Deep Learning for Computer Vision

113-1/Fall 2024

https://cool.ntu.edu.tw/courses/41702 (NTU COOL)

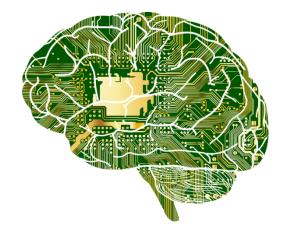
http://vllab.ee.ntu.edu.tw/dlcv.html (Public website)

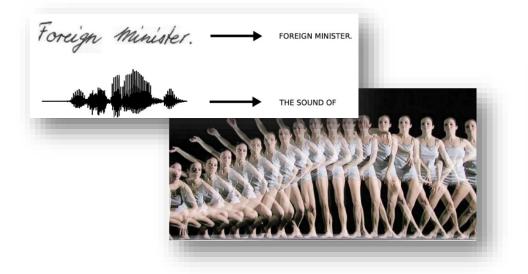
Yu-Chiang Frank Wang 王鈺強, Professor Dept. Electrical Engineering, National Taiwan University

2024/10/15

What to Be Covered Today...

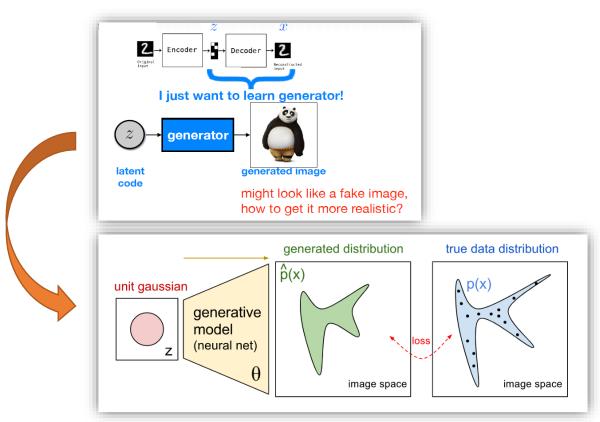
- Generative Model
 - Generative Adversarial Network
- Adversarial Learning for Transfer Learning
- Recurrent Neural Networks
 - From RNN to LSTM & GRU
 - Sequence-to-Sequence Learning
 - Attention in RNN
- Transformer (if time permits)

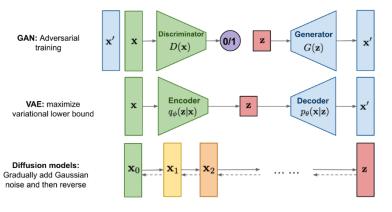




Recap: From VAE to GAN

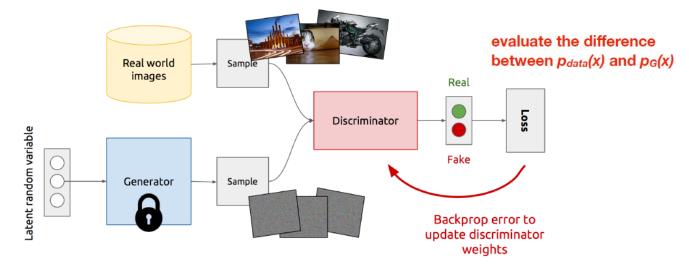
- Remarks
 - We only need the decoder/generator in practice.
 - We prefer fast generation.
 - How do we know if the output images are sufficiently good?





- Remarks
 - A function maps **normal distribution** N(0, I) to P_{data}
 - How good we are in mapping P_g to P_{data} ?
 - Train & ask the discriminator!
 - Conduct a two-player min-max game (see next slide for more details)

 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$

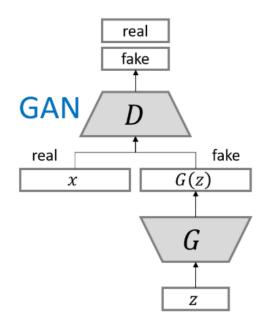


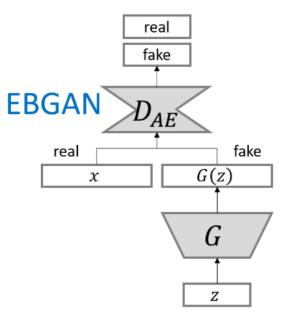
Recap: Problem #1 - Vanishing Gradients

- What Might Go Wrong?
 - GAN training is often unstable.
 - In other words, training might not converge properly.
 - The discriminator which we prefer is...

Energy-Based GAN

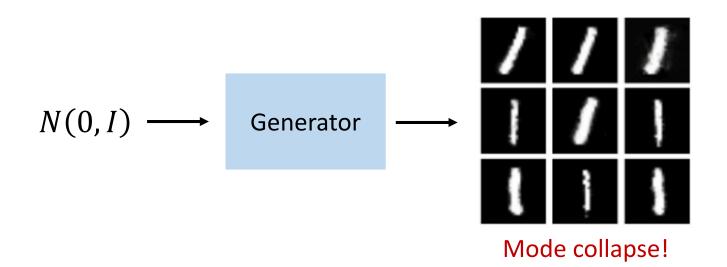
- Energy Function
 - Converting input data into scalar outputs, viewed as energy values
 - Desired configuration is expected to output low energy values & vice versa.
- Energy Function as Discriminator
 - Use of autoencoder; can be pre-trained!
 - Reconstruction loss outputs a range of values instead of binary logistic loss.
 - Empirically better convergence





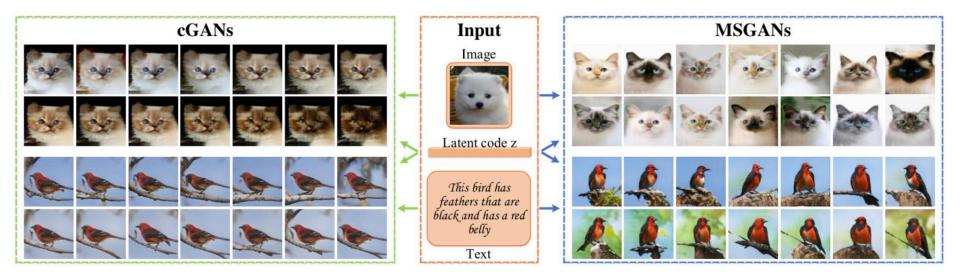
Recap: Problem #2 - Mode Collapse

- Remarks
 - The generator only outputs a limited number of image variants regardless of the inputs.

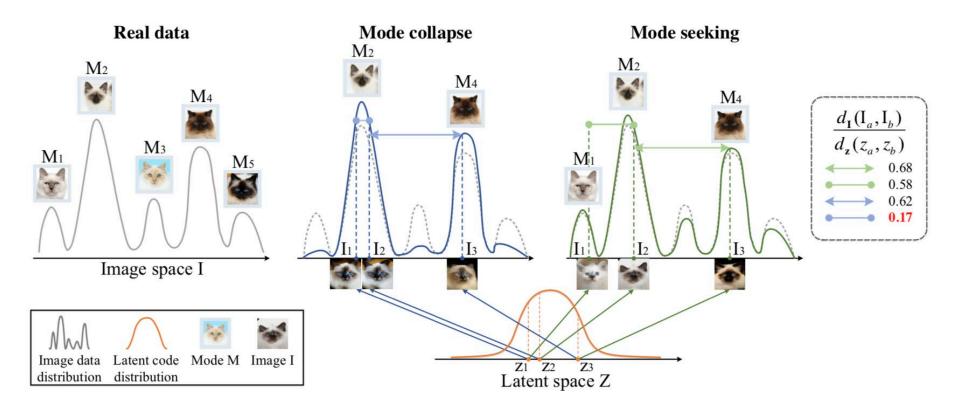


MSGAN

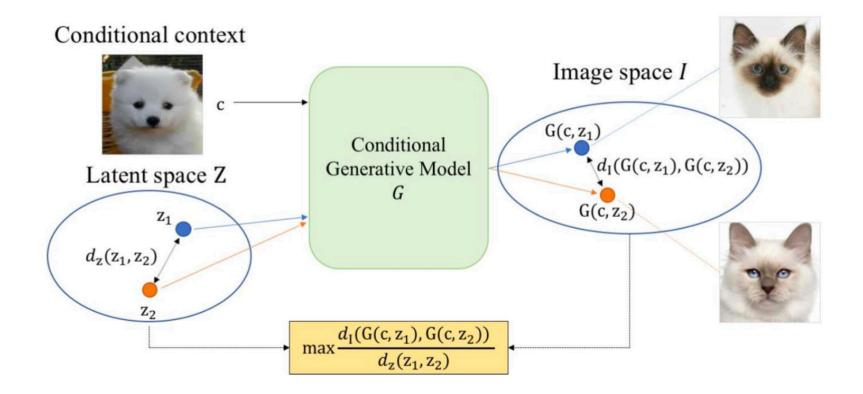
- To address the **mode collapse** issue by conditional GANs
- Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis
- With the goal of producing **diverse** image outputs.



Motivation (for unconditional GAN)



Proposed Regularization (for conditional GAN)



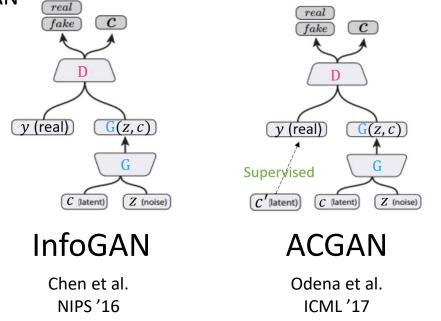
- Qualitative results
 - Conditioned on paired images

- Qualitative results
 - Conditioned on text (will talk about Vision & Language later this semester)

Input	StackGAN++	MSGAN					
This colorful bird has an orange abdomen, vent,	2222222						
and belly with a black crest, neck, and nape.	22222222						
A small blue bird with a small head	2222222	KR4LKKL					
and pointed gray beak.	22222222	LLLLLL					
This is a bird with a yellow	$\swarrow \swarrow \And \And \And \checkmark \checkmark \checkmark \checkmark$						
belly and black wings.	X X X X X X						

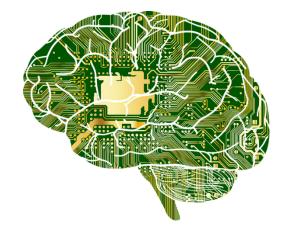
Recap: Conditional GAN

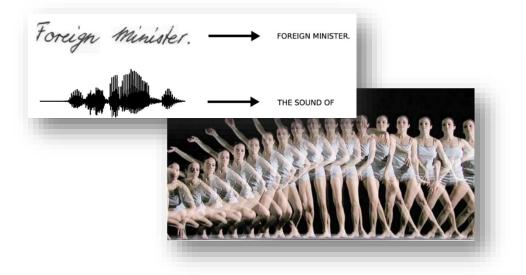
- Goal
 - Interpretable deep feature representation
 - Disentangle attribute of interest *c* from the derived latent representation *z*
 - Unsupervised: InfoGAN
 - Supervised: AC-GAN



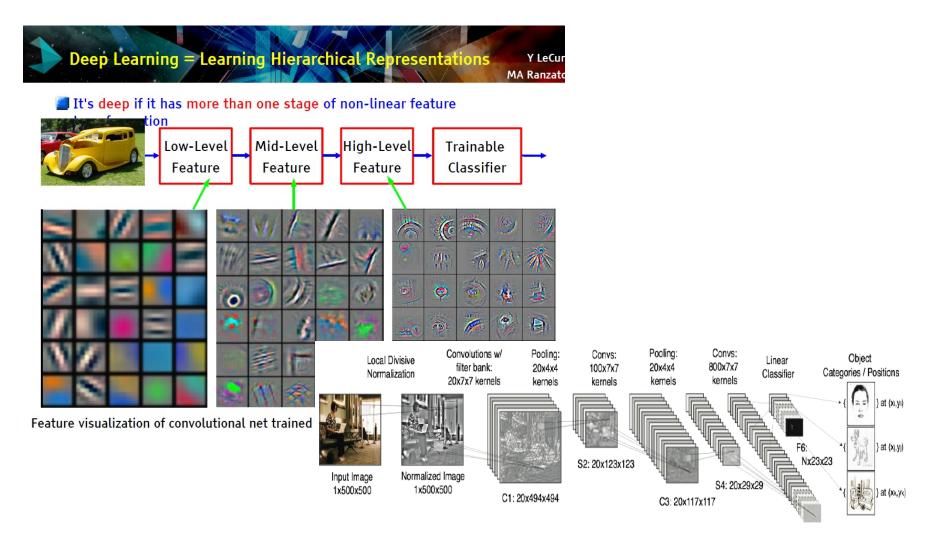
What to Be Covered Today...

- Generative Model
 - Generative Adversarial Network
- Adversarial Learning for Transfer Learning
- Recurrent Neural Networks
 - From RNN to LSTM & GRU
 - Sequence-to-Sequence Learning
 - Attention in RNN
- Transformer (if time permits)



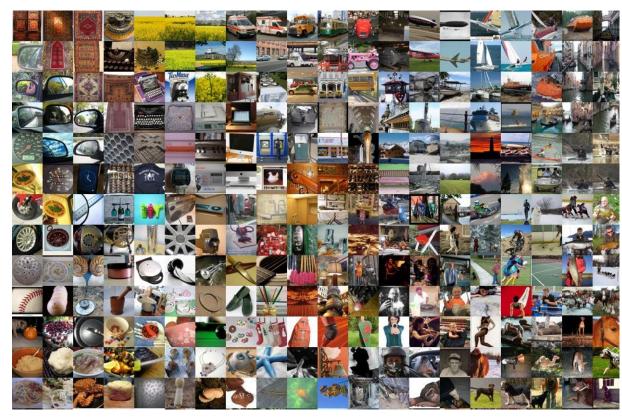


Revisit of CNN for Visual Classification



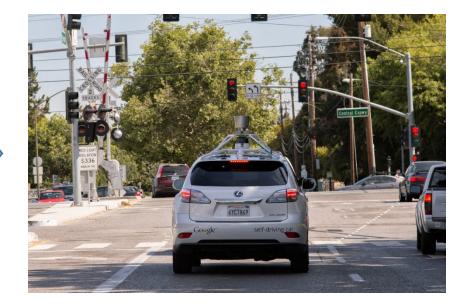
(Traditional) Machine Learning vs. Transfer Learning

- Machine Learning
 - Collecting/annotating data is typically expensive.



Transfer Learning: What, When, and Why? (cont'd)

• A More Practical Example



Domain Adaptation in Transfer Learning



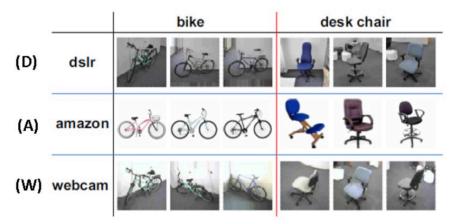
• What's DA?

