Deep Learning for Computer Vision

113-1/Fall 2024

https://cool.ntu.edu.tw/courses/41702 (NTU COOL)

http://vllab.ee.ntu.edu.tw/dlcv.html (Public website)

Yu-Chiang Frank Wang 王鈺強, Professor Dept. Electrical Engineering, National Taiwan University

2024/10/8

About Final Projects

Updates

- 1:30pm-5pm, Dec 26th, Thursday (sorry, no space available on 25th)
- 3~4 people per group (team up in mid Nov.)
- Adapt from latest CVPR/ICCV/ECCV challenges or competitions
- Poster presentation;
 code required for reproduction
- Intra/inter-group evaluation
- Snack/drink provided

Sp Adobe Spark

What's to Be Covered Today...

- **Generative Models** •
 - Diffusion Model •
 - Conditional Diffusion Model
 - Classifier Guidance
 - Classifier-Free Guidance
 - Text/Image Guidance
 - Personalization via Diffusion Model
 - Generative Adversarial Network
 - HW #2 is out! (due 10/29) ٠

0/1

 \mathbf{Z}

 \mathbf{Z}

Discriminator

Generator

 $G(\mathbf{z})$

Decoder

 $p_{\theta}(\mathbf{x}|\mathbf{z})$

 \mathbf{x}'

 \mathbf{x}'

 \mathbf{Z}

A Quick Recap of Generative Models

Discriminative Model: Learn a probability distribution p(y|x)

Generative Model: Learn a probability distribution p(x)

Conditional Generative Model: Learn p(x|y)

Generative model: All possible images compete with each other for probability mass

Model can "reject" unreasonable inputs by assigning them small values

Autoencoder (AE)

- Unsupervised learning for deriving latent representation
 - Train AE with reconstruction objectives
- Train autoencoder (AE) for downstream tasks
 - After AE training is complete, freeze/finetune the encoder and learn additional modules (e.g., MLP) for downstream tasks
 - E.g., to train a DNN for classification, one can freeze the encoder and learn an additional MLP as the classifier.

From AE to Variational Autoencoder (VAE)

Now is a "*distribution*", we can assume it to be a distribution easy to sample from, e.g. Gaussian

Reparameterization Trick in VAE

- Remarks
 - Given x, sample z from latent distribution (described by output parameters of encoder), we apply $z = \mu + \sigma \odot \varepsilon$ (ϵ simply generated by Normal distribution).
 - For training, this enables BP gradients in encoder through μ and σ; for inference, this introduces generation stochasticity.

Denoising Diffusion Probabilistic Models (DDPM)

Learning to generate by denoising

- 2 processes required for training:
 - Forward diffusion process
 - gradually add noise to input
 - Reverse diffusion process
 - learns to generate/restore data by denoising
 - typically implemented via a conditional U-net

Forward diffusion process (fixed)

Noise

Reverse denoising process (generative)

Ho et al., Denoising Diffusion Probabilistic Models, NeurIPS 2020 Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

VAE vs. DDPM

Variational Autoencoder sample sample Decoder Encoder $p_{\theta}(\mathbf{x}|\mathbf{z})$ $\bullet q_{\phi}(\mathbf{z}|\mathbf{x})$ Ŷ **Z** – X θ Maximize $\mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left| \log \frac{p(\mathbf{x}, \mathbf{z})}{q(\mathbf{z}|\mathbf{x})} \right|$ **Observed** X 7. Latent **Diffusion model** Encoding Encoding Encoding Decoding θ Decoding θ \mathbf{X}_2 \mathbf{X}_T $\mathbf{F}\mathbf{X}_{T-1}$ Χ̂∩ \mathbf{X}_0 \mathbf{X}_1 Maximize $\mathbb{E}_{q(\mathbf{x}_1:\mathbf{x}_T|\mathbf{x}_0)} \left[\log \frac{p(\mathbf{x}_0:\mathbf{x}_T)}{q(\mathbf{x}_1:\mathbf{x}_T|\mathbf{x}_0)} \right]$ **Observed** $\mathbf{X}_{\mathbf{0}}$ Latent $X_1, ..., X_T$

Training DDPM

From Unconditional to Conditional Generative Models

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model:

Learn a probability distribution p(x)

Conditional Generative Model: Learn p(x|y)

Conditional Generative Model: Each possible label induces a competition among all images

