Modeling

one to many many to one many to many many to many

e.g., image caption e.g., action recognition e.g., video prediction e.g., video indexing

37



Training RNNs:
Back Propagation Through Time

* Let’s focus on one training instance.

* The divergence to be computed is between
the sequence of outputs by the network and the desired output sequence.

* Generally, this is not just the sum of the divergences at individual times.

DIV
D(1..T)

Y (0) v (1) Y(2) Y(T-2) Y(T-1) Y()

RPN

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

38



Back Propagation Through Time (BPTT)

1+

Backpropagation from h,
to h, , multiplies by W
(actually W, ")

|

|
T
-

h

hy = tanh(Wyphy—1 + Wypay)

o~ ((Whh Wis) (

D)

Computing gradient of

h, involves many

factors of W

(and repeated tanh)

lll

h—1

Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013
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Gradient Vanishing & Exploding

e Computing gradient involves many factors of W

o Exploding gradients : Largest singular value > 1

o Vanishing gradients : Largest singular value < 1

Backpropagation from h,
to h, , multiplies by W

(actually WhhT)
(/
W_,Q_._ tanh ht — tanh(Whhht—l T th,ajt)
o he s
h—— itl:k TL_’ n = tanh ((Whh Wha:) ( i ))
o ! t h
- | g — tanh (W ( t‘l))
X -

t

40



Solutions...

Gradients clipping : rescale gradients if too large

0.35
0.30
025,
0.20 £
0.15
0.10
0.05

How about vanishing gradients?

o Change RNN architecture!

— standard gradient descent trajectories

--=+ gradient clipping to fix problem

grad_norm = np.sum(grad * grad)

if grad_norm > threshold:
grad *= (threshold / grad_norm)

41



Variants of RNN

e Long Short-term Memory (LSTM) tnochreiter et at, 1997
* Additional memory cell
* |Input/Forget/Output Gates
* Handle gradient vanishing
* Learn long-term dependencies

e Gated Recurrent Unit (GRU) (choet ai, evnie 20141
e Similar to LSTM

* handle gradient vanishing & learn long-term dependencies
No additional memory cell

Reset / Update Gates
Fewer parameters than LSTM
Comparable performance to LSTM (chung et al,, NiPS Workshop 2014]

42



Vanilla RNN, LSTM, & GRU

he—
= tan (w0 | RN

A A4
Outputintimet Inputin time t X




Vanilla RNN vs. LSTM vs. GRU

Cell state

Number of Gates N/A 3 2
Parameters Least Most Fewer
Gradient Vanishing / ® © ©

Exploding

44



What to Be Covered Today...

Generative Model
* Generative Adversarial Network

Adversarial Learning for Transfer Learning

Recurrent Neural Networks
* From RNN to LSTM & GRU
* Sequence-to-Sequence Learning
* Attention in RNN

Transformer (if time permits)
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Sequence-to-Sequence Modeling

* Setting
* Aninput sequence X,, ..., X
* An output sequence Yy, ..., Yy,
* Generally N # M, i.e., no synchrony between X and Y

 Examples
* Speech recognition: speech goes in, and a word sequence comes out
* Machine translation: word sequence goes in, and another comes out
* Video captioning: video goes in, word sequence comes out

3T = B3 3
/*Eg—’

3 4 1]

I

i |
Deep learning rocks! 46



S-to-S Models with Alignment

* The input and output sequences happen in the same order
* The input/output sequences may be asynchronous.

e E.g., speech recognition or video captioning, in which the input sequence
corresponds to the phoneme/caption sequence out.

e Recall that...

one to many many to one many to many many to many

e.g., image caption  e.g., action recognition e.g., video prediction e.g., video captioning

47



Sequence-to-Sequence Modeling (cont’d)

* Original model proposed in NIPS 2014

* An encoder-decoder model

—» =

[ e S N N o N e B o B o

A B <E0S>
ENCODER Reply

YeIs,j wh?t's 4] uT? j T

g
PYE; g
amﬁma =
3
l I 1 I = S A A B
Are you free tomorrow?
Incoming Email DECODER