Image: Courtesy to S.J. Pan

- Leveraging info source to target domains, so that the same learning task across domains (or particularly in the target domain) can be addressed.
- Typically all the source-domain data are labeled.
- Settings
 - Semi-supervised DA: few target-domain data are with labels.
 - Unsupervised DA: no label info available in the target-domain. (shall we address supervised DA?)
 - Imbalanced DA: fewer classes of interest in the target domain
 - Homogeneous vs. heterogeneous DA

Deep Feature is Sufficiently Promising.

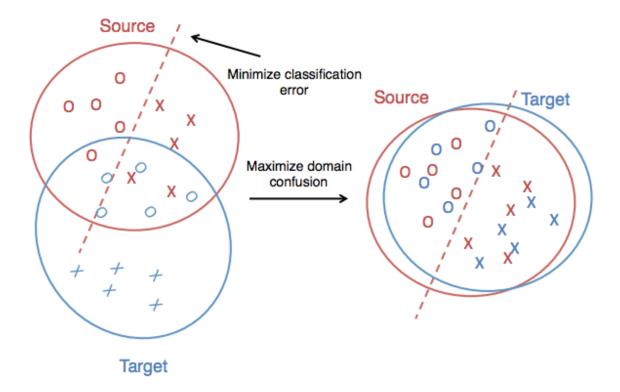
- DeCAF
 - Leveraging an auxiliary large dataset to train CNN.
 - The resulting features exhibit sufficient representation ability.
 - Supporting results on Office+Caltech datasets, etc.



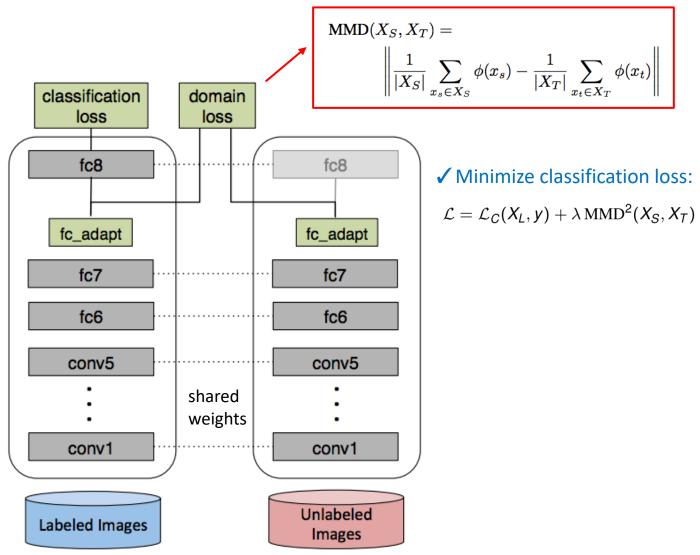
Feature	SURF									$Decaf_6$						
data	Dow	C A	SDA	CEV	TCA	ТDA	ТЈМ	SCA	JGSA	JGSA	JGSA	TDA	OTCI	JGSA	JGSA	JGSA
data	Raw SA	SA	SDA	GFK	ICA	JDA	IJM	SCA	primal	linear	RBF	JDA	OTGL	primal	linear	RBF
A→D	35.67	33.76	33.76	40.13	33.76	39.49	45.22	39.49	47.13	45.86	45.22	81.53	85.00	88.54	85.35	84.71
A→W	31.19	33.22	30.85	36.95	36.27	37.97	42.03	34.92	45.76	49.49	45.08	80.68	83.05	81.02	84.75	80.00
D→A	28.29	39.8 7	38.73	28.71	31.00	33.09	32.78	31.63	38.00	36.01	38.73	91.96	92.31	91.96	92.28	91.96
$D \rightarrow W$	83.73	76.95	76.95	80.34	86.10	89.49	85.42	84.41	91.86	91.86	93.22	99.32	96.29	99.66	98.64	98.64
W→A	31.63	39.25	39.25	27.56	28.91	32.78	29.96	29.96	39.87	41.02	40.81	90.71	90.62	90.71	91.44	91.34
W→D	84.71	75.16	75.80	85.35	89.17	89.17	89.17	87.26	90.45	90.45	88.54	100	96.25	100	100	100

Deep Domain Confusion (DDC)

- Deep Domain Confusion: Maximizing for Domain Invariance
 - Tzeng et al., arXiv: 1412.3474, 2014

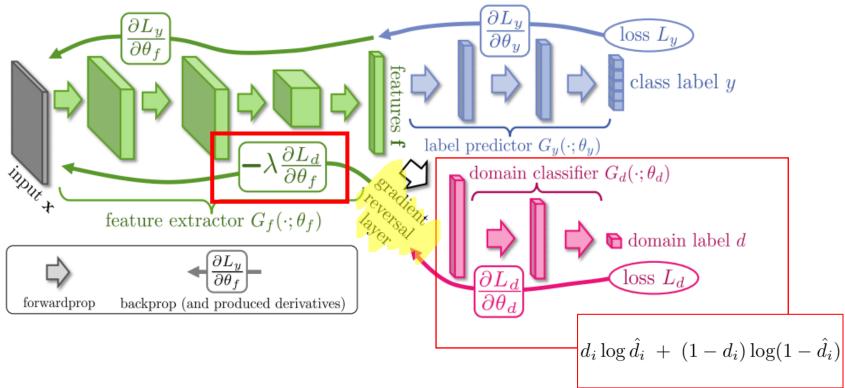


Deep Domain Confusion (DDC)



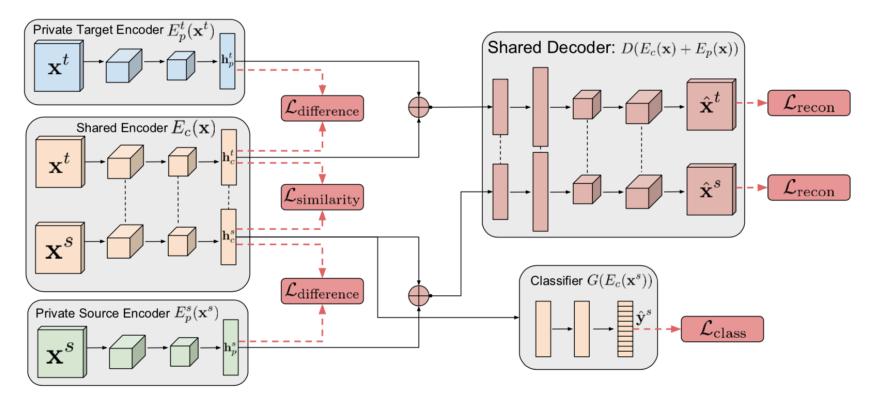
Domain Confusion by Domain-Adversarial Training

- Domain-Adversarial Training of Neural Networks (DANN)
 - Y. Ganin et al., ICML 2015
 - Maximize domain confusion = maximize domain classification loss
 - Minimize source-domain data classification loss
 - The derived feature f can be viewed as a disentangled & domain-invariant feature.



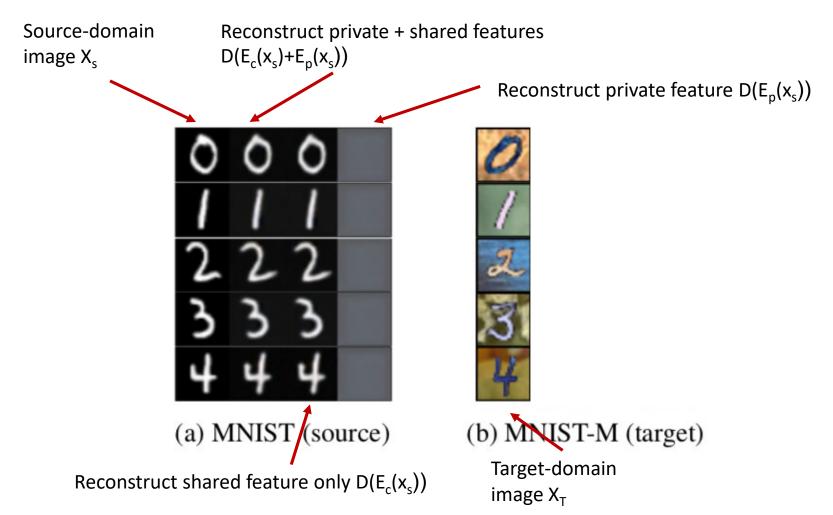
Beyond Domain Confusion

- Domain Separation Network (DSN)
 - Bousmalis et al., NIPS 2016
 - Separate encoders for domain-invariant and domain-specific features
 - Private/common features are *disentangled* from each other.



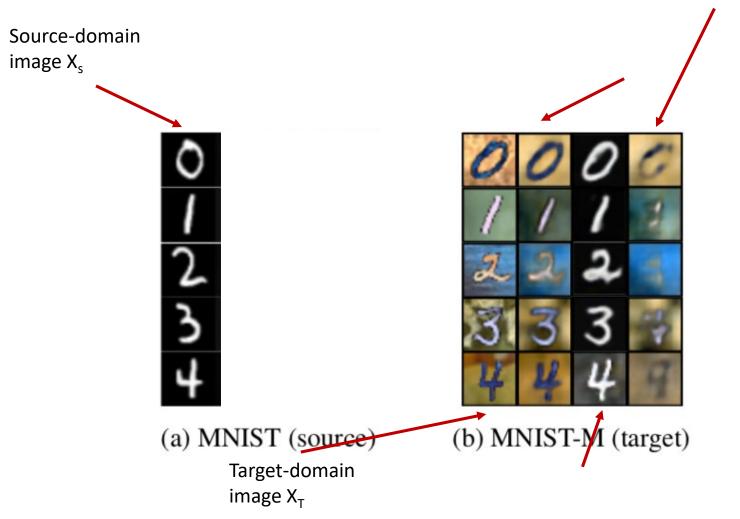
Beyond Domain Confusion

- Domain Separation Network, NIPS 2016
 - Example results



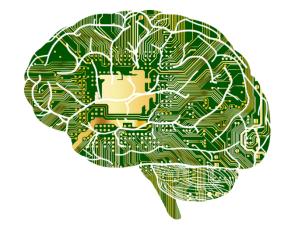
Beyond Domain Confusion

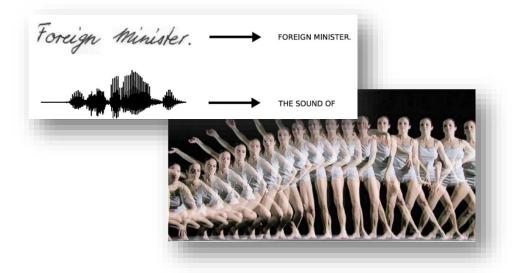
- Domain Separation Network, NIPS 2016
 - Example results



What to Be Covered Today...

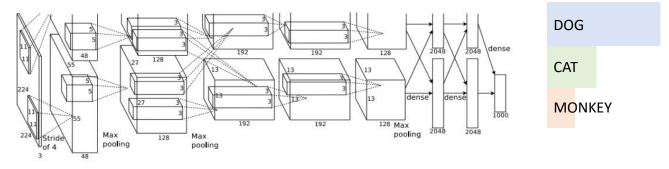
- Generative Model
 - Generative Adversarial Network
- Adversarial Learning for Transfer Learning
- Recurrent Neural Networks
 - From RNN to LSTM & GRU
 - Sequence-to-Sequence Learning
 - Attention in RNN
- Transformer (if time permits)



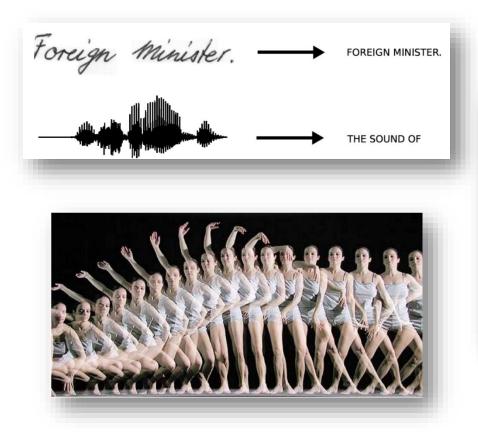


What Are The Limitations of CNN?

- Deal with image data
 - Both input and output are images/vectors
- Simply feed-forward processing



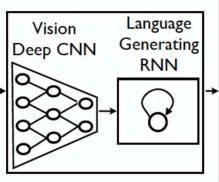
Example of (Visual) Sequential Data



https://quickdraw.withgoogle.com/#

More Applications in Vision

Image Captioning

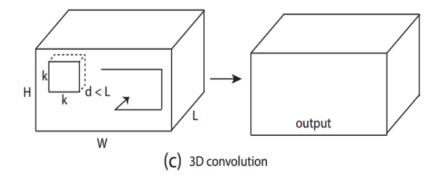


A group of people shopping at an outdoor market.

There are many vegetables at the fruit stand.

How to Model Sequential Data?

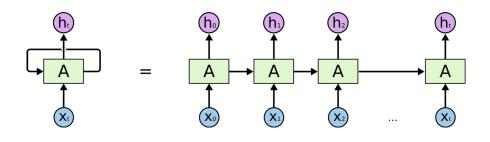
- Deep learning for sequential data
 - Possible solution: 3D convolution neural networks



3D convolution

How to Model Sequential Data?