 $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$

 $\mathbf{X}_{\mathbf{0}}$

 \mathbf{X}_{t-1}

 \mathbf{x}_t

 \mathbf{X}_{t-1}

 $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$

 \mathbf{x}_t

Observation #2

14

Training vs. Inference

• Summary

MNIST handwritten image data

 $\mathbf{z}_{T} \xrightarrow{\mathsf{Denoising} \theta} \mathbf{z}_{T-1} \cdots \xrightarrow{\mathsf{Denoising} \theta} \widehat{\mathbf{z}_{0}} \xrightarrow{\mathsf{Denoising} \theta} \widehat{\mathbf{z}_{0}} \xrightarrow{\mathsf{Decode}} \mathbf{z}_{0}$

Sample

From DDPM to DDIM:

Denoising Diffusion Implict Models

- DDIM
 - Sampling process for generation

$$\mathbf{x}_{t-1} = \sqrt{\alpha_{t-1}} \underbrace{\left(\underbrace{\mathbf{x}_t - \sqrt{1 - \alpha_t} \epsilon_{\theta}^{(t)}(\mathbf{x}_t)}_{\sqrt{\alpha_t}} \right)}_{\text{"predicted } \mathbf{x}_0 \text{"}} + \underbrace{\sqrt{1 - \alpha_{t-1} - \sigma_t^2} \cdot \epsilon_{\theta}^{(t)}(\mathbf{x}_t)}_{\text{"direction pointing to } \mathbf{x}_t \text{"}} + \underbrace{\sigma_t \epsilon_t}_{\text{random noise}} \right)$$

Step 0

• Additional comment on σ_t^2 : stochastic vs. deterministic generation process

Step 456

Step 123

 Since DDIM and DDPM share the same objective function, so one can use a *pretrained* DDPM for DDIM generation. **Step 999**

What's to Be Covered Today...

- Generative Models
 - Diffusion Model
 - Conditional Diffusion Model
 - Classifier Guidance
 - Personalization via Diffusion Model
 - Generative Adversarial Network

Classifier Guidance

Classifier guidance scale = 1

Classifier guidance scale = 10

[Dhariwal & Nichol 2021]

Conditional Generation with Classifier-Guidance

What's to Be Covered Today...

- Generative Models
 - Diffusion Model
 - Conditional Diffusion Model
 - Classifier Guidance
 - Classifier-Free Guidance
 - Personalization via Diffusion Model
 - Generative Adversarial Network

$$\nabla \log p_{\gamma}(\mathbf{x}_t | \mathbf{y}) = \nabla \log p(\mathbf{x}_t) + \gamma \nabla \log p(\mathbf{y} | \mathbf{x}_t)$$

Conditional score

 $\mathbf{x}_t \mathbf{O}$

Unconditional score

Adversarial gradient

$$\nabla \log p(\mathbf{y}|\mathbf{x}_t) = \nabla \log \left(\frac{p(\mathbf{x}_t|\mathbf{y}) p(\mathbf{y})}{p(\mathbf{x}_t)} \right)$$

$$\nabla \log p_{\gamma}(\mathbf{x}_t | \mathbf{y}) = \nabla \log p(\mathbf{x}_t) + \gamma \nabla \log p(\mathbf{y} | \mathbf{x}_t)$$

Conditional score

 $\mathbf{x}_t \mathbf{O}$

Unconditional score

Adversarial gradient

$$\nabla \log p(\mathbf{y}|\mathbf{x}_t) = \nabla \log p(\mathbf{x}_t|\mathbf{y}) - \nabla \log p(\mathbf{x}_t) + \nabla \log p(\mathbf{y})$$

$$\nabla \log p_{\gamma}(\mathbf{x}_t | \mathbf{y}) = \nabla \log p(\mathbf{x}_t) + \gamma \nabla \log p(\mathbf{y} | \mathbf{x}_t)$$

Conditional score

 $\mathbf{x}_t \mathbf{O}$

Unconditional score

Adversarial gradient

$$\nabla \log p(\mathbf{y}|\mathbf{x}_t) = \nabla \log p(\mathbf{x}_t|\mathbf{y}) - \nabla \log p(\mathbf{x}_t)$$

 $p_{\text{data}}(\mathbf{x})$

$$\nabla \log p_{\gamma}(\mathbf{x}_t | \mathbf{y}) = \nabla \log p(\mathbf{x}_t) + \gamma(\nabla \log p(\mathbf{x}_t | \mathbf{y}) - \nabla \log p(\mathbf{x}_t))$$

Conditional score

Unconditional score

Adversarial gradient

Classifier-free Guidance

Conditional Generation with Classifier-Free Guidance

• Any price to pay?