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014
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Example of Seqg-to-Seq Modeling:
Image Captioning

bouquetof — ~  pottle of water  glass of water with
red flowers ice and lemon

dining table
with breakfast
items

plate of fruit

banana
slices

fork START “straw” “hat”

a person
sitting at a
table

Figure from Karpathy et a, “Deep Visual-Semantic Alignments for Generating Image Descriptions”, CVPR 2015 49



conv-64
conv-64
maxpool

conv-128
conv-128

maxp_qol
conv-256

conv-256

maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096

F 0
sofgax

CNN
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image
conv-64

conv-64

rnaxp_ool

~ conv-128
conv-128

max_pool

conv-256
conv-256
maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool
~ FC-4096
FC-4096

\'

Wih

yO0

T

hO

T

x0
<STA
RT>

<START>

test image

before:
h = tanh(Wxh * x + Whh * h)

now:
h = tanh(Wxh * x + Whh * h + Wih * v)
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image |

conv-64
conv-64
max_!)ool

conv-128

conv-128
maxpool

conv-256
conv-256
maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

~ FC-4096
~ FC-4096

y0

hO

x0
<STA
RT>

straw

<START>

sample!

test image

52



conv-64
conv-64
maxpool

conv-128
conv-128

maxpool

conv-256
conv-256
maxpool

conv-512

conv-512
maxpool
conv-512

conv-512

maxpool

FC-4096
FC-4096

image |

-

y0 y1
ho | h1

T

T

x0
<STA
RT>

straw

<START>

RNN

test image

I?t = tanh (PV

A 4

Outputintimet

Inputintimet
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imag =5

conv-64
conv-64

rnaxgool

conv-128
conv-128

rnaxp_qol

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096

yo y1
hO | h1

T

T

x0
<STA
RT>

straw

hat

<START>

test image

sample!

54



| image | =

conv-64

test image

conv-64
maxpool

~ conv-128

conv-128
maxpool

conv-256

T T T\ sample
<END> token

5 h1 = h2 => finish.

conv-512
conv-512
maxpool hO

conv-512

et P T

~ FC-4096 5

FC-4096 <RS_;_I':\ straw hat R N N

Irt:tanh (W he—1 )
Ly

<START>

A 4 A 4

Outputintimet Inputin time t

55



Example of Seqg-to-Seq Modeling:
Video Prediction

® Input: A few known frames
® Qutput: Unknown future frames

56



* Unsupervised Learning of Video Representations using LSTMs
(Srivastava et al., ICML'15)

Input Reconstruction

- LSTM Encoder-Decoder model
- Two tasks: Reconstruction & Prediction

- Results (L: ref video, R: output video)
- Bouncing (Moving) MNIST

& 0 G4 5
6 o 3

- Video patches of UCF-101

PN AR

Learned
Representation

Sequence of Input Frames

Future Prediction T iy

57



* Learning to Generate Long-Term Future via Hierarchical Prediction

(Villegas et al., ICML'17)

Pose
Estimation

Stage 1:
Pose Estimation

Stage 2:
Future Pose Prediction

Stage 3:
Image Generation

Image
Generation

Hourglass network (Newell et al., ECCV'16)

Sequence-to-Sequence model on high-level structure

Visual-Structure Analogy

58



Pose
Estimation

Image
Generation

— g e —

B

=

Step 2:
Future Pose Prediction Sequence-to-Sequence model on high-level structure

ﬁ ﬁ ﬂ Objective Function:
T L

(LsT™M H{ LsT™M - LsT™M }+{ LsT™M }-{ LsT™M }{ LSTM™ | 1 N I
Epose = ﬁ Z Z ]l{-mi,_’_t:l} ”pk—H- — Prat ”g

i=1 =1
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Pose
Estimation

Image
Generation

Step 3:

Image Generation Visual-Structure Analogy

=40 T Objective Function:

Adversarial Training -> alternately minimize L & LDisc

Update Image Generation Network (G)

L= Eimg + Ef'eat + [-:Gen

Lime = |Xt4n — Xern

’_ > feal Liea = [|C1 (Xen) = C1 (Ren) |13
N +|Ca (xt4n) = Co (Xin) I3
L In

p(+n xlfn

£Gcn = log D ([pt-l—na ﬁt—l—n])
-— Update Discriminator (D)
E_ > EDisc = - log D ([pt+-naxt+n])

—0.51og (1 = D ([ptn, Xesn)))

—0.51og (1 = D([prn,xt]))
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® Example Results

Results on Penn Action Dataset:

0150_baseball_swing galf swing
i i ST

0881_jump_rape j 1980_tenniz_farehand

Optical flow

®* Note that the above two video prediction works are deterministic, not stochastic!
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What to Be Covered Today...

i g .
|||l||l]u?1 I'qlhl;%?]"lﬁ“.‘:i\

 Recurrent Neural Networks 1—4-‘

* Attention in RNN

707% M/@/ ). FOREIGN MINISTER,
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What’s the Potential Problem in RNN?