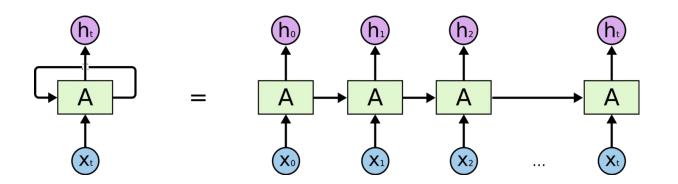
- Deep learning for sequential data
 - Possible solution: 3D convolution neural networks
 - Recurrent neural networks (RNN)



RNN

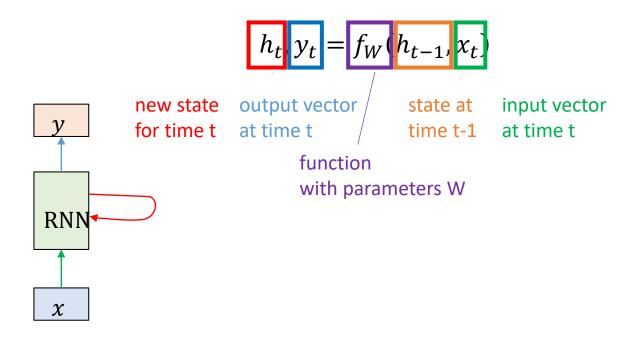
Recurrent Neural Networks

- Parameter sharing + unrolling
 - Keeps the number of parameters fixed
 - Allows sequential data with varying lengths
- Memory ability
 - Capture and preserve information which has been extracted/processed



Recurrence Formula

• Same function and parameters used at every time step:

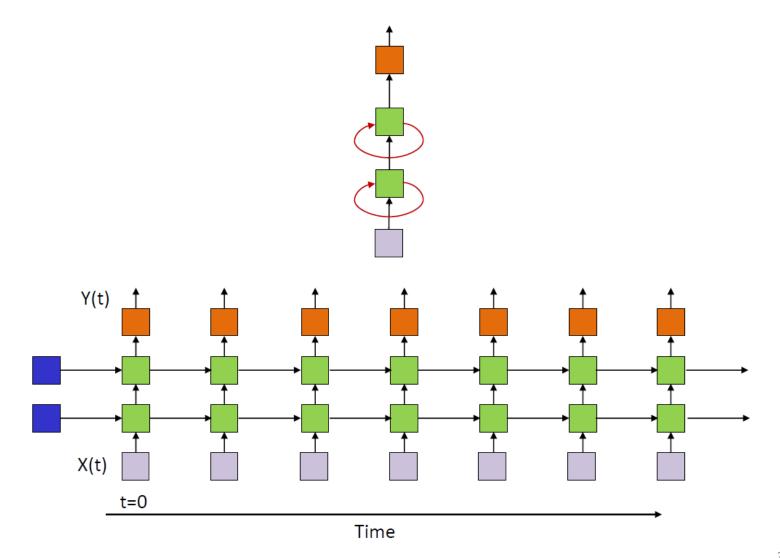


Recurrence Formula

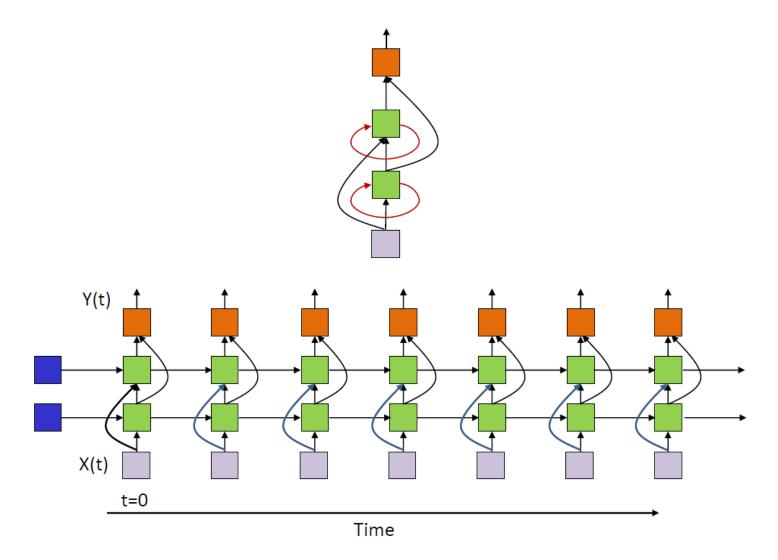
• Same function and parameters used at every time step:

 $h_t, y_t = f_W(h_{t-1}, x_t)$

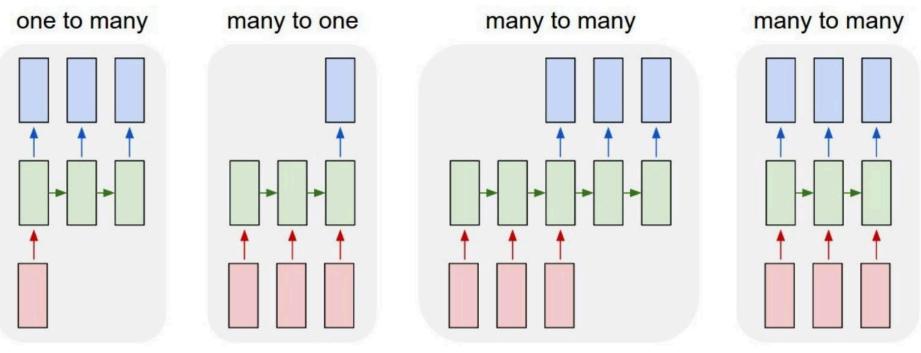
Multiple Recurrent Layers



Multiple Recurrent Layers



Sequence-to-Sequence Modeling



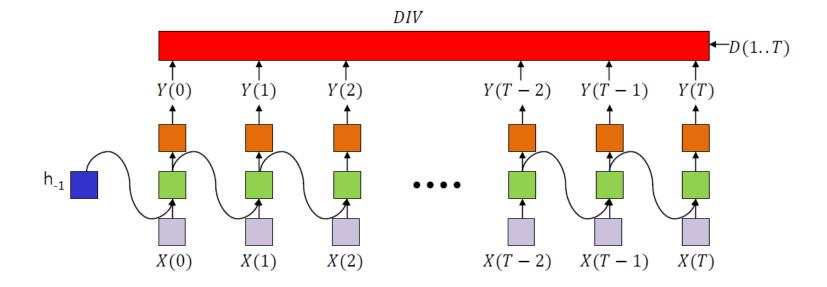
e.g., image caption e.g., action recognition

e.g., video prediction

e.g., video indexing

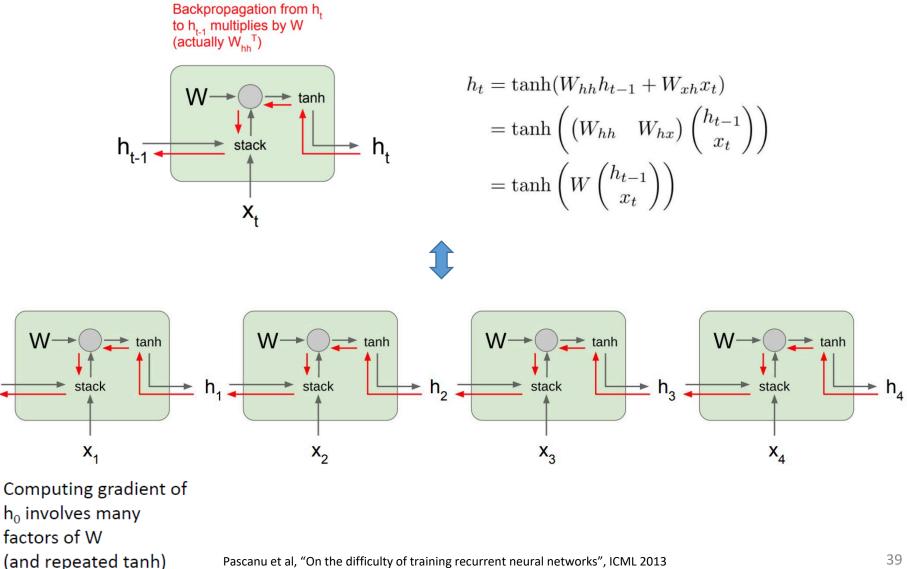
Training RNNs: Back Propagation Through Time

- Let's focus on one training instance.
- The divergence to be computed is between the sequence of outputs by the network and the desired output sequence.
- Generally, this is not just the sum of the divergences at individual times.



Back Propagation Through Time (BPTT)

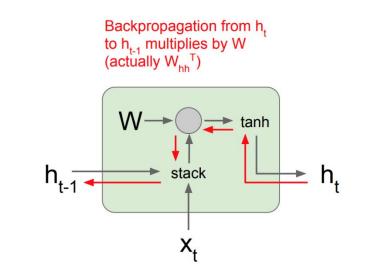
h₀



Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Gradient Vanishing & Exploding

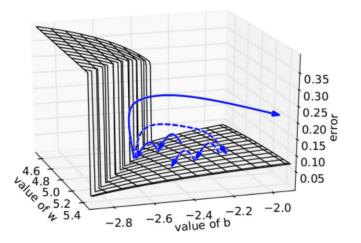
- Computing gradient involves many factors of W
 - Exploding gradients : Largest singular value > 1
 - Vanishing gradients : Largest singular value < 1



$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$
$$= \tanh\left(\begin{pmatrix}W_{hh} & W_{hx}\end{pmatrix}\begin{pmatrix}h_{t-1}\\x_{t}\end{pmatrix}\right)$$
$$= \tanh\left(W\begin{pmatrix}h_{t-1}\\x_{t}\end{pmatrix}\right)$$

Solutions...

• Gradients clipping : rescale gradients if too large



→ standard gradient descent trajectories

---> gradient clipping to fix problem

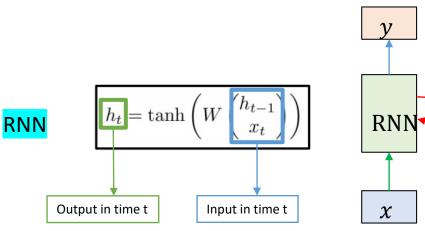
grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
 grad *= (threshold / grad_norm)

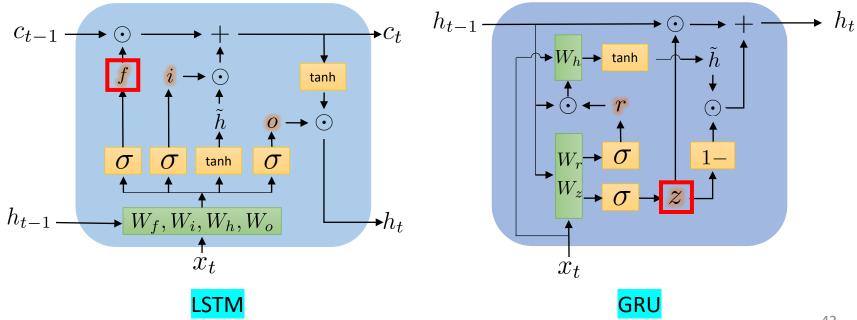
- How about vanishing gradients?
 - Change RNN architecture!

Variants of RNN

- Long Short-term Memory (LSTM) [Hochreiter et al., 1997]
 - Additional memory cell
 - Input/Forget/Output Gates
 - Handle gradient vanishing
 - Learn long-term dependencies
- Gated Recurrent Unit (GRU) [Cho et al., EMNLP 2014]
 - Similar to LSTM
 - handle gradient vanishing & learn long-term dependencies
 - No additional memory cell
 - Reset / Update Gates
 - Fewer parameters than LSTM
 - Comparable performance to LSTM [Chung et al., NIPS Workshop 2014]

Vanilla RNN, LSTM, & GRU



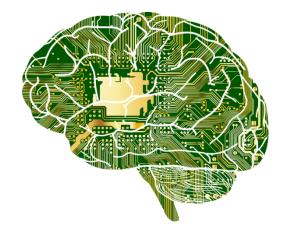


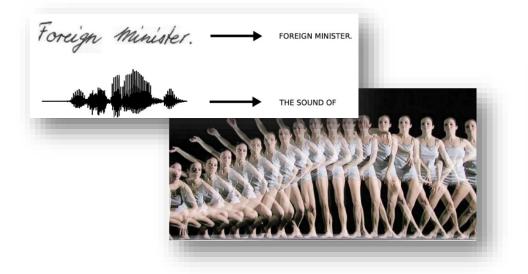
Vanilla RNN vs. LSTM vs. GRU

	Vanilla RNN	LSTM	GRU
Cell state	Х	0	0
Number of Gates	N/A	3	2
Parameters	Least	Most	Fewer
Gradient Vanishing / Exploding	8	\odot	\odot

What to Be Covered Today...

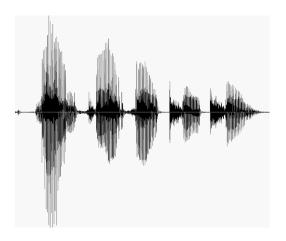
- Generative Model
 - Generative Adversarial Network
- Adversarial Learning for Transfer Learning
- Recurrent Neural Networks
 - From RNN to LSTM & GRU
 - Sequence-to-Sequence Learning
 - Attention in RNN
- Transformer (if time permits)





Sequence-to-Sequence Modeling

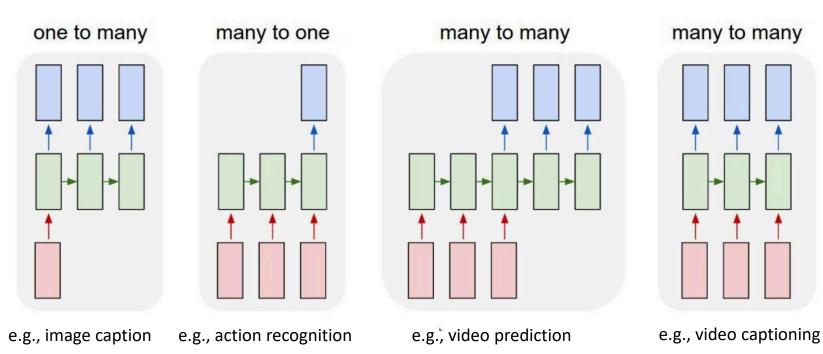
- Setting
 - An input sequence $\mathbf{X}_{1}, ..., \mathbf{X}_{N}$
 - An output sequence \mathbf{Y}_{1} , ..., \mathbf{Y}_{M}
 - Generally N ≠ M, i.e., no synchrony between X and Y
- Examples
 - Speech recognition: speech goes in, and a word sequence comes out
 - Machine translation: word sequence goes in, and another comes out
 - Video captioning: video goes in, word sequence comes out



深度學習好棒棒!

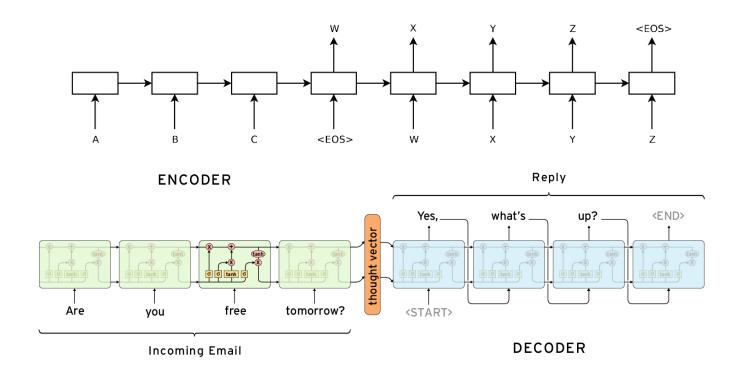
S-to-S Models with Alignment

- The input and output sequences happen in the same order
 - The input/output sequences may be asynchronous.
 - E.g., speech recognition or video captioning, in which the input sequence corresponds to the phoneme/caption sequence out.
 - Recall that...