Classifier-free Guidance

What's to Be Covered Today...

- Generative Models
 - Diffusion Model
 - Conditional Diffusion Model
 - Classifier Guidance
 - Classifier-Free Guidance
 - Text/Image Guidance
 - Personalization via Diffusion Model
 - Generative Adversarial Network

Conditional Generation with Image Guidance

- Palette: Image-to-Image Diffusion Models, Google Research, arXiv 2022
 - Applications: colorization, inpainting, outpainting, etc.
 - Input image as condition (via concatenation)

Conditional Generation with Text Guidance

- GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models, OpenAI, arXiv 2022
 - CLIP (Contrastive Language-Image Pretraining) is previously proposed to measure alignment between text and image inputs
 - Classifier guidance -> CLIP guidance (not training-free)
 - What is CLIP? (see next slide)

Unnoised CLIP (+ aux losses)

Noised CLIP (+ upsampler)

GLIDE

47

IMAGENET RESNET101

CLIP: Contrastive Language-Image Pretraining

64.3%

geNet V2

- Learning Transferable Visual Models From Natural Language Supervision, OpenAl, NeurIPS WS 2021 (w/ 22000+ citations)
- Why not just CNN?
 - Require annotated data for training image classification
 - Domain gap between closed and open-world domain data
 - Lack of ability for zero-shot classification

jectNet

geNet Sketch

1 t Adversarial

2.7%

CLIP (cont'd)

- Objectives
 - Cross-domain contrastive learning from large-scale image-language data
 - Next-token prediction (what's this & why?); will talk more about this for the lecture of Transformer

2. Next-token prediction

```
e.g., a ____;
a photo ____;
a photo of _____, etc.
```

CLIP (cont'd)

• (Zero-shot) Inference:

2. Create dataset classifier from label text

Potential concerns/disadvantages of CLIP? •

Questions for Image Generation

- How to evaluate your unconditional image generation results?
- How to evaluate your conditional image generation results?
- Any objective/subjective and quantitative/qualitative evaluation?

What's to Be Covered Today...

- Generative Models
 - Diffusion Model
 - Conditional Diffusion Model
 - Personalization via Diffusion Model
 - Generative Adversarial Network

Diffusion Model for Personalization (1): Textual Inversion

- Proposed by NV Research, ICLR 2023
- Goal: Learn a special token (e.g., S*) to represent the concept of interest

Input samples \xrightarrow{invert} "S*"

"Painting of two S* fishing on a boat"

"A S_{*} backpack"

"Banksy art of S_* " "A S_* themed lunchbox"

Diffusion Model for Personalization (1): Textual Inversion (cont'd)

- Learning of special token S*
 - Pre-train and fix text encoder & diffusion model (i.e., generator)
 - Randomly initialize a token as the text encoder input
 - Optimize this token via image reconstruction objectives

An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion

Diffusion Model for Personalization (1): Textual Inversion (cont'd)

- Learning of special token S*
 - Pre-train and fix text encoder & diffusion model (i.e., generator)
 - Randomly initialize a token as the text encoder input
 - Optimize this token via image reconstruction objectives
 - A photo of L2 Loss
- Inference:

Training:

• Any potential concern?

Diffusion Model for Personalization (2): DreamBooth

- Proposed by Google Research, CVPR 2023
- Finetune the diffusion model w/ a fixed token to represent the image concept
 - Determine and fix a rare token (e.g., [V])
 - Finetune the diffusion model for image restoration objectives
 - Enforce a class-specific prior (why?)

Any concern?

DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation

Diffusion Model for Personalization (3): ControlNet

- Proposed by Stanford, ICCV 2023
- Goal: personalization via user-determined condition

Diffusion Model for Personalization (3): ControlNet

- Initialized from UNet's encoder
- Notations:
 - x: input noise of each layer
 - y: output noise of each layer
 - c: conditions (e.g., edge, pose, sketch, etc.)

Diffusion Model for Personalization (3): ControlNet

- Initialized from UNet's encoder
- Notations:

What's to Be Covered Today...