* Each hidden state vector extracts/carries information across time steps
(some might be diluted downstream).

* Information of the entire input sequence is embedded into
a single hidden state vector.

An pomum comedit me
A A A A
RNN - > b » BRNN G- I > RNN - > b » RNN - » o b > BRNN - > - » BRNN - > e » RNN - > e » RNN




RNN -

What’s the Potential Problem? (cont’d)

e Outputs at different time steps have particular meanings.

* However, synchrony between input and output seqs is not required.

A \ 4 \

An pomum comedit
A ‘.“ A
e > BNN - » > BNN - > - > BNN > > RBRNN - > » BNN - > e > BNN - »
3 A A A
ate an apple <BOS> An pomum

comedit
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What’s the Potential Problem? (cont’d)

* Connecting every hidden state between encoder and decoder?

RANN i» » BNN l» > BNN > > RNN D» ANN oy % BNN > % BNN [-» » RNN

* Infeasible!
e Both inputs and outputs are with varying sizes.
e QOverparameterized
e Possible solution: attention

65



Solution #1: Attention Model

e What should the attention model be?

* ANN whose inputs are z and h while output is a scalar,
indicating the similarity between z and h.

* Most attention models are jointly learned
with other parts of network (e.g., recognition, etc.)

1
@
A

attention
model

RNN > hy —> RNN |- hy > RNN > hg > RNN > hy




Solution: Attention Model

Co
TR

‘[.-' ."'

05 % 0.5 ‘i%
RNN > hy ~-> RNN |- > hy > RNN
A A A
E B 1]

.,

(44

0 +0
~-> hg > RBNN
A
g

Computer

29

Co
A

c, =2.ah

= 0.5h, + 0.5h,
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Solution: Attention Model

attention |

model
L
RNN ----» hy - > RNN
A A
g B

RNN > hg > RNN
A A
R B

Zy

Computer

Co
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Solution: Attention Model

RNN -

RNN

=

RNN |-

12

Qsﬁ

~-> RNN -

i

osﬁ
> hy

2y

Computer vision
x FY
----------- M Zy e 24
x A
Co Cq
A

c, =) ah
= 0.5h, + 0.5h,
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Solution: Attention Model

1
a
A
attention
model
A
RNN (----» hy - RNN
A A
B B

RNN -

17

RNN -

"

Computer vision
J—— r ,I‘
ZG """""" » Z-I """""" » Z1
A A
Co (o

Repeat the process until
<EOS> token was generated
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Example: Image Captioning with Attention

* RNN focuses visual attention at different spatial locations when
generating corresponding words during captioning.

(A ]

[bird |
flying
over

14x14 Feature Map

d

body
of
water
1. Input 2. Convolutional 3, RNN with attention 4. Word by

Image  Feature Extraction over the image word
generationi

Xu et al, “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015



Image Captioning with Attention
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Image Captioning with Attention

Distribution of attention weights over L locations

- e
/ A
~ H
@] o
=z Features: » ZG ....................... > 21 ____________________________
=z LxD
- A_r
Co <BOS>

Weighted combination of features
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Image Captioning with Attention

A 3
O o
pd Features:, » ZG .......................
=z LxD
Co
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Image Captioning with Attention

Distribution of attention weights over L locations
‘ e ‘ a A
'Y k‘ «
~ ;
Q Features:
Z ............. » z ....................... »> z ____________________________ »>
5 LxD 0 1 Z;
= ELD £
Co <BOS> c, A
A A

Weighted combination of features
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Image Captioning with Attention

‘ ag | a A a girl
A | 3 L - " ' ' k]
Q Features:
= B S P B F beeeeeeeeees >
S LxD 0 1 2
-1k- . /ﬂ\ .
Co <BOS> c, A

Repeat the process until
<EOS> token was generated
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Attention helps image recognition...
What else?