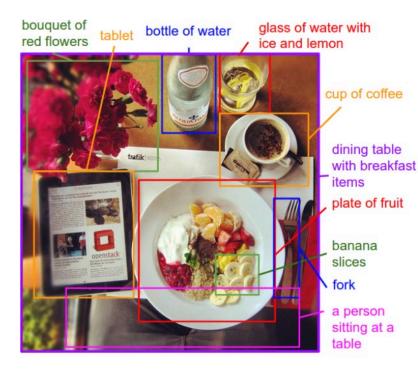


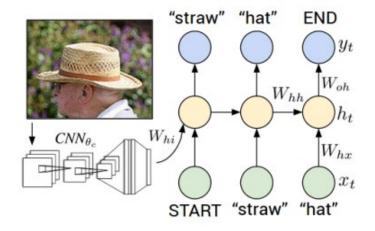
Sequence-to-Sequence Modeling (cont'd)

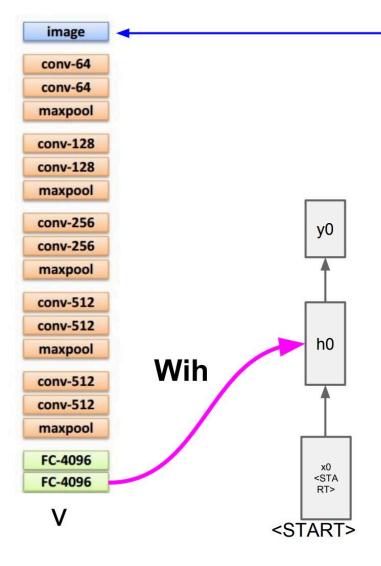
- Original model proposed in NIPS 2014
 - An encoder-decoder model



Example of Seq-to-Seq Modeling: Image Captioning



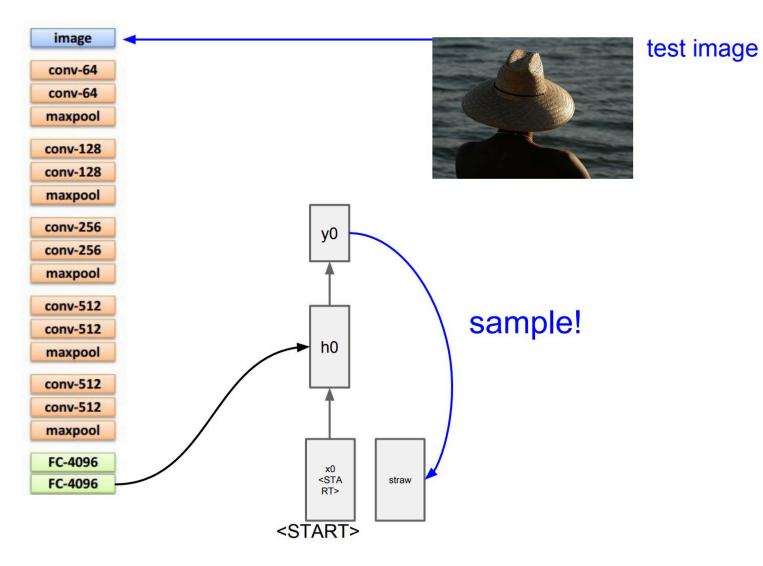


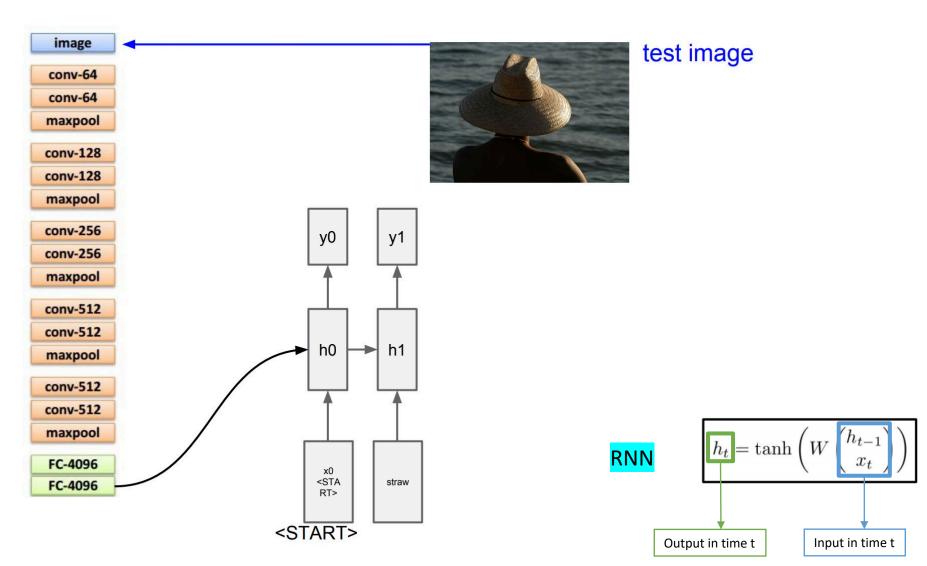


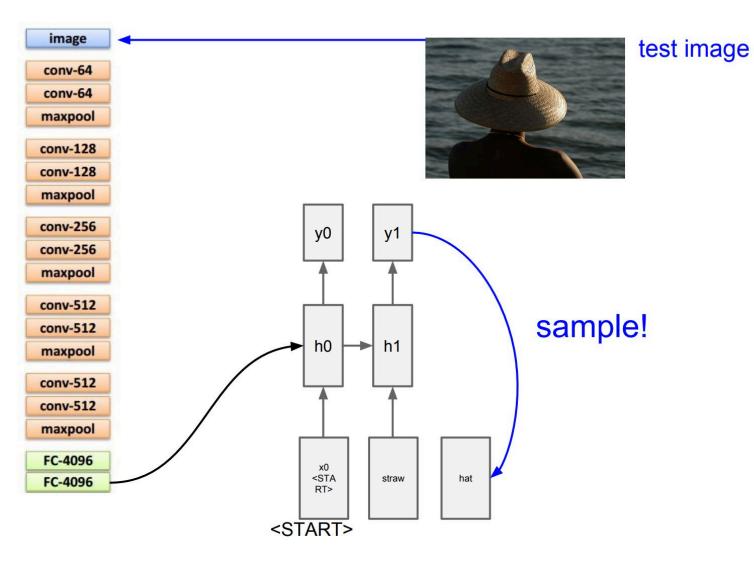
test image

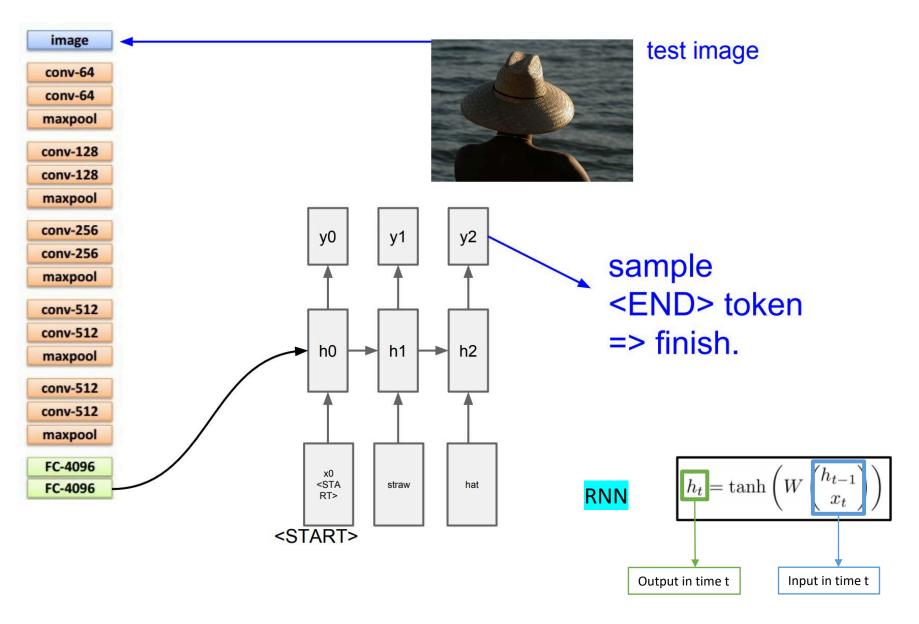
before: h = tanh(Wxh * x + Whh * h)

now: h = tanh(Wxh * x + Whh * h + Wih * v)



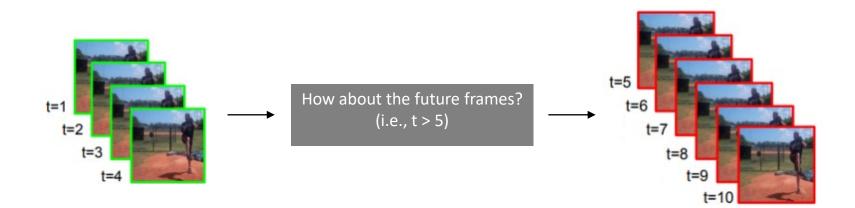






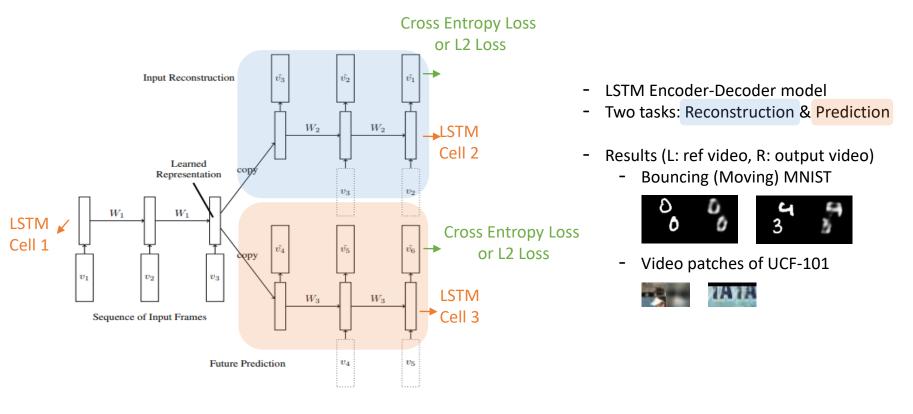
Example of Seq-to-Seq Modeling: Video Prediction

- Input: A few known frames
- Output: Unknown future frames



• Unsupervised Learning of Video Representations using LSTMs

(Srivastava et al., ICML'15)



 Learning to Generate Long-Term Future via Hierarchical Prediction (Villegas et al., ICML'17)

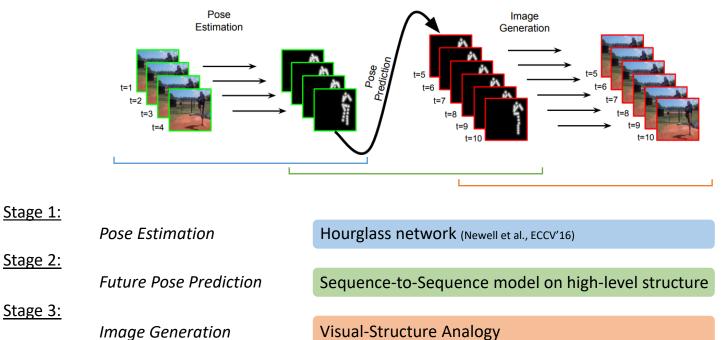
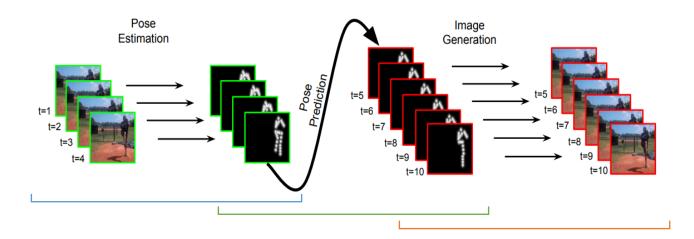


Image Generation

58

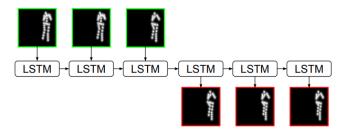
• Learning to generate long-term future via hierarchical prediction (Villegas et al., ICML'17)



<u>Step 2:</u>

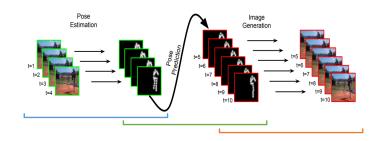
Future Pose Prediction

Sequence-to-Sequence model on high-level structure

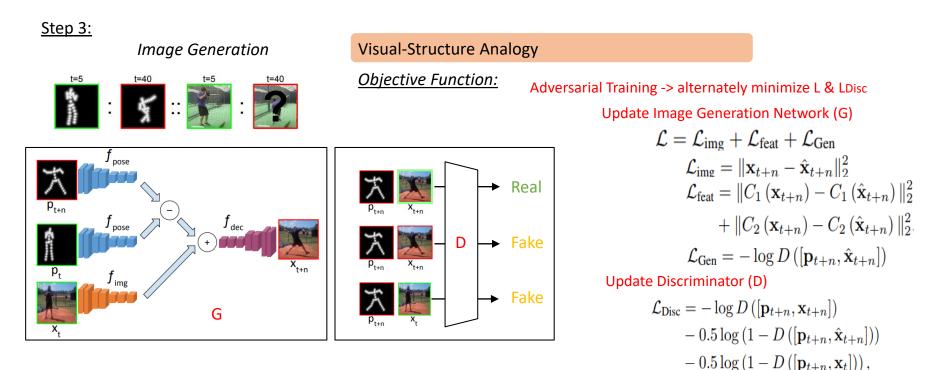


Objective Function:

$$\mathcal{L}_{\text{pose}} = \frac{1}{TL} \sum_{t=1}^{T} \sum_{l=1}^{L} \mathbb{1}_{\{m_{k+t}^{l}=1\}} \|\hat{\mathbf{p}}_{k+t}^{l} - \mathbf{p}_{k+t}^{l}\|_{2}^{2}$$



• Learning to generate long-term future via hierarchical prediction (Villegas et al., ICML'17)



60

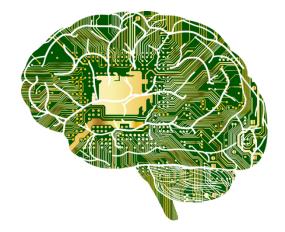
• Example Results

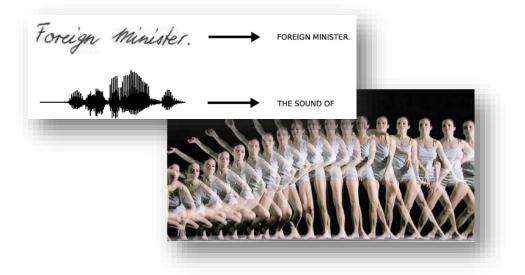
Results on Penn Action Dataset:

• Note that the above two video prediction works are deterministic, not stochastic!

What to Be Covered Today...

