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I About Final Projects

* Updates
* 1:30pm-5pm, Dec 26", Thursday
(sorry, no space available on 25t™) B Adobe spark
e 3~4 people per group
(team up in mid Nov.)

» Adapt from latest CVPR/ICCV/ECCV
challenges or competitions

* Poster presentation;
code required for reproduction

* Intra/inter-group evaluation
* Snack/drink provided



What’s to Be Covered Today...

* Generative Models LSS
* Diffusion Model EoRRRN e
. e o= N
* Conditional Diffusion Model L . 2
* Classifier Guidance sS4
* Classifier-Free Guidance |

* Text/Image Guidance )
e Personalization via Diffusion Model
* Generative Adversarial Network

* HW #2 is out! (due 10/29)
GAN: Adversarial < || % Discriminator Generator
training D(x) G(z)
Discriminative Generative
Y ¢ e VAE: maximize z @
‘@ ] variational lower bound L] po(x|z)
o
e "o
e °
© @ “ ® 0 ®e A=
O ) LY @ & oy @ Diffusion models:
) ) \‘ S @m&i ® PY Gra_dually add Gaussian | fe---| Te--] Tle---o---o trotrs
. ™ noise and then reverse




A Quick Recap of Generative Models

PR

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Generative model: All possible images compete
with each other for probability mass

Conditional Generative Model can “reject” unreasonable inputs by
Model: Learn p(x|y) assigning them small values

sampling

0eM

Slide credit: UMich EECS 498-007



Autoencoder (AE)

e Unsupervised learning for deriving latent representation
e Train AE with reconstruction objectives

* Train autoencoder (AE) for downstream tasks

» After AE training is complete, freeze/finetune the encoder and
learn additional modules (e.g., MLP) for downstream tasks

e E.g., totrain a DNN for classification,
one can freeze the encoder and learn an additional MLP as the classifier.

Loss function
(Softmax, etc)

Reconstructed ~ / \
input data "E
Decoder Predicted Label
Classifier
Features 2
| Features Z
Encoder -
Encoder
Input data T
Input data T

Slide credit: UMich EECS 498-007

Fine-tune
encoder
jointly with
classifier



From AE to Variational Autoencoder (VAE)

Now is a “distribution”, we can assume it to be
a distribution easy to sample from, e.g. Gaussian

||X — ff:‘l”z

e
1

38(0‘1512 ructed

assume p(z) = N(0,) | Decoder
KLIN (e X0 S (XN (0. T) ()

A

ntatiocn

Sample = from A (j1( X)), 2( X))

Compressed

represe

Encoder

(@)

Z—r Encoder —»E—» Decoder -—}z

Griginal
input

-f-‘i.'

Slide credit: W.-C. Chiu 6



Reparameterization Trick in VAE

 Remarks
* Given x, sample z from latent distribution (described by output parameters of encoder),
weapply z = u+ o@e (esimply generated by Normal distribution).

* For training, this enables BP gradients in encoder through p and o;
for inference, this introduces generation stochasticity.

u .
. Encoder " Decoder
o
& d
= Z=U+00¢
N(0,I) =" ¢

https://medium.com/geekculture/variational-autoencoder-vae-9b8ce5475f68 7



https://medium.com/geekculture/variational-autoencoder-vae-9b8ce5475f68

Denoising Diffusion Probabilistic Models (DDPM)

Learning to generate by denoising

» 2 processes required for training:
* Forward diffusion process
* gradually add noise to input
* Reverse diffusion process
* learns to generate/restore data by denoising

e typically implemented via a conditional U-net

Forward diffusion process (fixed)

Data Noise
Reverse denoising process (generative)
Ho et al., Denoising Diffusion Probabilistic Models, NeurlPS 2020
Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021
8

Slide credit: Kreis, Gao, & Vahdat



VAE vs. DDPM

Variational Autoencoder

sample sample

Encoder Decoder X|z %6
X—{ & }—»qd,(zlx) Z—{ 5 J—»Pe( |Z) X
X Maximize [E [log ]
Latent Z

Diffusion model

/\

Xom— "X/ > Xp /> Xr—/ > X1 0 T X

Observed X Maximize [E llog ]
Latent X,, ..., X7

Slide credit: J.-B. Huang



Training DDPM

)
XO_> X1_> Xz ...—XT— XT—]_ co e —l XO
T
z IECI(Xt|X0) D (g (x4 1%, xo) | |po (%01 1%4))]
t=2

q (Xt—lk(tJ X0
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From Unconditional to
Conditional Generative Models

P(g | cat)
Discriminative Model: ] P([8|cat) P(#|cat) (B8 | cat)
Learn a probability ] ]
distribution p(y|x) PG | dog)

P |do (U L R—
Generative Model: (B3 doe)

Learn a probability

distribution p(x) | ~ € ,
Conditional Generative Conditional Generative Model: Each possible
Model: Learn p(x]y) label induces a competition among all images

Slide credit: UMich EECS 498-007 11




N\

Xo— X1 > Xp 7 *Xr— X171 0 T Xy

T
z IECI(Xt|XO) D (g1 1%, x0) | |pe (201 |%:))]
t=2

q(X¢—1]X¢, X0) Po(Xe—1|X¢)

12



N\

XO_le_PXZ ...—XT— XT—1 ce e —l XO
T
z IECI(Xt|XO) D (g1 1%, x0) | |pe (201 |%:))]
t=2

q(Xt—lLXt' X0 ~11X¢)