A stop sign is on a road with a

mauntain in the backgraund.

- ! e
A little girl sitting on a bed with A group of people sitting on a baat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.
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What to Be Covered Today...

R
1 Ikuj}{lﬂl N
AN

 Transformer

707% M/@/ ). FOREIGN MINISTER,
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RNN with Attention is Good, But..

e Attention in a pre-defined sequential order

* Information loss due to long sequences...

e Connecting every hidden state between encoder and decoder?

RNN  ---- J DERE B BERRE B ReRR B o B o %
* |nfeasible! e

* Both inputs and outputs are with varying sizes.
e Overparameterized



RNN with Attention is Good, But..

* Any better way to perform attention across features?

am a student

ENCODER

3

ENCODER

3

ENCODER

3

ENCODER

3

ENCODER

7y

ENCODER

A

v

DECODER

[

DECODER

[

DECODER

[}

DECODER

[

DECODER

3

DECODER

Je

suis étudiant
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Solution #2: Transformer

« “Attention is all you need”, NIPS/NeurlPS 2017

» Self-attention for text translation

e Say goodbye to CNN & RNN

 More details available at:

https://www.youtube.com/watch?v=rcWMRA9E5RI

http://jalammar.github.io/illustrated-transformer/

1

Feed Forward

$

4

Encoder-Decoder Attention

[} —_—

4

(
C =)
(

Self-Attention

Self-Attention

t

t

(@ )
Feed
Forward
' | N\ (CAdd & Norm }T\J
L Add &Notmn ) Multi-Head
Feed Attention
Forward 7 7 Nx
SEEIEESES
N Add & Norm
r—>| Add & Norm | VT
Multi-Head Multi-Head
Attention Attention
L EE TR f Y
(S — J p—
Positional o) ¢ Positional
Encoding Y Encoding
Input Output
Embedding Embedding
INputs Outputs

(shifted right)
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https://www.youtube.com/watch?v=rcWMRA9E5RI
http://jalammar.github.io/illustrated-transformer/

Tokenization

Many words map to one token, but some don't: indivisible.
| SR ST ZEN SR S SN 2NN ZEN U SN 20 SR 2 2R

8607 4339 2472 311 832 4037 11 719 1063 1541 | 956 || 25 3687 23936 13

A7 :

at dog bear cow indiv
£ 11 01 01 [o 0]
0 1 0 0 0
. 0 0 1 0 0
One-hot encoding 0 0 0 1 0 Value 1 at
# tokens |0 0 0 0 0| _— 3687+
l : : : : : entry
L0 L0 L0 L0 L0

Slide credit: Prof. J.-B. Huang @ U. Maryland 82



TOKEN EMBEDDING

One-hot encoding

&

cat dog bear cow

1 0 071 [0]
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 (- 0 0

Slide credit: Prof. J.-B. Huang @ U. Maryland

indiv

0

0

0

0 Value 1 at
Q L 3687t

: entry

()



TOKEN EMBEDDING

Embedding Space

cat dog bear cow

Slide credit: Prof. J.-B. Huang @ U. Maryland

1 07 071 [0]
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 (- 0 0

indiv

0

0

0

0 Value 1 at
9 L 3687th

: entry

()



TOKEN EMBEDDING

S O —@

- ~
4 N

- »

A

b

Embedding Space

C«Q00HRO

l

Embedded

[0.57
2.7
1.2

(0.2

token

<— H# tokens —_

-— &

Wk

Embedding Matrix

Slide credit: Prof. J.-B. Huang @ U. Maryland

cCoor o9
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TOKEN EMBEDDING

S O —@

- ~
4 N

“

A

Embedding Space

<— H# tokens —_

T [0.57
2.7
d 1:2 =

-— &

oz

Embedded
token

Slide credit: Prof. J.-B. Huang @ U. Maryland

Embedding Matrix

:o eeoe

CoOOoORr oOQg
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TOKEN EMBEDDING

Apple

T 051 «— # tokens —_
2.7
d|1.2] =

-— &L

oz

Embedding Space Embedded Embedding Matrix
token

Slide credit: Prof. J.-B. Huang @ U. Maryland

cCoor o9

:o eeoe



TOKEN EMBEDDING A A

| bought an apple and an orange.