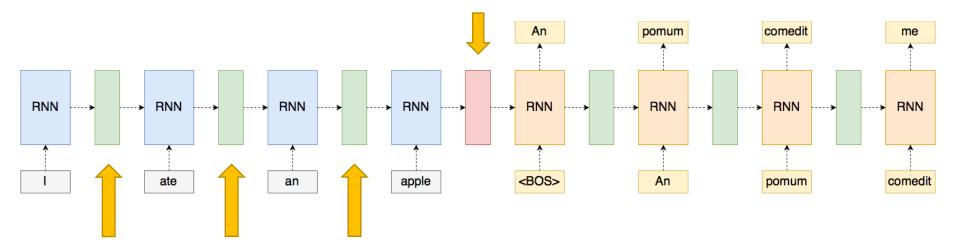
- Generative Model
 - Generative Adversarial Network
- Adversarial Learning for Transfer Learning
- Recurrent Neural Networks
 - From RNN to LSTM & GRU
 - Sequence-to-Sequence Learning
 - Attention in RNN
- Transformer (if time permits)





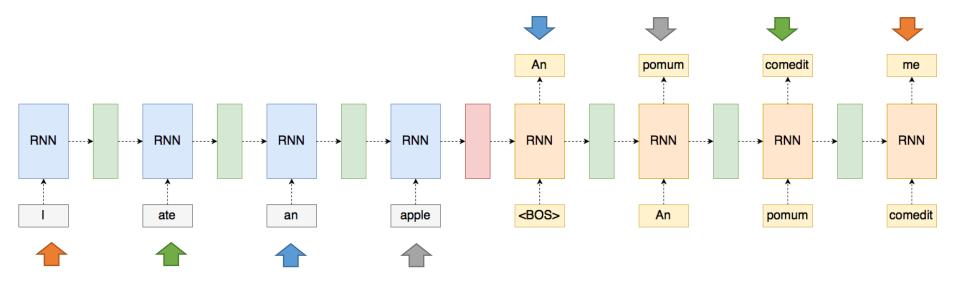
What's the Potential Problem in RNN?

- Each hidden state vector extracts/carries information across time steps (some might be diluted downstream).
- Information of the entire input sequence is embedded into a single hidden state vector.



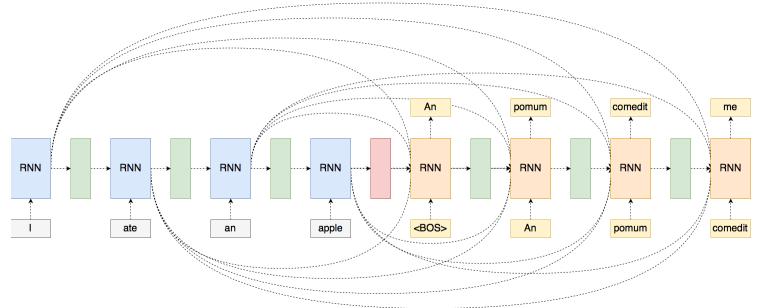
What's the Potential Problem? (cont'd)

- Outputs at different time steps have particular meanings.
- However, synchrony between input and output seqs is not required.



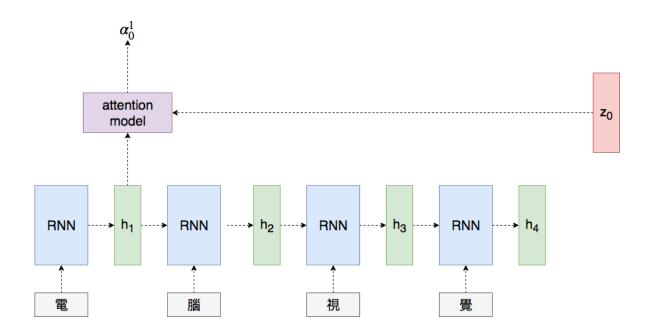
What's the Potential Problem? (cont'd)

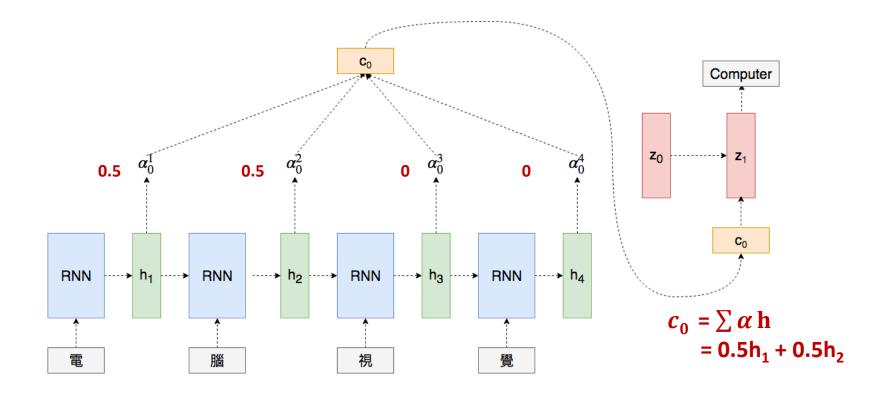
• Connecting every hidden state between encoder and decoder?

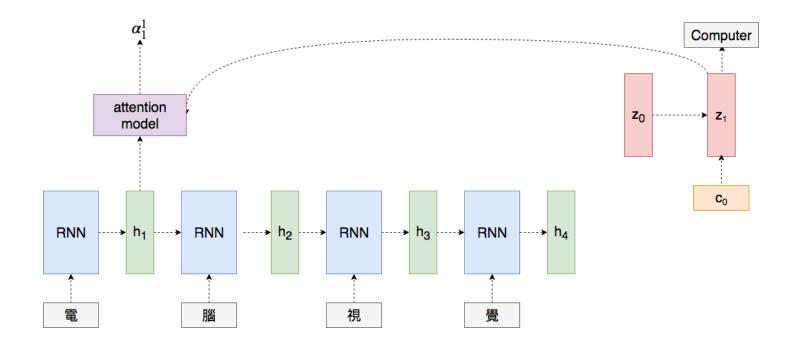


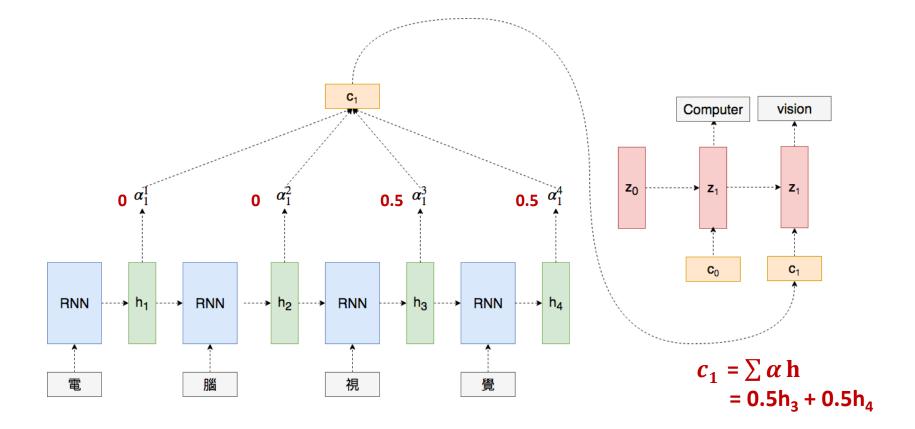
- Infeasible!
 - Both inputs and outputs are with varying sizes.
 - Overparameterized
 - Possible solution: attention

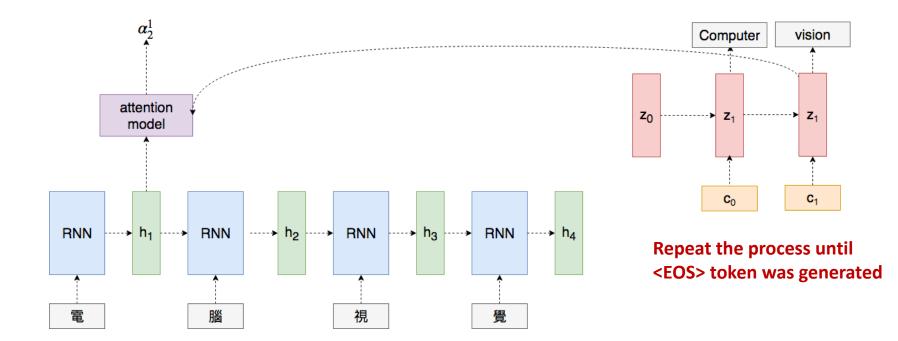
- What should the attention model be?
 - A NN whose inputs are **z** and **h** while output is a *scalar*, indicating the similarity between **z** and **h**.
- Most attention models are jointly learned with other parts of network (e.g., recognition, etc.)











Example: Image Captioning with Attention

• RNN focuses visual attention at different spatial locations when generating corresponding words during captioning.

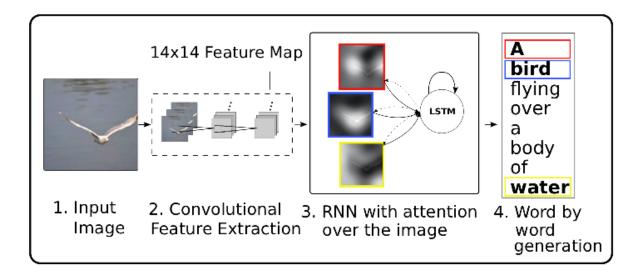
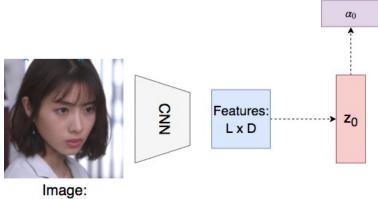
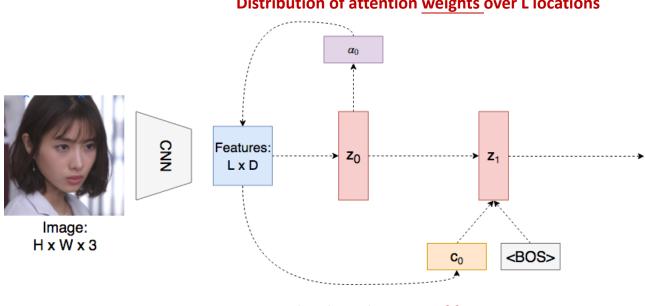


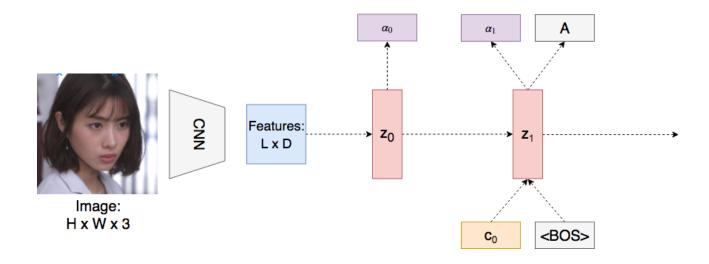
Image Captioning with Attention

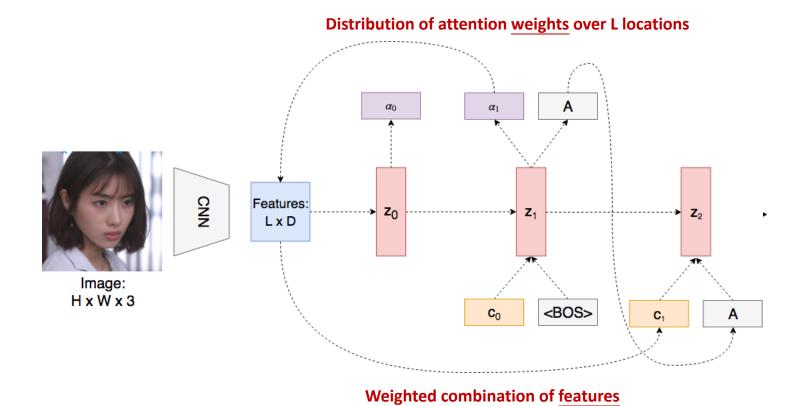




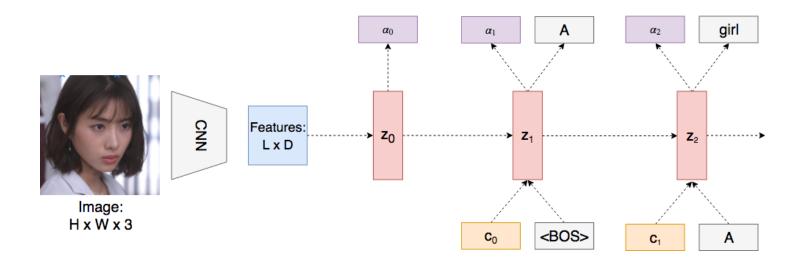
Distribution of attention weights over L locations

Weighted combination of features





75



Repeat the process until <EOS> token was generated

Attention helps image recognition... What else?

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

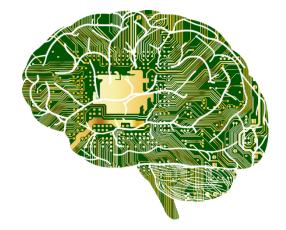
A little girl sitting on a bed with a teddy bear.

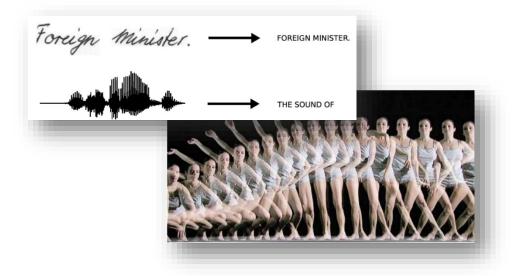
A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

What to Be Covered Today...

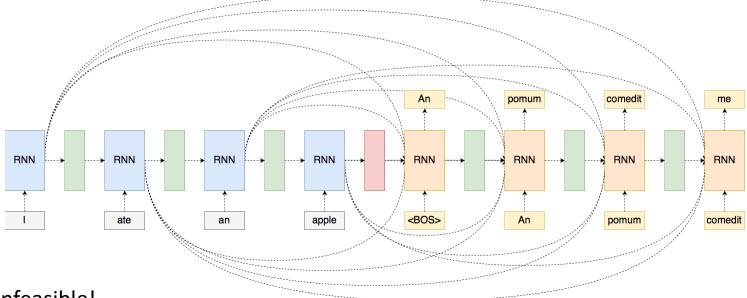
- Generative Model
 - Generative Adversarial Network
- Adversarial Learning for Transfer Learning
- Recurrent Neural Networks
 - From RNN to LSTM & GRU
 - Sequence-to-Sequence Learning
 - Attention in RNN
- Transformer





RNN with Attention is Good, But..

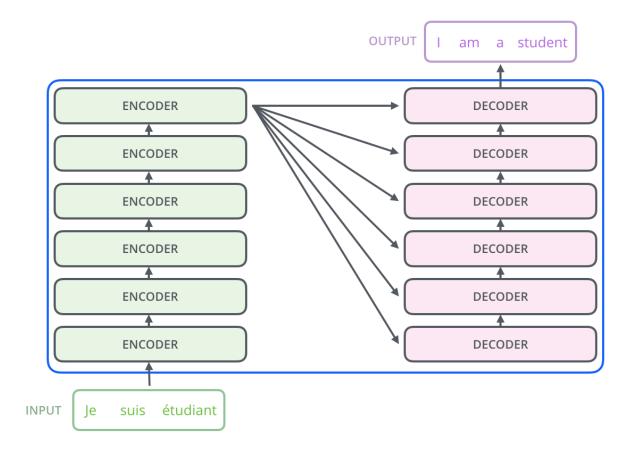
- Attention in a pre-defined sequential order
- Information loss due to long sequences...
- Connecting every hidden state between encoder and decoder?