Generative Models

- Diffusion Model
 - Conditional Diffusion Model
 - Classifier Guidance
 - Classifier-Free Guidance
 - Text/Image Guidance
 - Personalization via Diffusion Model
- Generative Adversarial Network

From VAE to Generative Adversarial Networks (GAN)

From VAE to GAN

Discriminato Generator GAN: Adversarial (0/1) \mathbf{z} \mathbf{x}' X \mathbf{x}' $D(\mathbf{x})$ $G(\mathbf{z})$ training Decoder Encoder VAE: maximize \mathbf{z} \mathbf{x} \mathbf{x}' $q_{\phi}(\mathbf{z}|\mathbf{x})$ $p_{\theta}(\mathbf{x}|\mathbf{z})$ variational lower bound Diffusion models: **x**₁ \mathbf{x}_2 \mathbf{x}_0 Gradually add Gaussian noise and then reverse

- Remarks
 - We only need the decoder/generator in practice.
 - We prefer fast generation.
 - How do we know if the output images are sufficiently good?

GAN is NOT an outdated DL technology

- Remarks
 - We only need the decoder/generator in practice.
 - We prefer fast generation.
 - How do we know if the output images are sufficiently good?
- Example
 - TPA3D: Triplane Attention for Fast Text-to-3D Generation, ECCV 2024
 - Bin-Shih Wu, Hong-En Chen, Shen-Yu Huang, and Y.-C. Frank Wang

GAN is NOT an outdated DL technology

Generative Adversarial Network

- Idea
 - **Generator** to convert a vector z (sampled from P_z) into fake data x (from P_G), while we need $P_G = P_{data}$
 - Discriminator classifies data as real or fake (1/0)
 - How? Impose an adversarial loss on the observed data distribution!

Generative Adversarial Network (cont'd)

- Key idea:
 - Impose *adversarial loss* on data distribution
 - Let's see a practical example...

generator: try to generate more realistic images to cheat discriminator discriminator: try to distinguish whether the image is generated or real

GAN (cont'd)

- Remarks
 - A function maps **normal distribution** N(0, I) to P_{data}
 - How good we are in mapping P_g to P_{data} ?
 - Train & ask the discriminator!
 - Conduct a two-player min-max game (see next slide for more details)

 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$

Training Objective of GAN

Jointly train generator G and discriminator D with a min-max game training image

generato

generated image

latent

code

• Train G & D with alternating gradient updates

 $\min_{\boldsymbol{G}} \max_{\boldsymbol{D}} \boldsymbol{V}(\boldsymbol{G}, \boldsymbol{D}) \qquad \text{For t in 1, ... T:} \\ 1. (Update D) \boldsymbol{D} = \boldsymbol{D} + \alpha_{\boldsymbol{D}} \frac{\partial \boldsymbol{V}}{\partial \boldsymbol{D}} \\ 2. (Update G) \boldsymbol{G} = \boldsymbol{G} - \alpha_{\boldsymbol{G}} \frac{\partial \boldsymbol{V}}{\partial \boldsymbol{G}} \end{cases}$

real? fake?

(**R/F**)

discriminator

Training Objective of GAN (optional trick)

• Potential Problem

$$\min_{\boldsymbol{G}} \max_{\boldsymbol{D}} \left(E_{x \sim p_{data}} [\log \boldsymbol{D}(x)] + E_{z \sim p(z)} \left[\log \left(1 - \boldsymbol{D}(\boldsymbol{G}(z)) \right) \right] \right)$$

- At start of training, G is not OK yet (obviously);
 D easily tells apart real/fake data (i.e., D(G(z)) close to 0).
- Possible Solution:
 - Instead of training G to minimize log(1-D(G(z))) in the beginning, we train G to minimize -log(D(G(z)).
 - With strong gradients from G, we start the training of the above min-max game.

Optimality of GAN

• Why the min-max game as objective a good idea?

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{x \sim p_{G}} [\log (1 - D(x))] \right)$$

$$= \min_{G} \int_{X} \max_{D} \left(p_{data}(x) \log D(x) + p_{G}(x) \log (1 - D(x)) \right) dx$$

$$f(y) = a \log y + b \log (1 - y) \quad f'(y) = 0 \iff y = \frac{a}{a+b} (\text{local max})$$

$$f'(y) = \frac{a}{y} - \frac{b}{1-y} \quad \text{Optimal Discriminator:} \quad D_{G}^{*}(x) = \frac{p_{data}(x)}{p_{data}(x) + p_{G}(x)}$$