13



Observation #2

D D
ECodng
{7 (- A

XO_>X1_>X2 ooo_PXT_P XT—1 s — XO

T
> D Byl w® et = e 13]]
t=2

8 \4

+-
10clo) [l

XO Xe = J@xo + /1 — e ) t

t 9 ~ @9 (Xt’ t)
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Training vs. Inference

* Summary
Algorithm 1 Training Algorithm 2 Sampling allowing
1: repeat i generation
2: x[:)em q(x0) ;: :.{07; ;_Nq‘.(.o’l) tda diversity
3: t ~ Uniform({1,...,T}) & i ~7\/’((’)I)’
4: €~ N(0,I) ' ! -
5: Take gradient descent step on , 4 X¢-1= \/%—t (xt - \}T_—éjea (xt,t)) Hotz
Vo ||€ — ea(Varxo + 1 — avelt)| 5: end for
6: until converged 6: return xo
\ 4
Xy | zp L, ea(xs, t) Pladaa) >Plasfz o), Zo(xt, €0) — plze, To), B Plevilzvm), Fi1

Training U-Net for MNIST handwritten
DDPM noise prediction image data

15
Slide credit: Kreis, Gao, & Vahdat



Latent Diffusion Models

—

D

-

[ Denoising 6 ]

ZT Z1_1

— Latentz

_II_I

Decode
r

Reconstruction X

—

[ Denoising & | E

— N\

Zg

ID

_II_I

Decode
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From DDPM to DDIVI:
Denoising Diffusion Implict Models

e DDIM
e Sampling process for generation
A (1)
Iry — 1 — Oéttie ($t) \/ 9 (t)
Lt—1 — /Ot—1 l—aiq — Ot " €p (ivt) +  Ot€t
A/ Y S~
« ¢ ., h ~ g random noise

~ “direction pointing to x+”
“ predicted x¢”

Step 123 Step 456 Step 999

Step O

e Additional comment on Lc:rt2 : stochastic vs. deterministic generation process
® Since DDIM and DDPM share the same objective function,
so one can use a pretrained DDPM for DDIM generation.

17



What’s to Be Covered Today...

: AR s
* Generative Models e S p‘*«"&\
. . L\ ) By,
* Diffusion Model e L ara= A AN
fe=—N i<}
* Conditional Diffusion Model S LA Q
* Classifier Guidance '@5
Discriminative Generative GAN: Adversarial < | I Discriminator Generator i
training D(x) G(z) X
+ @
LY @ ® L | —
@\‘ . . . . . /
- ] @ @ ® : ® .. VAE: maximize [ 21 Decoder <
o * variational lower bound L] po(x|z)
09 0 0 g ® @
o o0 o 9o @ —
Gradually add Gavesian (O XL RE e |
noise and then reverse

18
Slide credit: Prof. J.-B. Huang @ U Maryland



Unconditional generation

p(X7)

19



Conditional generation

Conditional signal

y = ‘CAT’

p(X7) Po(Xo)

20



Conditional generation

Conditional signal

y = “A cat wearing sunglasses” =

! 000 !

»{ Deccéder ]_, 000 »{ Deccéder

p(X7) Po(Xo)

21



Unconditional generation

x:QO
se(X¢, t) = Vlog p(x;)

Unconditional score

1—«a
tse(xt; t)

1
o (X¢, t) =@ Xt &

(%)



Conditional generation

x:Q
SG(XD t, y) ~ VIng(thy)

Conditional score

(%)



Conditional generation

x:Q
SO(XD t, y) ~ VIng(thy)

Conditional score

(%)



x:Q

Conditional generation

SO(XtJ t, y) ~ VIng(thy)

Conditional score

Vlogp(x:|y) = Vlog

Conditional score

(%)

(

p(X)p(y|x;)

p(y)

)



x:Q

Conditional generation

SO(XtJ t, y) ~ VIng(thy)

Conditional score

Vlogp(x:|y) = Vlog p(x;)+ Vlog p(y|x;)
Conditional score

— Vlog p(y)

(%)



x:Q

Conditional generation

Classifier
Guidance

SO(XD t, y) ~ VIng(thy)

Conditional score

Vlogp(x;|y) = Vlog p(x;)+ Vlog p(y|x;)

Conditional score Unconditional score Adversarial gradient

(%)



x:Q

Conditional generation

Classifier
Guidance

SO(XD t, y) ~ VIng(thy)

Conditional score

Vlogp, (X¢|y)= Vlog p(X;)+ v Vlog p(y|x¢)

Conditional score Unconditional score Adversarial gradient

(%)



Conditional generation

Classifier
Guidance

Se(Xe,t,y) ~ Vlog p(x¢]y)

Conditional score

Vlogp, (x.|y)=|Vlog p(x,)+|y Vlog p(y|x;)

Conditional score Unconditional score Adversarial gradient

(%)



Conditional generation

Classifier
Guidance

SO(XtJ t, y) ~ VIng(thy)

Conditional score

Vlogp, (X¢|y)=|Vlog p(X:)l+|y Vlog p(y|x;)

Conditional score Unconditional score Adversarial gradient

(%)



Conditional generation

Classifier

Classifier guidance scale =1 Classifier guidance scale = 10

vy = “Pembroke Welsh corgi”

[Dhariwal & Nichol 2021]
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Conditional generation

Classifier
Guidance

SO(XtJ t, y) ~ VIng(thy)

Conditional score

Vlogp, (X¢|y)=|Vlog p(X:)l+|y Vlog p(y|x;)

Conditional score Unconditional score Adversarial gradient

(%)