- Infeasible!
 - Both inputs and outputs are with varying sizes.
 - Overparameterized

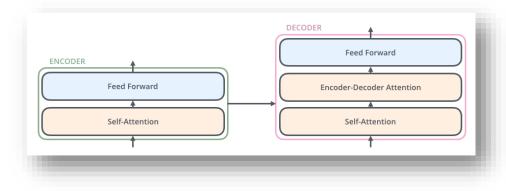
RNN with Attention is Good, But..

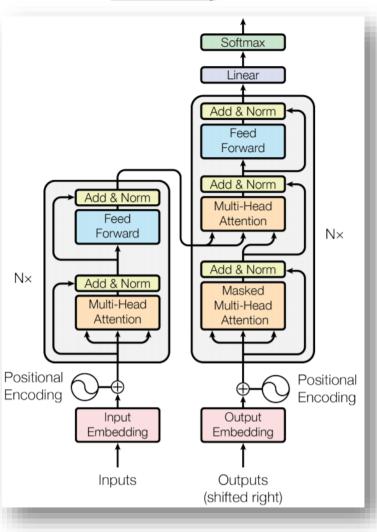
• Any better way to perform attention across features?

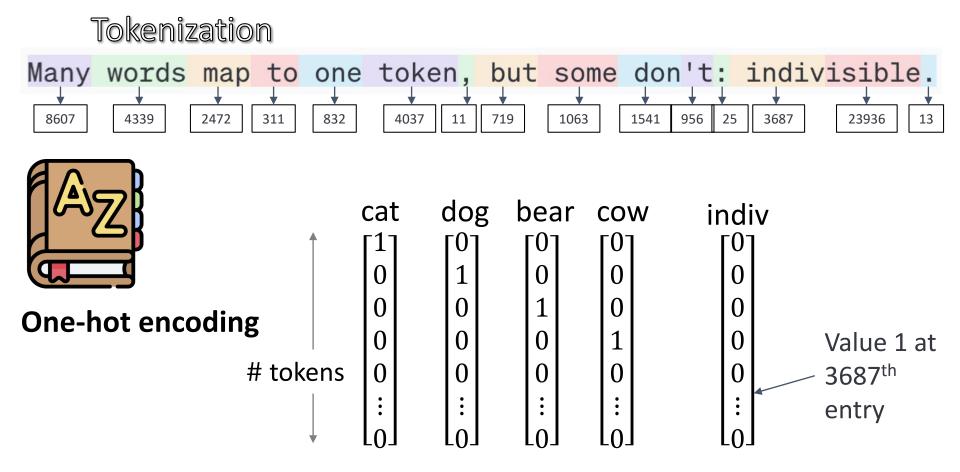


Solution #2: Transformer

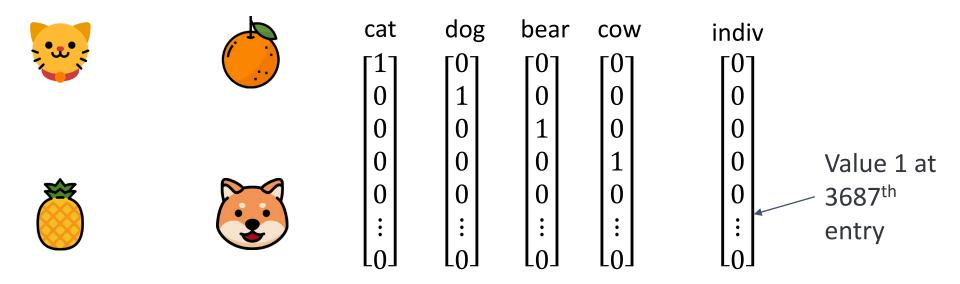
- "Attention is all you need", NIPS/NeurIPS 2017
- Self-attention for text translation
- Say goodbye to CNN & RNN
- More details available at: <u>https://www.youtube.com/watch?v=rcWMRA9E5RI</u> <u>http://jalammar.github.io/illustrated-transformer/</u>