] Apple
| bought an apple watch.
dog
«— # tokens — N
T [0.57 T I 111
2.7 0
d |12 =d 0
: 0
ool 0
(0
Embedding Space Embedded Embedding Matrix
token

Slide credit: Prof. J.-B. Huang @ U. Maryland 88



s S T T
Encoder

T f f f f f (A
Embedded
Tokens
.. i i t i i t t
oken
Embedding VIIIE MI/E VII/E MI/E VITE VII/E VII/E
Tokens I bought an apple and an orange

Slide credit: Prof. J.-B. Huang @ U. Maryland
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D [I
Feed Feed Feed Feed Feed Feed Feed
Forward Forward Forward Forward Forward Forward Forward

A A A A

A A

Embedded
Tokens
Token t i i i i t i
Embedding | Wk Wk Wg Wg Wg Wk Wg

| | | | | | |
Tokens I bought an apple and an orange

Slide credit: Prof. J.-B. Huang @ U. Maryland 90



[
»

|

A

!

!

|

A

Vs

Feed Feed Feed Feed Feed Feed Feed
Forward Forward Forward Forward Forward Forward Forward
A A A A A
/ N/ \l/ N/ N/ N\
Embedded
Tokens
Token t t t t t t t
Embedding | Wk Wk Wg Wg Wg Wk Wg
| | I | | | |
Tokens I bought an apple and an orange

Slide credit: Prof. J.-B. Huang @ U. Maryland
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92

orange

A

an

A

and

A

apple

Slide credit: Prof. J.-B. Huang @ U. Maryland

an

A

A

I I |

W

bought

A

W

Embedded

Tokens
Embedding

Token
Tokens



!

!

Vs

Feed Feed Feed Feed Feed Feed Feed
Forward Forward Forward Forward Forward Forward Forward
[ Self-Attention ]
Embedded
Tokens
Token t t t t t t t
Embedding | Wk Wk Wg Wg Wg Wk Wg
| | I I | | |
Tokens I bought an apple and an orange

Slide credit: Prof. J.-B. Huang @ U. Maryland
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Self-Attention

Embedded
Tokens

Tokens |

@0
Gy

~ / apple

Embedding Space

bought an apple and an orange

Slide credit: Prof. J.-B. Huang @ U. Maryland 94



Self-Attention

Embedded
Tokens

Tokens |

bought

Embedding Space

an apple and

Slide credit: Prof. J.-B. Huang @ U. Maryland

an

orange
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Self-Attention

Embedded
Tokens

Tokens |

Embedding Space

bought an apple watch

Slide credit: Prof. J.-B. Huang @ U. Maryland 96



Self-Attention

Embedded
Tokens

Tokens

Embedding Space

bought an apple watch

Slide credit: Prof. J.-B. Huang @ U. Maryland
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Self-Attention (1/5)

Embedding b 1 I x [
* Query g, key k, value v vectors
are learned from each input x Quertes « [ we
q; = W,
ki = Wle'
Vi = vai

L.
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Self-Attention (2/5)

* Relation between each input is modeled
by inner-product of query g and key k.

a,; = iwhereaER k € R4
1l \/Hr ;q;

Input

Embedding
Queries
Keys

Values

Score

Thinking

x [

Machines

x. [T
o [
« DI

11T
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Input Thinking Machines
e Embedding X4 I:I:I:D le:l:l:D
Self-Attention (3/5) S D
Keys k[ k: [
* SoftMax is applied: Value . [ (111
N . Sco e k= qr e ke =
0<a =e%/Y;eY <1, forl=1,.,N
Divide by 8 (/d )
o L Softmax
a1 aq? .
A al,N A
[ SoftMax
ai ai?2 ain
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Self-Attention (4/5)

* Value vectors v are aggregated
with attention weight a,i.e., y; = YV 4, - v,

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (vd; )

Softmax

Thinking
x+ IR
o O
«
[
qi=k
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Self-Attention (5/5)

* All y; can be computed in parallel
* Each y; considers x; ~xp, modeling their long-distance dependencies.