Conditional generation

Classifier
Guidance

Vlog py(xt|y3=

Vlog p(x¢)

y Vlog p(y[x;)

Conditional score

Pdata (X)

Unconditional score

Xt

Adversarial gradient

‘Classifiel — p(V|x;)

Training optional*

33



Conditional generation

Classifier
Guidance
Vlogp, (x.]y)=|Vlog pxe)+y Vlog p(¥I%o)
Conditional score Unconditional score Adversarial gradient

— N 7
X —4/1— L ‘ l
t \/—“tee(xt ) _>—> Classifieq — P(ﬂﬁo)

Estimated Training optional*
clean image

— ,6\9 (Xti t)

Estimated
noise

Universal Guidance [Bansal et al. 2023]

34



Conditional Generation with Classifier-Guidance

* Any price to pay? Classifier
Guidance
X _ N\
: Vlog py (x,|y)=|Vlog p(x)+y Vlog p(y[%o)
Conditional score Unconditional score Adversarial gradient
_ 0
Xt —+/1—a; €g(Xg, t
Xo = : @ Eo e, t) —>—’ ‘Classifiel — p(ﬂﬁo)
X
Estimated Training optional*
clean image

— ,6\9 (Xti t)

Estimated
noise

Pdata (X)

35



What’s to Be Covered Today...

* Generative Models '“""":ﬁ?ﬁ“%
- Diffusion Model EEARNNRL e\
ég, -;%E’: : -

e Conditional Diffusion Model

e C(lassifier-Free Guidance

Generator

G(z)

Discriminator

D(x)

Discriminative Generative GAN: Adversarial < || x

training

. 0 )
. &) ® —
*
°* i ® " @ ® o /
‘s
0o + 9 ®e L) VAE: maximize z DEETLD x
O “ variational lower bound L] po(x|z)
09 0 0 g ® @
O Q® \‘ @ & ® &
@0 o9 @ ]
.

Diffusion models:
Gradually add Gaussian
noise and then reverse

36
Slide credit: Prof. J.-B. Huang @ U Maryland



Conditional generation

Classifier
Guidance

Vlog py(xt|y3=

Vlog p(x¢)

y Vlog p(y[x;)

Conditional score

Pdata (X)

Unconditional score

Adversarial gradient

37




x:O

Conditional generation

Vlogp, (X¢|y) = Vlog p(x¢)+ v Vlog p(y|x¢)

Conditional score Unconditional score Adversarial gradient

p(X¢|y)p(y)

Vlog p(y|x:) = Vlo (
5 ‘ 5 p(x¢)

(%)

)



x;O

Conditional generation

Vlogp, (X¢|y) = Vlog p(x¢)+ v Vlog p(y|x¢)

Conditional score Unconditional score Adversarial gradient

Vlog p(y|x¢) = Vleg p(X¢|y) — Vlog p(x¢)
+ Viegp(y)

(%)



x;O

Conditional generation

Vlogp, (X¢|y) = Vlog p(x¢)+ v Vlog p(y|x¢)

Conditional score Unconditional score Adversarial gradient

Vlog p(y|x¢) = Vleg p(X¢|y) — Vlog p(x¢)

(%)



Conditional generation

xO vy logp, (X¢|y) = Vlog p(X¢)+ ¥(Vlog p(X¢|y)—Vlog p(x))

Conditional score Unconditional score Adversarial gradient

(%)



Conditional generation

Classifier-free Guidance

|Viogp, (x.[y))5 (1 Vlog p(x) + ¥V log p(X¢|y)
i Conditional score —_— ‘y) Unconditional score Conditional score
0
™
H —> Sg(Xt,t,Q)
Estimated
score
U-Net
y
-
H — Sg(Xt,t,y)
Estimated
score
U-Net

42



Conditional generation
Classifier-free Guidance

Unguided samples Guided samples

[Ho and Salimans 2021]

43



Conditional Generation with Classifier-Free Guidance

* Any price to pay? Classifier-free Guidance

|Vlogp, (x:[y)= (1  Vlog p(x.) + ¥ Vlog p(xc|y)
Conditional score — ‘y) Unconditional score Congitionalscore

?

H —> Sg (Xtr t, ®)
Estimated
score
U-Net
H — So (Xt; t! y)
Estimated
score

44



What’s to Be Covered Today...

 Generative Models
e Diffusion Model
e Conditional Diffusion Model

* Text/Image Guidance

Discriminative Generative GAN: Adversarial < || x
training
+ @ s ®
L\
\‘ . . ...
® e, ® @ ® ]
o * Y0 ®e L) VAE: maximize
O “ variational lower bound
09 0 0 g ® @
0@ \‘ @ ® .‘
@0 o9 @
.
Diffusion models:
Gradually add Gaussian
noise and then reverse

Discriminator

D(x)

..
— 'ﬂ;;lunh S

)
0

[}

Generator

G(z)

45




Inpainting

Uneropping

Conditional Generation with Image Guidance

* Palette: Image-to-Image Diffusion Models, Google Research, arXiv 2022
* Applications: colorization, inpainting, outpainting, etc.
* Input image as condition (via concatenation)

Input Output Original
. T o

Colorization

Sampling

k

Denoising
Network

.cat

46



Conditional Generation with Text Guidance

* GLIDE: Towards Photorealistic Image Generation and Editing with Text-
Guided Diffusion Models, OpenAl, arXiv 2022

* CLIP (Contrastive Language-Image Pretraining) is previously proposed
to measure alignment between text and image inputs

» Classifier guidance -> CLIP guidance (not training-free)
 What is CLIP? (see next slide)

“a corgl in a field”

“a monkey eating a banana™

T T

Unnoised CLIP (+ aux losses)

47

Noised CLIP (+ upsampler)



IMAGENET
RESNET101

CLIP: Contrastive
Language-Image
Pretraining

geNet V2
* Learning Transferable Visual Models . ‘a! & i
From Natural Language Supervision, A | e, N A\ _ —
OpenAl, NeurlPS WS 2021 e, = : 37.7%
(w/ 22000+ citations) 1ageNet Rendition

* Why not just CNN?