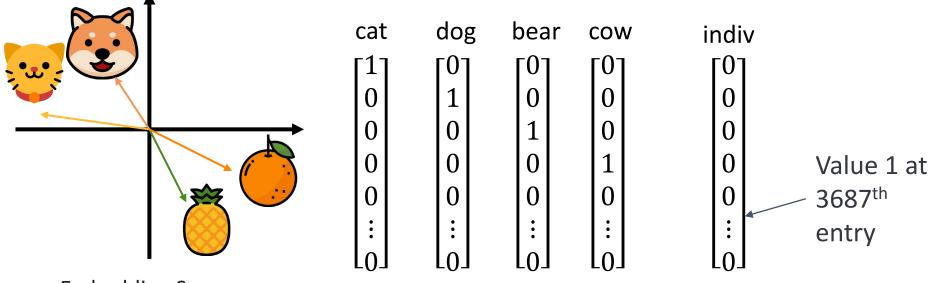




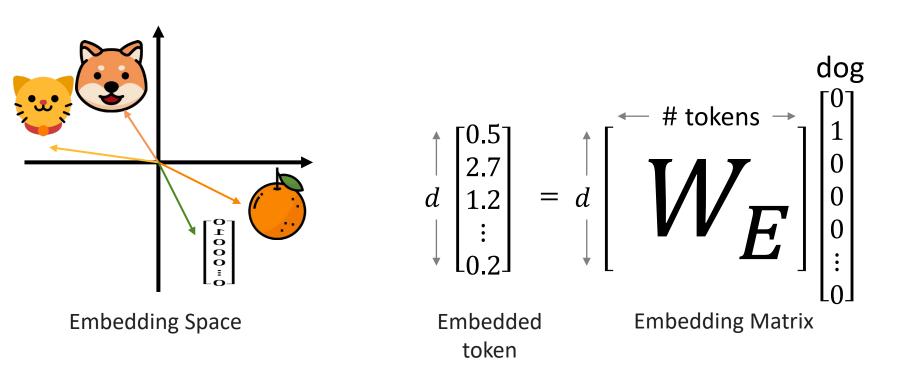


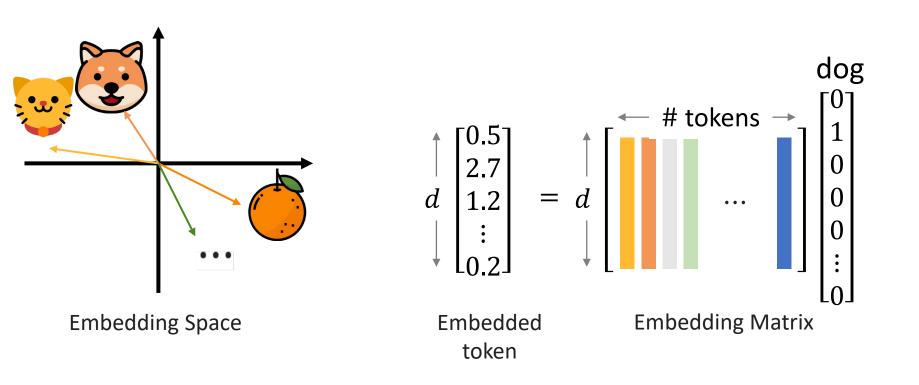
One-hot encoding

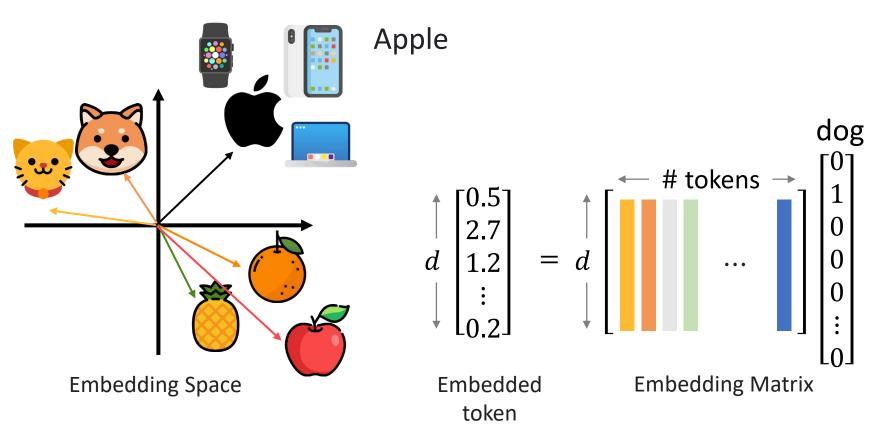


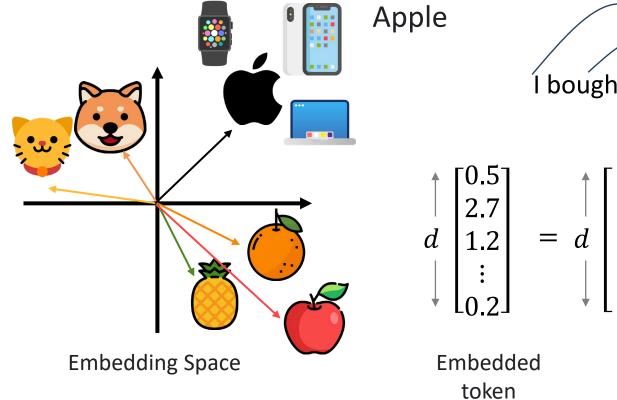


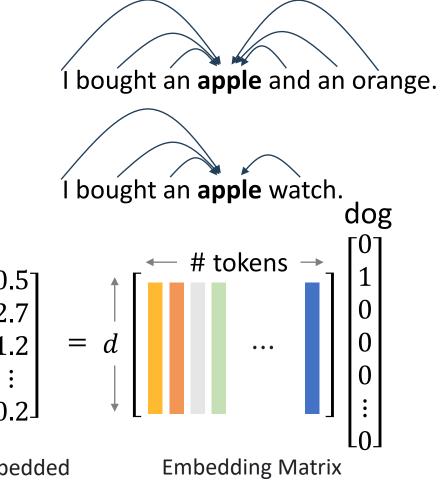
Embedding Space



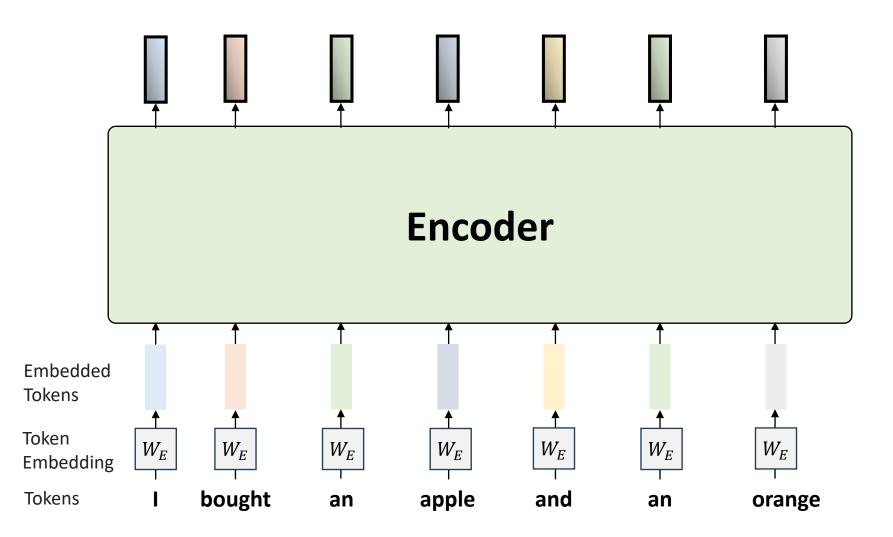


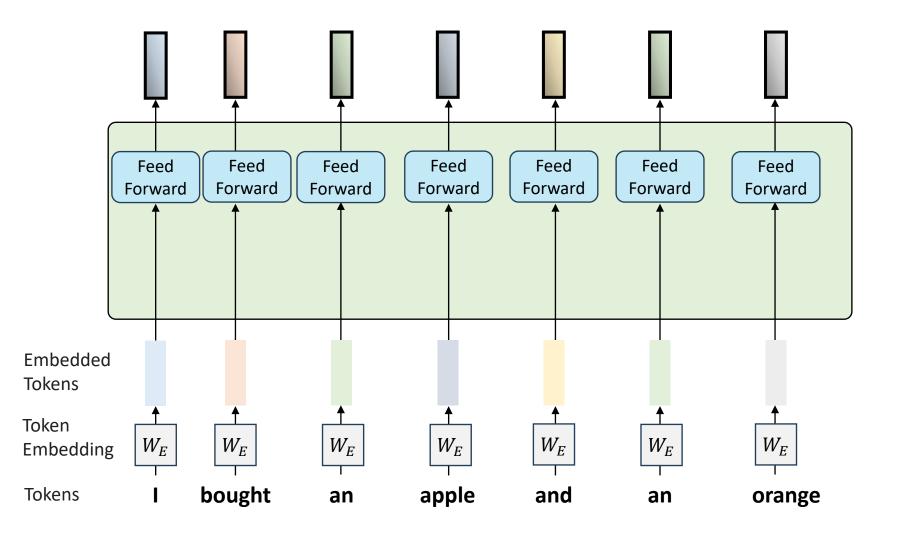


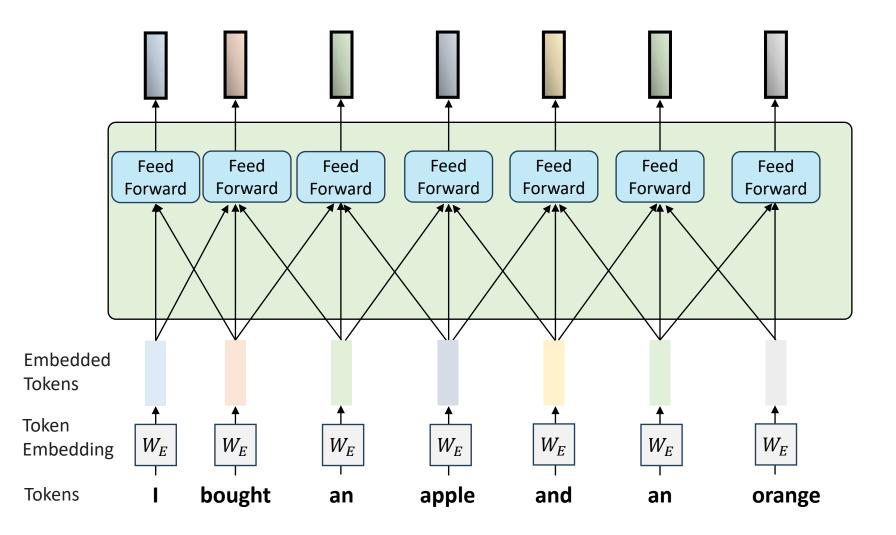


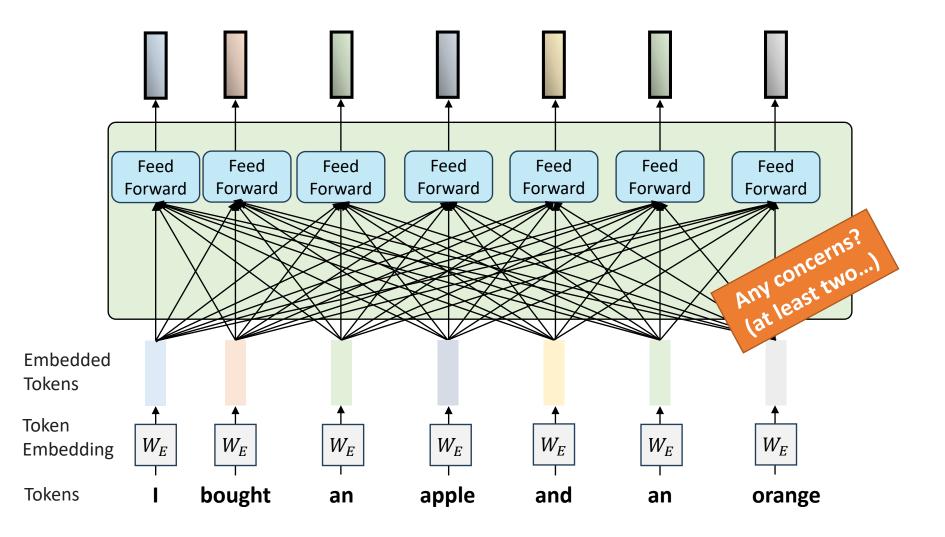


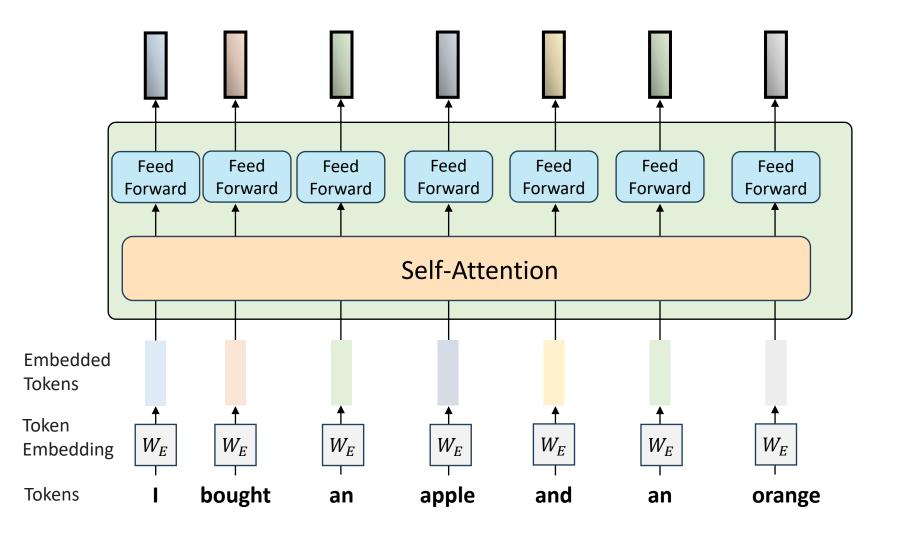
LUKEII

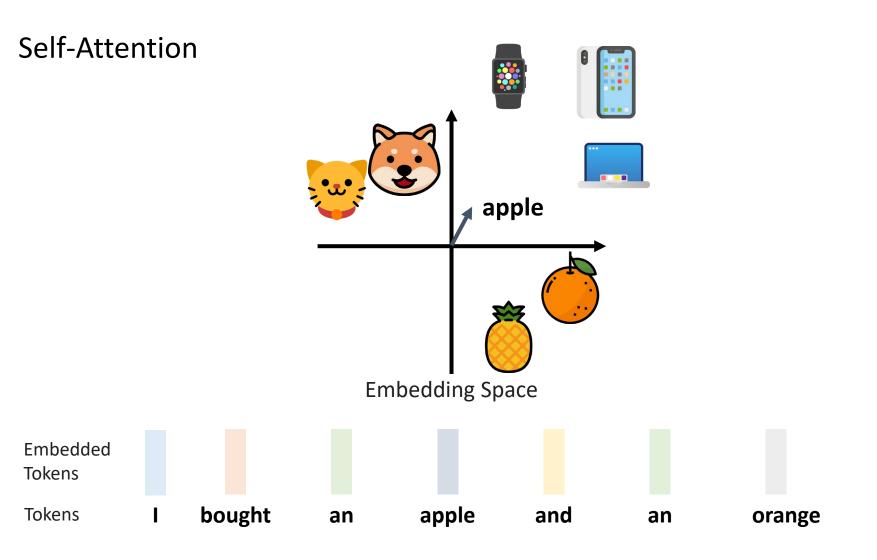


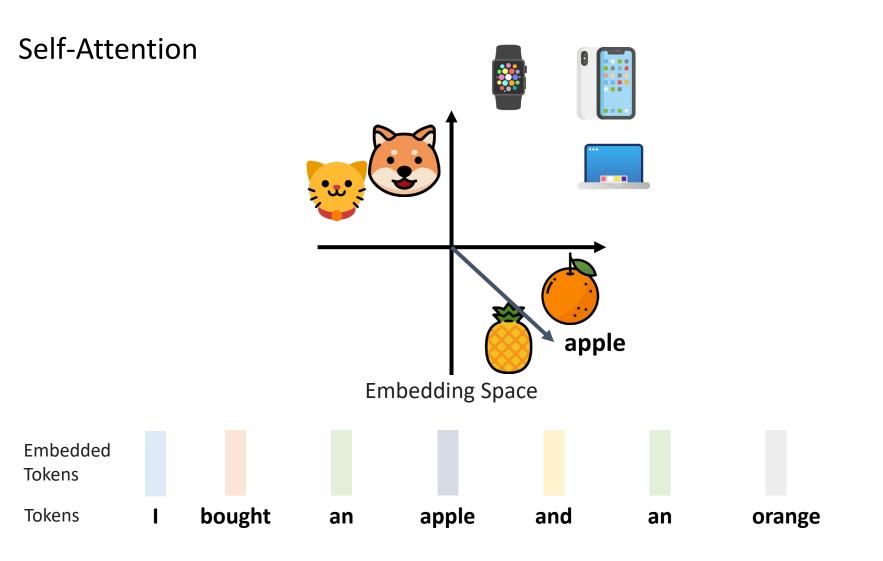


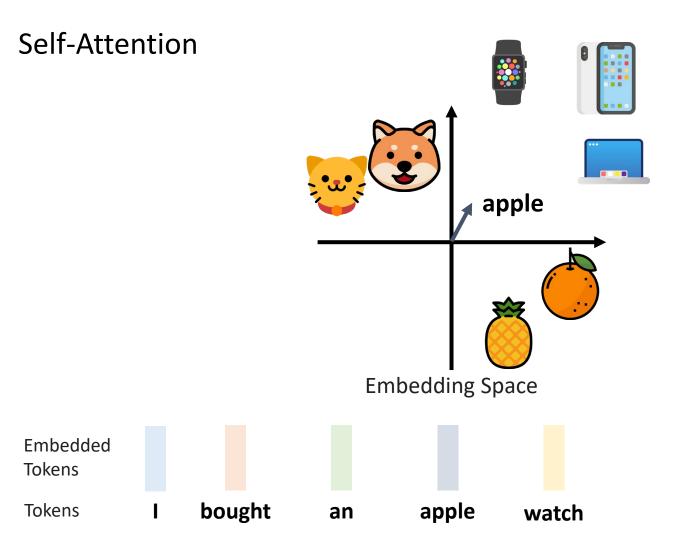


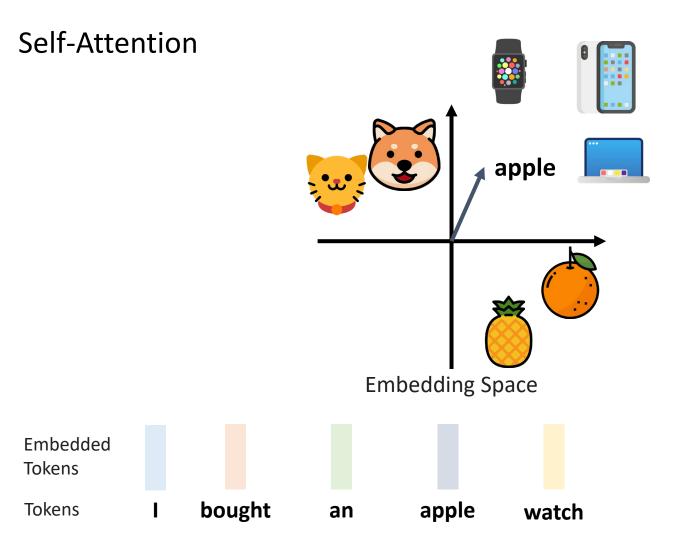






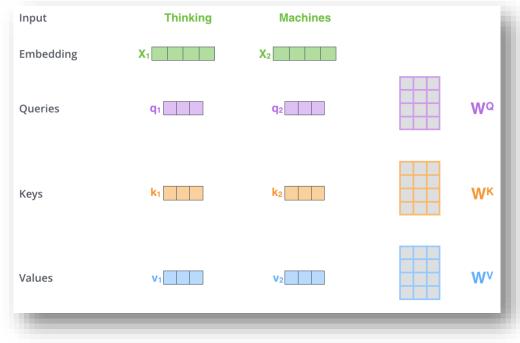


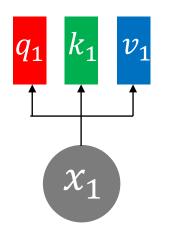


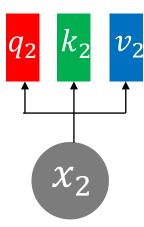


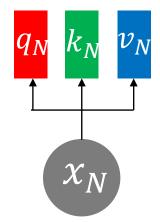
Self-Attention (1/5)

- Query q, key k, value v vectors are learned from each input x
 - $q_i = W^Q x_i$ $k_i = W^K x_i$ $v_i = W^V x_i$





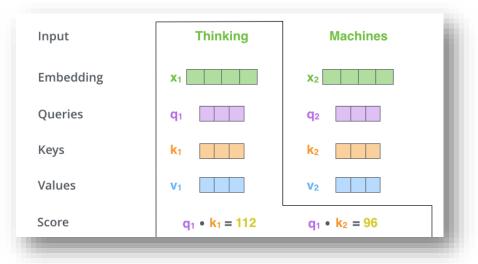


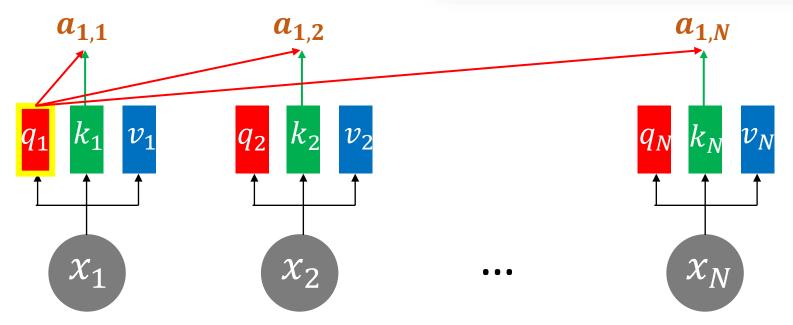


Self-Attention (2/5)

 Relation between each input is modeled by inner-product of query *q* and key *k*.

$$a_{1,i} = \frac{q_1 \cdot k_i}{\sqrt{d}}$$
, where $a \in R, q, k \in R^d$





Self-Attention (3/5)

• SoftMax is applied:

 $\widehat{a}_{1,1}$

*a*_{1,1}

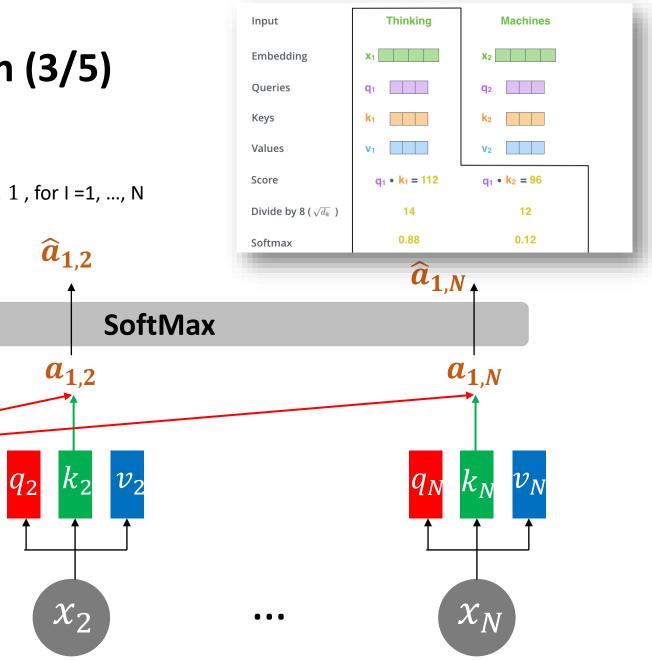
 k_1

 x_1

 q_1

 v_1

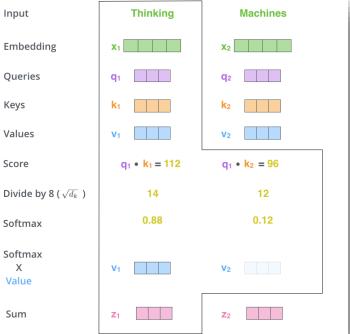
$$0 \leq \hat{a}_i = e^{a_i} / \sum_j^{\mathsf{N}} e^{a_j} \leq 1$$
 , for I =1, ..., N

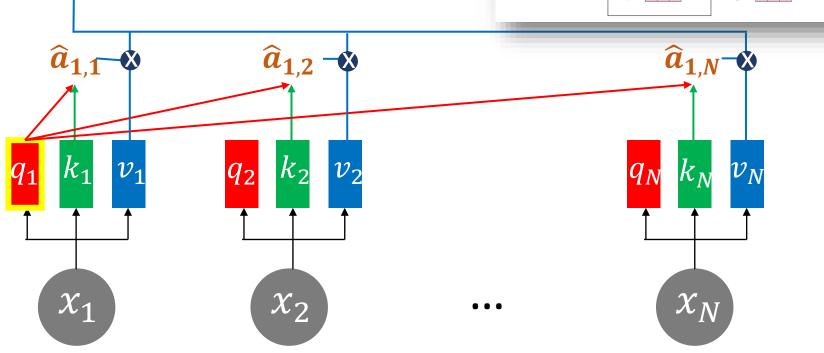


Self-Attention (4/5)

 y_1

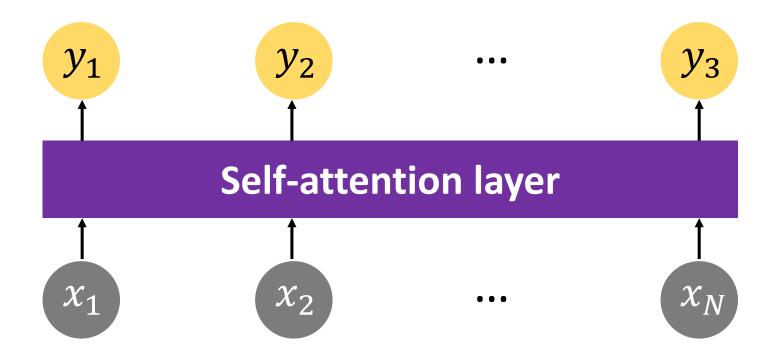
• Value vectors \mathbf{v} are aggregated with attention weight \hat{a} , i.e., $y_1 = \sum_i^N \hat{a}_i \cdot v_i$