* Global feature can be obtained by average-pooling over y; ~yy

V1 Y2 Y3

Self-attention layer
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Self-Attention: Implementation

* Input sequence can be represented as a N x d;;, matrix

* * denotes matrix multiplication

x; € R%in
‘ * din WC
X1 —
Xo I—— din d
= N 3 din WK
d
XN —
* din WV
Input matrix




Q

Self-Attention: Implementation sof tmax Hﬁﬁ i ) B

* Output matrix Y

* All operations are matrix multiplication, can be parallelized on GPU.

N d
N A * N B4 N Y Attention(Q, K, V') = softmax( QKT )14
Vi,
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Multi-Head Self-Attention (1/4)

* Perform self-attention at different subspaces,
implying performing attention over different input feature types
(e.g., representations, modalities, positions, etc.)

X

ATTENTION HEAD #0 ATTENTION HEAD #1

Qo Q1

Enm we | wio

RS EER

X
Calculating attention separately in
eight different attention heads
ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7

mmn B +H
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The

The
Law

Law
will

Multi-Head Self-Attention (2/4)

will
never

never

Perform self-attention at different subspaces,
implying performing attention
over different input feature types

See example below
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Multi-Head Self-Attention (3/4)

* A 2-head example, output of two heads are concatenated.

Yi1

107



Multi-Head Self-Attention (4/4)

* A 2-head example, output of two heads are concatenated.

Yii JYi2 = Vi

1
KMB
1

L1 1

Head 1 é Head 2
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* A residual connection followed by layer normalization
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The Decoder in Transformer

* Encoder-decoder attention
* Qfrom self-attn in decoder, K & V from encoder outputs

 Masked multi-head attention

* Design similar to that of encoder, except for decoder #1
which takes additional inputs (of GT/predicted word embeddings).

e Mask unpredicted tokens during softmax: why?

: ( Softmax )
',,( Add & Normalize ) L)
: 4 4 _ ( Linear )
" ( Feed Forward ) ( Feed Forward ) L
¥ 4
.*( Add & Normalize )
: ) )
N ( Feed Forward ) ( Feed Forward )
S ey e [
,‘*( Add & Normalize )
. ) )
."( Encoder-Decoder Attention )
APy F------------------ T
‘-p( Add & Normalize ) ,+( Add & Normalize )
: 1 3 ; 7 B—
S S S
POSITIONAL é é é é
ENCODING
X4 X2 J_I_l_l
Thinking Machines
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The Decoder in Transformer (cont’d)

* Encoder-decoder attention
* Qfrom self-attn in decoder, K & V from encoder outputs

* Masked multi-head attention
* Design similar to that of encoder, except for decoder #1

which takes additional inputs (of GT/predicted word embeddings).

* Mask unpredicted tokens during softmax: why?

Decoding time step: 1(2)3 4 5 6 OUTPUT

t

r

( Linear + Softmax
Iy Y I B

CEEsREEs

)\
[ ENCODERS ] [ DECODERS ]
/

Y

EMBEDDING t t U 1A
WITHTIME 0[O0 [
SIGNAL
EMBEDDINGS NN [EEE  [EEED T
INPUT Je suis  étudiant PREVIOUS

OUTPUTS
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Overview of Decoding in Transformer

* Encoder/Decoder Cross-Attention + Decoder self-attention

https://medium.com/ml-note/autoencoder-%E4%B8%89-self-attention-transformer-c37f719d222 112



https://medium.com/ml-note/autoencoder-%E4%B8%89-self-attention-transformer-c37f719d222

Recap: Transformer

» “Attention is all you need”, NeurlPS 2017

* We didn’t cover positional encoding
(particularly for language translation)

* Potential problems of Transformer?

$

[ Feed Forward

[}

Self-Attention

t

t

Feed Forward

4

Encoder-Decoder Attention

r Y

'Y

Self-Attention

t

g )
Feed
Forward
- N
r-— :
Add & Norm Multi-Head
Feed Attention
Forward D) Nx
e
Nix Add & Norm
,—»l Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
VR SRRV , VRN YR )

o J . prr— )
Positional ®—@ & Positional
Encoding ] 1 Encoding

Input Qutput
Embedding Embedding
Inputs Outputs

(shifted right)
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What We’ve Covered Today...

Generative Model
* Generative Adversarial Network

Adversarial Learning for Transfer Learning

Recurrent Neural Networks
* From RNN to LSTM & GRU
* Sequence-to-Sequence Learning
* Attention in RNN

Transformer
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