* Require annotated data for
training image classification

. jectNet
* Domain gap between closed :

and open-world domain data a3 . if
* Lack of ability for : Q} Y Y/

zero-shot classification

geNet Sketch

\\‘ fﬂ\ um fﬁ .,

| 't Adversarial




CLIP (cont’d)

* Objectives
* Cross-domain contrastive learning from large-scale image-language data

* Next-token prediction (what’s this & why?);
will talk more about this for the lecture of Transformer

1. Contrastive pre-training 2. Next-token prediction

e.g,a__;
o a phOtO ;
adog a cat a person
A §“°t° of o a photo of , etc.
acog Encoder 1 1 ] ]

Image
Encoder

49



CLIP (cont’d)

* (Zero-shot) Inference:

2. Create dataset classifier from label text

a photo of | Text
a {object}. Encoder )

3. Use for zero-shot prediction

" Image

a photo of
a dog.

* Potential concerns/disadvantages of CLIP?

50



Questions for Image Generation

* How to evaluate your
unconditional image generation results?

* How to evaluate your

conditional image generation results?

* Any objective/subjective and % g? @7
quantitative/qualitative evaluation?



What’s to Be Covered Today...

% O
ﬁ:l P"!:II~J

i

 Generative Models
« Diffusion Model

e Personalization via Diffusion Model

Discriminator Generator

Discriminative Generative GAN: Adversarial ’
L X X x
training D(x) G(z)
. 0 )
. &) —
. ®
0o + 9 ®o L) VAE: maximize z DEETLD x
O “ ® variational lower bound L] po(x|z)
09 0 0 g ® @
) s @ & .‘
o o0 e o © —
.
P ——— z

Diffusion models:
Gradually add Gaussian
noise and then reverse

52



Diffusion Model for Personalization (1):
Textual Inversion

e Proposed by NV Research, ICLR 2023
e Goal: Learn a special token (e.g., S*) to represent the concept of interest

i t e - 2 2 ” [ e ” " i i i L 2
Input samples ——— 5 “S,” ‘An oil painting of S, 'App icon of S. e flmgsg;;nfslg 0 Crochet S..
A1 *

invert “Painting of two S “A S backpack”

Input samples ——— “S..” fishing on a boat” “Banksy art of S.” “A S, themed lunchbox™

53
An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion



https://textual-inversion.github.io/

Diffusion Model for Personalization (1):
Textual Inversion (cont’d)

e Learning of special token S*
o Pre-train and fix text encoder & diffusion model (i.e., generator)

o Randomly initialize a token as the text encoder input

o Optimize this token via image reconstruction objectives

[ “A photo of S.” J

Tokenizer
Vol
508 701 73 (x)
I N

Embedding Lookup
oo
Vsos V701 V73 Vs
N
Text Transformer

/
/
.[

\

R —
508 —

701 —

Text Encoder

co(y)

\_Generator & /

[ Input Sample

\_Noised Sample /
54

An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion



https://textual-inversion.github.io/

Diffusion Model for Personalization (1):
Textual Inversion (cont’d)

e Learning of special token S*
o Pre-train and fix text encoder & diffusion model (i.e., generator)
o Randomly initialize a token as the text encoder input
o Optimize this token via image reconstruction objectives

e Training: —W—‘
A photo of

L2 Loss

e Inference:

A in front of Eiffel Tower

e Any potential concern?

55
An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion



https://textual-inversion.github.io/

Diffusion Model for Personalization (2):
DreamBooth

e Proposed by Google Research, CVPR 2023

e Finetune the diffusion model w/ a fixed token to represent the image concept
® Determine and fix a rare token (e.g., [V])
® Finetune the diffusion model for image restoration objectives
e Enforce a class-specific prior (why?)

Reconstruction Loss

A sy Inference
Tet — 6bxéh ”Pc [IV] dﬂ? ‘:n
the beach”
Shared
Weights
Tet — Bhx6h "A V) dog
walkang on o
I colorful corpet”
”A do%”

Class-Specific Prior Preservation Loss

e Anyconcern?

56

DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation



https://dreambooth.github.io/

Diffusion Model for Personalization (3):
ControlNet

e Proposed by Stanford, ICCV 2023
e Goal: personalization via user-determined condition

Masterpiece

of ...
text Control
encoder Net
Y Input Canny edge
& UNet’s
"\ Encoder

UNet’s \

? Decoder Y

Input human pose “chef in kitchen” “Lincoln statue”

57
Adding Conditional Control to Text-to-Image Diffusion Models



https://arxiv.org/abs/2302.05543

Diffusion Model for Personalization (3):
ControlNet

e I|nitialized from UNet’s encoder

e Notations:
® x:input noise of each layer
® y: output noise of each layer
® c:conditions (e.g., edge, pose, sketch, etc.)

zero convolution

) i) :

neural network neural network trainabl
block block (locked) | 1| THHEPE COPY
E |
J, (J{D { | zero convolution