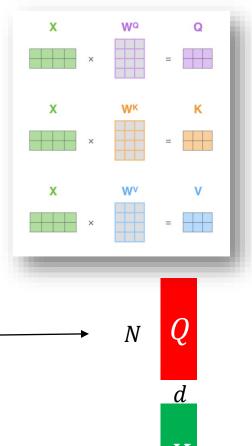
Self-Attention (5/5)

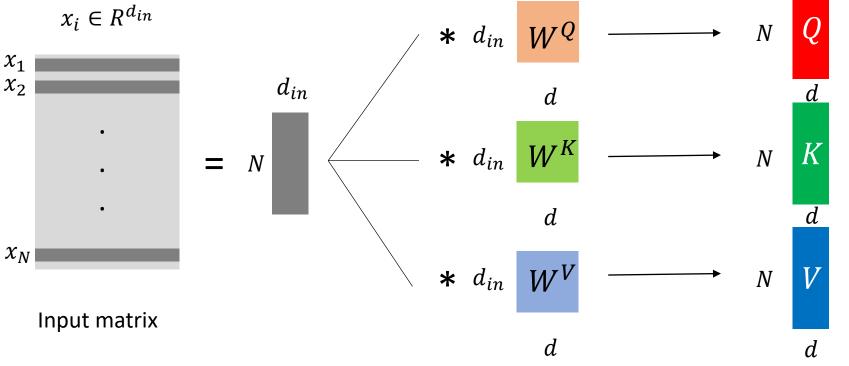
- All y_i can be computed **in parallel**
- Each y_i considers $x_1 \sim x_N$, modeling their **long-distance dependencies**.
- Global feature can be obtained by **average-pooling** over $y_1 \sim y_N$



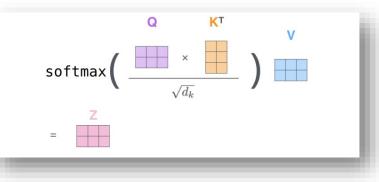
Self-Attention: Implementation

- Input sequence can be represented as a N x d_{in} matrix
- * denotes matrix multiplication

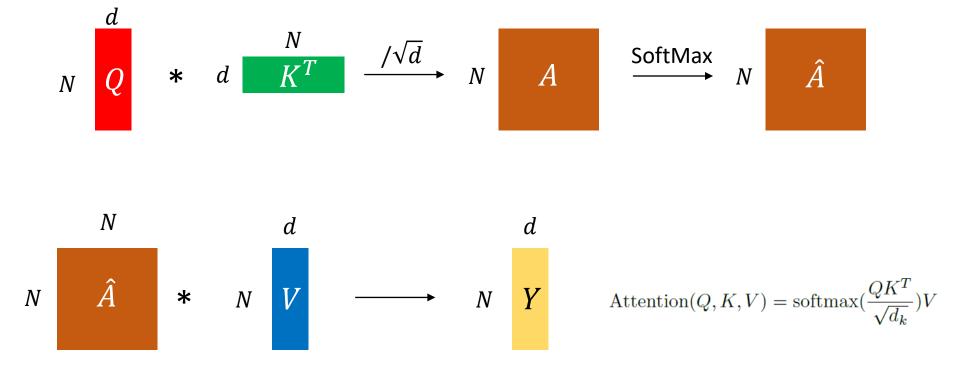




Self-Attention: Implementation



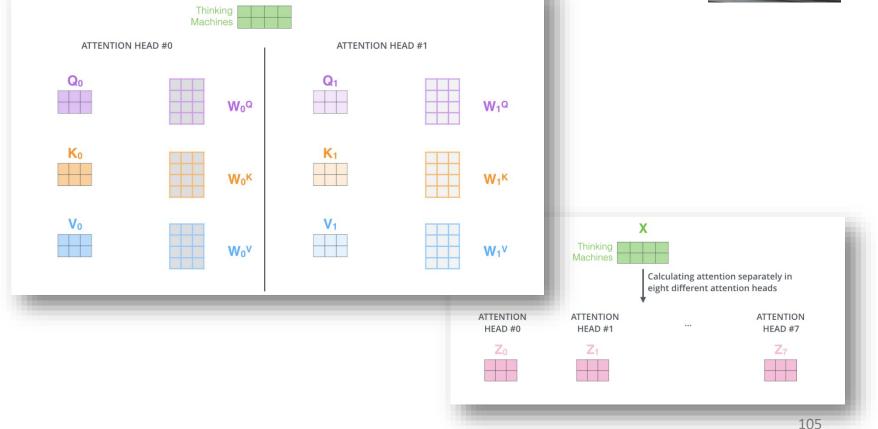
- Output matrix **Y**
- All operations are matrix multiplication, can be parallelized on GPU.



Multi-Head Self-Attention (1/4)

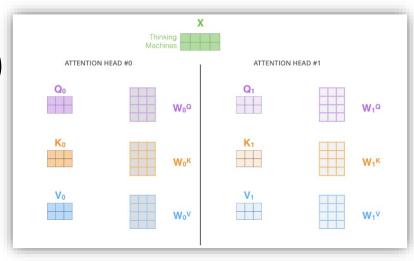
X

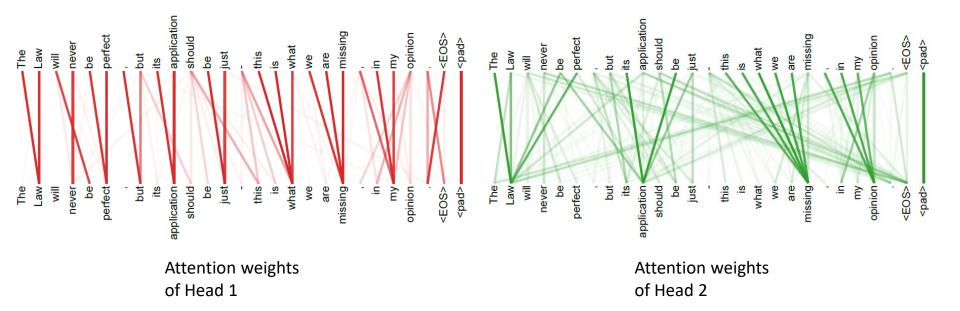
 Perform self-attention at different subspaces, implying performing attention over different input feature types (e.g., representations, modalities, positions, etc.)



Multi-Head Self-Attention (2/4)

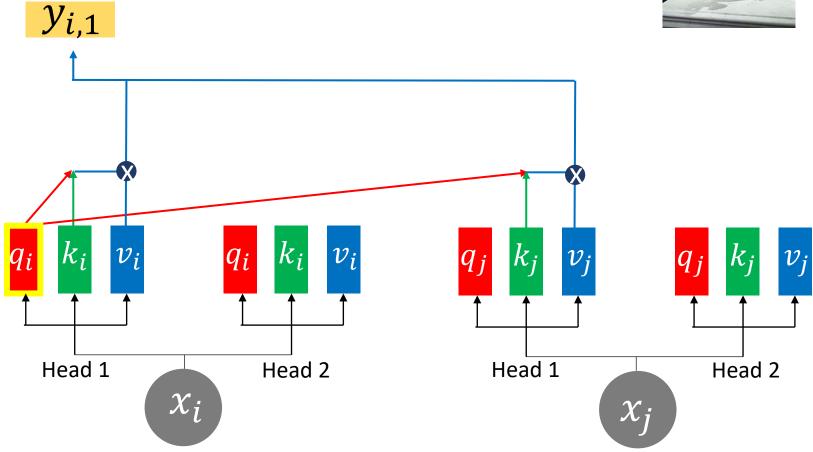
- Perform self-attention at different subspaces, implying performing attention over different input feature types
- See example below





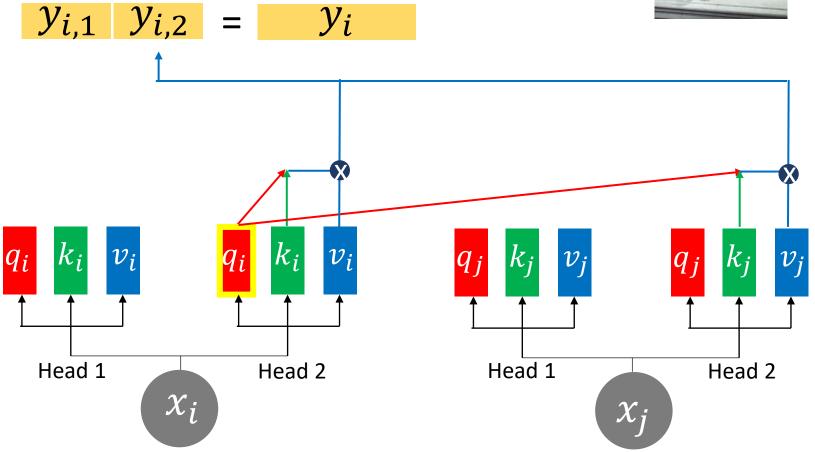
Multi-Head Self-Attention (3/4)

• A 2-head example, output of two heads are concatenated.



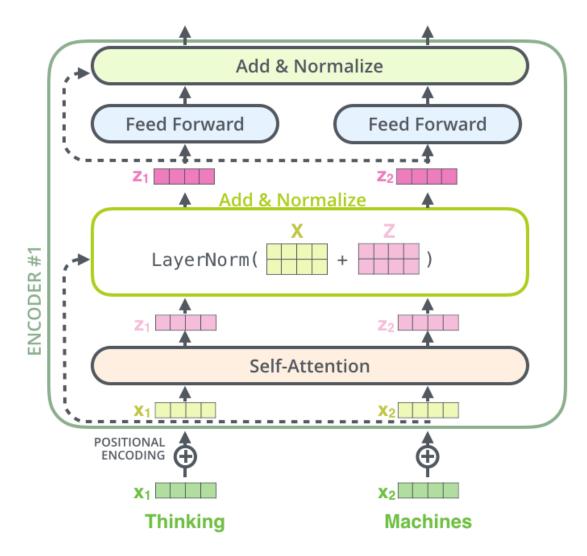
Multi-Head Self-Attention (4/4)

• A 2-head example, output of two heads are concatenated.



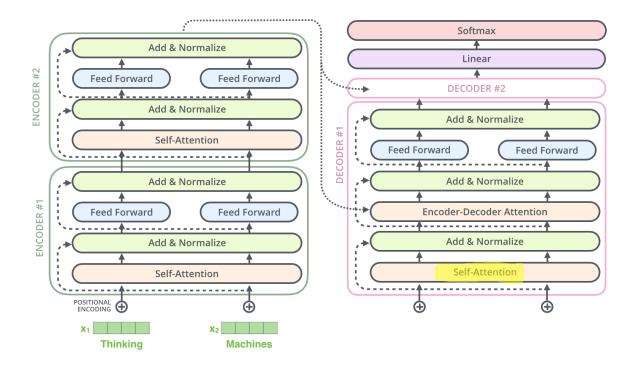
The Residuals

• A residual connection followed by layer normalization



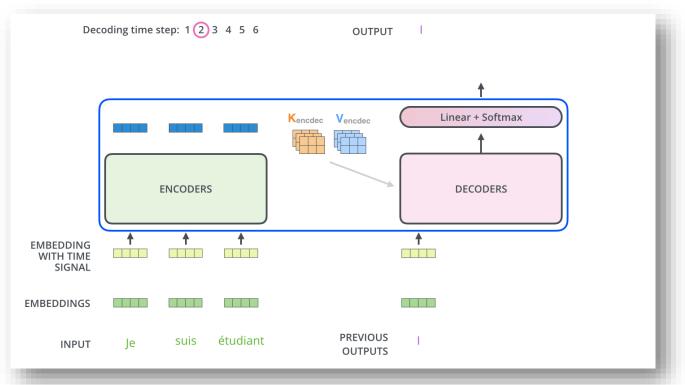
The Decoder in Transformer

- Encoder-decoder attention
 - Q from self-attn in decoder, K & V from encoder outputs
- Masked multi-head attention
 - Design similar to that of encoder, except for decoder #1 which takes additional inputs (of GT/predicted word embeddings).
 - Mask unpredicted tokens during softmax: why?



The Decoder in Transformer (cont'd)

- Encoder-decoder attention
 - Q from self-attn in decoder, K & V from encoder outputs
- Masked multi-head attention
 - Design similar to that of encoder, except for decoder #1 which takes additional inputs (of GT/predicted word embeddings).
 - Mask unpredicted tokens during softmax: why?

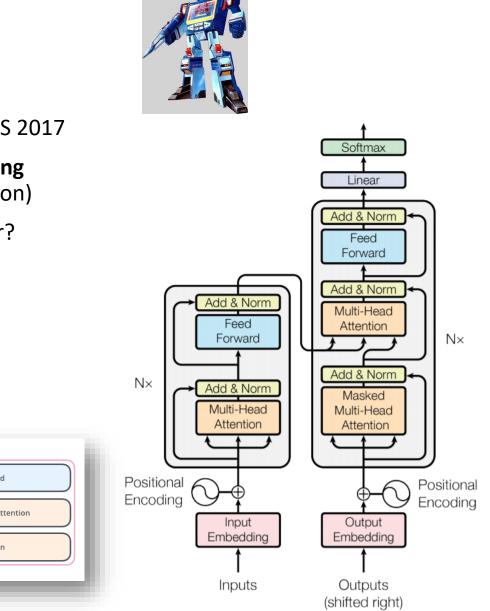


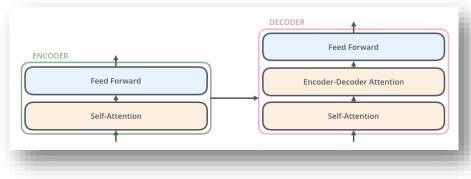
Overview of Decoding in Transformer

• Encoder/Decoder Cross-Attention + Decoder self-attention

Recap: Transformer

- "Attention is all you need", NeurIPS 2017
- We didn't cover **positional encoding** (particularly for language translation)
- Potential problems of Transformer?





What We've Covered Today...

- Generative Model
 - Generative Adversarial Network
- Adversarial Learning for Transfer Learning
- Recurrent Neural Networks
 - From RNN to LSTM & GRU
 - Sequence-to-Sequence Learning
 - Attention in RNN
- Transformer