¢ ; |

y ) g

Ye ControlNet
(a) Before (b) After

Adding Conditional Control to Text-to-Image Diffusion Models



https://arxiv.org/abs/2302.05543

Diffusion Model for Personalization (3):
ControlNet

e I|nitialized from UNet’s encoder
e Notations:

zero convolution x3

R R Condition
® x:input noise of each layer !
. zero convolution
® y: output noise of each layer
PY d - d Prompt Input
c: conditions (e.g., edge,, etc.) | Prompt&Time
SD Encodcr Block 1 ) SD Encoder Block_1
@{ 64x64 BJ 3 [ 64x64 (trainable copy) ] 3
SD Encoder Block 2 a <3 SD Encoder Block 2 <3
c 32x32 ) 32x32 (trainable copy)
S | | Time [
E' l i 1 _ [ SD Encoder Block 3 ] 3 [ SD Encoder Block 3 ] 3
i [ zero convolution | ! [@q ( 16x16 16x16 (trainable copy)
x : N : _ SD Encoder 8 <3 SD Encoder Block 4 ‘3
l : : Block 4 8x8 8x8 (trainable copy)
neural network : SD Middle o
: . ' Block 8x8 8x8 (trainabl
i | trainable copy | S (traiten - ';'_’p")
blOCk (locked) : E D Decoder zero convolution
: | - é Block 4 8x8 83 zero convolution | x3
i Zero convolution ‘

SD Decoder Block 3 } ‘3

) L 1616 A
s B Ty
Ye ControlNet —L D Dec;:f;;ﬂock_z 8l =3 zero convolution x3
J
(b) After SD Decoder Block_1 8| Iut; ‘3
P J zero convolution
Output
(a) Stable Diffusion (b) ControlNet
59

Adding Conditional Control to Text-to-Image Diffusion Models



https://arxiv.org/abs/2302.05543

What’s to Be Covered Today...

* Generative Models /-»«w""ﬁ@flﬁ“i=

A ‘I . ll

AL

e Generative Adversarial Network

Generator

G(2)

Discriminator

GAN: Adversarial ! X
D(x)

Discriminative Generative training

. ® ° -
R .. .. /
o' - @ ® VAE: maximize - Decoder p
. ® @ o X
@ ® ° 9] @ & ® @ ® variational lower bound L] po(x|z)
e )
.
®e 0 0 g, ® ®
o o0’ o g " g ® —
L IR e o o
. Diffusion models:

Gradually add Gaussian
noise and then reverse

60



From VAE to Generative Adversarial Networks (GAN)

Now is a “distribution”, we can assume it to be
a distribution easy to sample from, e.g. Gaussian ]

PIER
. P(iRN)

| X — ‘ff:f\ i m A

m-» Encoder qi—» Decoder —}z

7(2)
assume p(z) = N(0,1) | Decoder
[CEW ) SO v nj] L@
: A
% Sample z from N (p(X), 31( X))
Encoder
(@)

61



From VAE to GAN

e Remarks
* We only need the decoder/generator in practice.

* We prefer fast generation.

Slide credit: W. Chiu

How do we know if the output images are sufficiently good?

7

GAN: Adversarial
training

VAE: maximize
variational lower bound

Diffusion models:
Gradually add Gaussian
noise and then reverse

T

—» Encoder —»E—»

Decoder

_’.

I just want to learn generator!

oF -

latent
code

unit gaussian

O

:5.6’

generated image

might look like a fake image,
how to get it more realistic?

generative
model
(neural net)

generated distribution true data distribution

A

p(x)

image space

image space

Generator

G(z)

Decoder

pe(x|z)

62




GAN is NOT an outdated DL technology

* Example

* TPA3D: Triplane Attention for Fast Text-to-3D Generation, ECCV 2024
Bin-Shih Wu, Hong-En Chen, Shen-Yu Huang, and Y.-C. Frank Wang

a
# InstructBLIP | [~

S(Irea.l)

"a futurisfic-looking
sports car. It is red and
has white wheels.”

00 {On

|
- [ TPAgeo |—-.

l < =
/
t

“'LEX

1 1 ;g_ 1 l fi :j L a
TPAgeo |’" '| TPAgeo |’""{ TPAges +_' fN
A T

E”"z/ NN I

9 ; ;

- | TPA e H TPAx |_. ﬁ 7
T I

TAPS3D

QOurs
(TPA3D)

I
F’ 1@7,“ TAPS3D
ex N

Ours

(TPA3D)

a blue sports car with

yellow wheels.

&

a blue toy car with

yellow wheels.

¥ Q

a yellow muscle car

with black stripe.

4 4

a green and white

awooden chair with
rounded back,

armrests and linen seat

i

a purple rocking chair
with wooden base

b

7

(a) ShapeNet [5]

a green train with
yellow stripes

P i
-
-

a black sneaker with
orange accents.

'
.

motorbike is white and
purple with a yellow
headlight

2o

the helmet is red and
has a yellow sticker.
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vintage-style motorbike
‘with a red and white
color scheme.

S

the gloves are made of
leather and have a
brown color.

j




GAN is NOT an outdated DL technology

|
InstructBLIP | [~

~
5 (I real )
"a futurishic-looking
sports car. It is red and
has white wheels.”

Lab photo at ECCV 2024,
Milan, Italy

ECCV 2024
Banquet/Party

purple with a yellow
headlight

the helmet is red and
has a yellow sticker.
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motorbike is white and | vintage-style motorbike
with a red and white
color scheme.

the gloves are made of
leather and have a
brown color
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Generative Adversarial Network

* |dea

* Generator to convert a vector z (sampled from P,)
into fake data x (from P¢), while we need P =P,

» Discriminator classifies data as real or fake (1/0)
* How? Impose an adversarial loss on the observed data distribution!

o

latent
code

discriminator

tralnlng |mag

Image credit: W. Chiu



Generative Adversarial Network (cont’d)

e Key idea:
* Impose adversarial loss on data distribution
* Let’s see a practical example...

generator: try to generate more realistic images to cheat discriminator
discriminator: try to distinguish whether the image is generated or real

training image

Slide credit: W. Chiu 66



GAN (cont’d)

* Remarks
* A function maps normal distribution N(0,I) to P j4:4
* How good we are in mapping F; to Pygtq?
e Train & ask the discriminator!
* Conduct a two-player min-max game (see next slide for more details)

min max V (D, G) = Eqrpy(2)[108 D()] + Eznp, (2 [log(1 — D(G(2)))]

evaluate the difference

Realworld between pdata(x) and pa(x)

images

°

> Discriminator .

Generator

o

Latent random variable
OQQ0]

Backprop error to
update discriminator
weights
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o3 Q
Training Objective of GAN

generated image
code

=< sy * Ty
o= g A
/

* Jointly train generator G and discriminator D with a min-max game  tsining image

discriminator

i/

Discriminator wants

Discriminator wants
D(x) = 1 for real data D(x) = 0 for fake data
A A
( ( \
min max (Ex,,,pdam [log D(X)] + E, () [log (1 — D(G(z)))D
Generator Generated Discriminator \
Network Sample
Sample

Y
Network Generator wants
z from p, G = L

[ Fake D(x) = 1 for fake data
D

B L

* Train G & D with alternating gradient updates

m(jn max V(G,D) Fortinl, .. T

1. (Update D) D =D + CZDZ_Z
2. (Update G) G =G — a(;%

Slide credit: I. Goodfellow
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Training Objective of GAN (optional trick)

e Potential Problem

min max (Exwpdata[logD(x)] +E, llog (1 — D(6( )))D

* At start of training, G is not OK yet (obviously);
D easily tells apart real/fake data (i.e., D(G(z)) close to 0).

* Possible Solution:

* Instead of training G to minimize log(1-D(G(z))) in the beginning,
we train G to minimize -log(D(G(z)).
* With strong gradients from G, we start the training of the above min-max game.

4.
2_
0_
2] —— log(1l - D(G(2))
-4 —log(D(G(z)))
0.0 0.2 0.4 0.6 0.8 10
D(G(2))

Slide credit: I. Goodfellow



Optimality of GAN

* Why the min-max game as objective a good idea?

min Max ( Ex-pq,,[108 0 0] + E.vpi) [log (1= D(6(2) )])

= min H}BE‘X(Exwdam [log D(X)] + Ey—p, [log(1 — D(x))])

= mian mglx(pdam(x) logD(x) + log(l — D(x))) dx
f) =alogy + /logl—NTF f'(¥) =0 < y=——/(local max)
a \ 4
f’(y) - T _ Pdata(X)

y 1 — 7y Optimal Discriminator: D (x) = S P )

Slide credit: UMich EECS 498-007 70



Optimality of GAN

* Why the min-max game as objective a good idea? (cont’d)

min max (Exwpdam [log D(x)] + E,—p(»y [log (1 —b(G( )))D

D

) pdata(x) p (x)
» mmL (Paata () log—Ee = () log o)

= min (E [logE Paata(X) + E [108_ P ) )
X~Pdata 2 Paata (x) +p (x) X~p 2 Pdata(XJ +p (JC)
. 2 x Pdata (x) 2 * p (x)
=min|E, _ [log ] +E. _ [log — log 4)
( X~Pdata pdata(x) + D (x) X~p Pdata(x) + P (x)

Slide credit: UMich EECS 498-007 71



Optimality of GAN
* Why the min-max game as objective a good idea? (cont’d)

min max (Ex”pdata [log D ()] + E.~py [log (1 — D( (Z)))D

2% pg(x)
Paata(X) + pg(x)

2 * Pdaata (x)
Paata(x) + pg(x)

+ v, + n-
— min (KL (Paam; pdataz p&) + KL (pG}pdataz p&) . log 4)

= min (Ex'vm.m [log ] + Ex<p, [log — log 4)

generated distribution true data distribution

B(x)

Kullback-Leibler Divergence:

KL(p,q) = Ex-p [logzg

unit gaussian

generative
model
(neural net)

>, |loss| .7

image space image space

Slide credit: UMich EECS 498-007 72



Optimality of GAN

* Why the min-max game as objective a good idea? (cont’d)

min max (Exwpdata[logl)(x)] + E, 5 [log (1 — D(6( )))D

2 * Paara(X) 2% pe(x)
= min (E - [log ] + E, . [log — log 4)
*Pdata pdata(x) +p (JC) P pdata(x) +p (JC)
+ +

— min (KL (Pdam; pdataz 1% ) + KL (pG}pdamz % ) . log 4)

= min(2 * JSD(pgata, P:) — log4)
JSD is always nonnegative, and zero only  Jensen-Shannon Divergence:
when the two distributions are equal! 1 p+q 1 p+q
Thus py.., = Pg is the global min, QED JSD(,q) =EKL (p, 5 )+EKL (q’ ) )

Slide credit: UMich EECS 498-007 73



Remarks on Optimality of GAN

min max (Exwpdam[log[)(x)] +E, » [log (1 — D(G( )))D

= min(z *]SD(pdataJp ) - log 4)

* Summary
* The global min of the minmax game happens when

1. D (x) = pda?;g)‘f;l(x) (Optimal discriminator for any G)
2.9:(x%) = Paara(X) (Optimal generator for optimal D) B
e Caution!

* Gand D are learned models (i.e., DNNs) with fixed architectures.
We don’t know whether we can actually represent the optimal D & G.

» Optimality of GAN does not tell anything about convergence to the optimal D/G.

Slide credit: UMich EECS 498-007
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Deep Convolutional GAN (DC-GAN)

* Remarks
* ICLR 2016
* A CNN+GAN architecture
* Empirically make training of GAN more stable
Remove fully

Generator connected layer
3

Batchnorm &
Rel U activation Fractional convolution

\ 1024
r : 1
4
100 z <H:| = | -

Project and reshape

Stride 2 16

CONV 2




Deep Convolutional GAN (DC-GAN)

* Example Results

Collected face dataset

LSUN dataset
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Conditional GANs

* Remarks
* ICLR 2016
* Conditional generative model p(x]|y) instead of p(x)

* Both G and D take the label y as an additional input...
i.e., a conditional discriminator is deployed....Why?

* Why not just use D as designed in the standard GAN?

Y

77



Conditional GANs

 Example Results

Welsh spring

; v N 4 : s
ST AN S B
==\ s ¥ ki ‘ .r,-._ S

er spaniel

ik

‘Fire truck Daisy
. .. oA e

Miyato et al, “Spectral Normalization for Generative Adversarial Networks”, ICLR 2018 78



Problems in Training GANSs:
Vanishing Gradients

 What Might Go Wrong?
* GAN training is often unstable.
* In other words, training might not converge properly.
e The discriminator which we prefer is.

79



Problems in Training GANSs:
Vanishing Gradients (cont’d)

 What Might Go Wrong?

* The discriminator we trained might be as follows.
In other words, no gradient to guide the generator to output proper images.

0 0 0 1

* This is known as the problem of vanishing gradients.

80



Problems in Training GANSs:
Mode Collapse

e Remarks

* The generator only outputs a limited number of image variants
regardless of the inputs.

N(0,I) — Generator

Mode collapse!



Problems in Training GANSs:
Mode Collapse (cont’d)

e Remarks

* The generator only outputs a limited number of image variants

regardless of the inputs.

real data

X +« generated data

_P
T’
+ + '+
+ +
% putn, ‘
Carn 7+ O
Bt T
A & ah T
+ ¥ :—
% s ;_}
+ "+
T
+ ‘{ £ s “y
i Linet ¥,
s . o
++ + +
f §
g
+ *m};
+% i
PN
¥ 4 :'i-—’
.ﬂ;f
+ 'l':L :
¢ AN
Y +',"

Photo credit:
https://openreview.net/pdf?id=rkmu5b0a-
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Problems in Training GANSs:
Mode Collapse (cont’d)

 Why Mode Collapse Happens?
* The objective of GANs assesses the image authenticity, not diversity.

* Imbalance training between generator/discriminator
(exploding/vanishing gradients)

N(0,I) — Generator




Energy-Based GAN

* Energy Function

e Converting input data into scalar outputs,
viewed as energy values

* Desired configuration is expected to
output low energy values & vice versa.
* Energy Function as Discriminator
* Use of autoencoder; can be pre-trained!

* Reconstruction loss outputs a range of values
instead of binary logistic loss.

e Empirically better convergence

Photo credit: https://github.com/znxlwm/pytorch-generative-model-collections

real

fake

real

fake
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MSGAN

* To address the mode collapse issue by conditional GANs

* Mode Seeking Generative Adversarial Networks
for Diverse Image Synthesis

e With the goal of producing diverse image outputs.

¢GANs

Gl o
e

Latent code z ‘

This bird has
feathers that are
black and has a red
bely

Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019 85



MSGAN (cont’d)

* Motivation (for unconditional GAN)

Real data Mode collapse Mode seeking
M: M
Ma: P 4 2
» 4 v Ma
. M4 [\ ,f """""""""""""" ~
o | | d,(1,.1)
M: o~ ' d,(2,,2)
Ml z a
»a B | Ms 0.68 |
v . U 0.58 |
| 0.62
0.17
Image space [
VAN
Image data Laltent code Mode M Image I 71 7 3
distribution _distribution Latent space Z
86

Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019



MSGAN (cont’d)

* Proposed Regularization (for conditional GAN)

Conditional context

P A

~ Image space |

e G(c,z,)
Conditional )
Latent space 7 Generative Model
G ‘0
4 G(c, z2)
d(G(c, z,),G(c,z,))
d;(21,23)

Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ”

" d1(G(c, 1), G(6, 22))

CVPR 2019

6
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MSGAN (cont’d)

Qualitative results
* Conditioned on paired images

2/

&

~

A

o <

£ 2

>
-

m@m >

i :

Z
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Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019



MSGAN (cont’d)

* Qualitative results
* Conditioned on unpaired images
DRIT

89
Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019



MSGAN (cont’d)

e Qualitative results

Input

has an orange
abdomen, vent,
and belly with a
black crest, neck,
and nape.

)

A small blue bird

with a small head

and pointed gray
beak.

)
This colorful bird

~

This 1s a bird
with a yellow
belly and black

wings.

» Conditioned on text (will talk about Vision & Language later this semester)
StackGAN++ MSGAN

N ; - :
. -
x " N ’ v y \ 4
....... .‘ g ‘\-
r . P Fam ‘.I

Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019
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SiNGAN (if time permits):
Learning a Generative Model from a Single Natural Image

e ICCV 2019 Best Paper Award

* Remarks:
* Learning from a single image
* Handle multiple image manipulation tasks

* Super-resolution, style conversion, harmonization, image editing, et.

Paint to image Animation

Editing Ha izati Super-resolution

F |

]

Training Image

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019
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SinGAN:
Learning a Generative Model from a Single Natural Image

e Goal

* OQOutput images with arbitrary sizes and aspect ratios (via fully conv models)
by changing dimensions of noise and the input size

Single training image Random samples from a single image
iy e R e e T T L Lt

——
s [ T . =

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019 92



SinGAN:
Learning a Generative Model from a Single Natural Image

[ ]
Framework fix kernel (receptive field) size at each scale:

min max Laay(Gn, Dn) + @Lrec(Gn) capture structures of decreasing size as we go up

n n

Fake

Real

A L :
531\;_1 LN-1 I

T

m— Gy —— s
S TN IN T

Mult-scale Patch L

Generator

Mult-scale Patch Effective
Patch Size

Discriminator

dd noise before Conv:
ensure that GAN does not
disregard the noise

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019 93



Inference Stage for SinGAN

Sy

e
e
Ll PR

f.

Paint to image iti Super-resolution

down-sampled input I

e |
& Sl
=
5 N
o0 Mult-scale Patch -
k= Generator
1
=

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019 94



SinGAN:
Learning a Generative Model from a Single Natural Image

* Random image generation

Training image Random samples from a single image

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019 95



SinGAN:
Learning a Generative Model from a Single Natural Image

e Super-Resolution

LR training image

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019 96




SinGAN:
Learning a Generative Model from a Single Natural Image

Image Injection scale | Total number of scales
Rockl n=>5 N=7
. Edltln Rock2 n=> N=7
g Rock3 (also Fig. 12, main text) n==>, N=T
Tree n="7T N=9
Mountain n=4 N=28
Red cliff n=>5 N=9
Hay n==06 N=9

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019 97



Representation Disentanglement:
Conditional GAN

* Goal
* Interpretable deep feature representation

* Disentangle attribute of interest ¢ from the derived latent representation z

* Unsupervised: InfoGAN
* Supervised: AC-GAN

<,
Hi
> |2
m‘ﬂ
=)
H

[ D\
(y (real)) (Z c)) (y(real)) (G(zc))
o
[C [Iatenl)] [Z( ose’] C’[Ia;enl) [C [Ialenl}] [Z (nonse)]
InfoGAN ACGAN
Chen et al. Odena et al.
NIPS’16 ICML’17

Chen et al., InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets., NIPS 2016.

Odena et al., Conditional image synthesis with auxiliary classifier GANs. ICML'17
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AC-GAN

* Supervised Disentanglement

* Learning
® * Overall objective function

G* = arg mGin max Lean(G,D) + L5(G, D)

n * Adversarial Loss

) Lan(G,D) = Eflog(1 — D(G(z,¢)))] + E[log D(y)]

4 .

* Disentanglement loss
Superyised ,

_—i Lcls(G; D) — ]E[_ log Deis (C Iy)] + ]E[_ log Deis (ClG(xr C))]
[C [latem)] (C tatent) [ Z (noise)) N J N J
Y Y
Real data Generated data
w.r.t. its domain label w.r.t. assigned label

Odena et al., Conditional image synthesis with auxiliary classifier GANs. ICML'17
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AC-GAN

* Supervised Disentanglement

vy (real) G(z,c

/* monarch butterfly grey whale

Superyised N J

(C'tatent) (C taten)) ((Z (noise)

Different ¢ values

Odena et al., Conditional image synthesis with auxiliary classifier GANs. ICML'17
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InfoGAN

* Unsupervised Disentanglement

* Learning

I . . .
* Overall objective function

G* = arg mgn max Leoan(G,D) + L,5(G,D)

* Adversarial Loss
Lan(G,D) = Ellog(1 — D(G(z,¢)))] + E[log D(y)]

G
3
s

(,YI.”)I (d&la:'] ( Xfakr' )

* Disentanglement loss

L5(G,D) = E[—logDgs(c|G(x, ¢))]

C (latent) Z (noise) _ J
(Coler) (Z o) y

Generated data
w.r.t. assigned label

&

Chen et al., InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets., NIPS 2016.
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InfoGAN
* Unsupervised Disentanglement )

e No guarantee in disentangling particular semantics C Gi
e |t can be viewed as... R
. (Coatent) [ Z (noise))
Different ¢ lefeient c
4 A

/

&

3

9

5

Training process

Chen et al., InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets., NIPS 2016.



What We’ve Covered Today...

* Generative Models . .nu:ﬁj@“ﬁ\j:
e Diffusion Model AR GE
* Conditional Diffusion Model T~ "u

e Classifier Guidance
* Classifier-Free Guidance
* Text/Image Guidance W
* Personalization via Diffusion Model
* Generative Adversarial Network
* HW #2is out! (due 10/29) ]

Discriminator Generator

GAN: Adversarial x' X
training D(x) G(z)
Discriminative Generative
Y ¢ e VAE: maximize z @
‘@ ] variational lower bound L] po(x|z)
=
Yo @

Diffusion models:
Gradually add Gaussian
noise and then reverse
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