Optimality of GAN

• Why the min-max game as objective a good idea? (cont'd)

$$\begin{split} \min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{Z \sim p(Z)} \left[\log \left(1 - D(G(Z)) \right) \right] \right) \\ \implies \min_{G} \int_{X} \left(p_{data}(x) \log \frac{p_{data}(x)}{p_{data}(x) + p_{G}(x)} + p_{G}(x) \log \frac{p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right) dx \\ &= \min_{G} \left(E_{x \sim p_{data}} \left[\log \frac{2}{2} \frac{p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log \frac{2}{2} \frac{p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right] \right) \\ &= \min_{G} \left(E_{x \sim p_{data}} \left[\log \frac{2 * p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log \frac{2 * p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right] - \log 4 \right) \end{split}$$

Optimality of GAN

• Why the min-max game as objective a good idea? (cont'd)

$$\begin{split} \min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{Z \sim p(Z)} \left[\log \left(1 - D(G(Z)) \right) \right] \right) \\ = \min_{G} \left(E_{x \sim p_{data}} \left[\log \frac{2 * p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log \frac{2 * p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right] - \log 4 \right) \\ = \min_{G} \left(KL \left(\frac{p_{data}}{2}, \frac{p_{data} + p_{G}}{2} \right) + KL \left(\frac{p_{G}}{2}, \frac{p_{data} + p_{G}}{2} \right) - \log 4 \right) \end{split}$$

Kullback-Leibler Divergence:

$$KL(p,q) = E_{x \sim p} \left[\log \frac{p(x)}{q(x)} \right]$$
Optimality of GAN

• Why the min-max game as objective a good idea? (cont'd)

$$\begin{split} \min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{Z \sim p(Z)} \left[\log \left(1 - D(G(Z)) \right) \right] \right) \\ = \min_{G} \left(E_{x \sim p_{data}} \left[\log \frac{2 * p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log \frac{2 * p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right] - \log 4 \right) \\ = \min_{G} \left(KL \left(p_{data}, \frac{p_{data} + p_{G}}{2} \right) + KL \left(p_{G}, \frac{p_{data} + p_{G}}{2} \right) - \log 4 \right) \\ = \min_{G} (2 * JSD(p_{data}, p_{G}) - \log 4) \end{split}$$

JSD is always nonnegative, and zero only when the two distributions are equal! Thus $p_{data} = p_G$ is the global min, QED

Jensen-Shannon Divergence:

$$JSD(p,q) = \frac{1}{2}KL\left(p,\frac{p+q}{2}\right) + \frac{1}{2}KL\left(q,\frac{p+q}{2}\right)$$

Remarks on Optimality of GAN

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{Z \sim p(Z)} \left[\log \left(1 - D(G(Z)) \right) \right] \right)$$
$$= \min_{G} (2 * JSD(p_{data}, p_G) - \log 4)$$

- Summary
 - The global min of the minmax game happens when

1.
$$D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_G(x)}$$
 (Optimal discriminator for any G)
2. $p_G(x) = p_{data}(x)$ (Optimal generator for optimal D) \Rightarrow

• Caution!

- G and D are learned models (i.e., DNNs) with fixed architectures.
 We don't know whether we can actually represent the optimal D & G.
- Optimality of GAN does not tell anything about convergence to the optimal D/G.

Deep Convolutional GAN (DC-GAN)

- Remarks
 - ICLR 2016
 - A CNN+GAN architecture
 - Empirically make training of GAN more stable

Deep Convolutional GAN (DC-GAN)

• Example Results

Collected face dataset

LSUN dataset

Conditional GANs

- Remarks
 - ICLR 2016
 - Conditional generative model p(x|y) instead of p(x)
 - Both G and D take the label y as an additional input... i.e., a conditional discriminator is deployed....Why?
 - Why not just use D as designed in the standard GAN?

Conditional GANs

• Example Results

Problems in Training GANs: Vanishing Gradients

- What Might Go Wrong?
 - GAN training is often unstable.
 - In other words, training might not converge properly.
 - The discriminator which we prefer is...

Problems in Training GANs: Vanishing Gradients (cont'd)

- What Might Go Wrong?
 - GAN training is often unstable.
 - In other words, training might not converge properly.
 - The discriminator we trained might be as follows. In other words, no gradient to guide the generator to output proper images.

• This is known as the problem of *vanishing gradients*.

Problems in Training GANs: Mode Collapse

- Remarks
 - The generator only outputs a limited number of image variants regardless of the inputs.

Problems in Training GANs: Mode Collapse (cont'd)

- Remarks
 - The generator only outputs a limited number of image variants regardless of the inputs.

Photo credit: https://openreview.net/pdf?id=rkmu5b0a-

Problems in Training GANs: Mode Collapse (cont'd)

- Why Mode Collapse Happens?
 - The objective of GANs assesses the image authenticity, not diversity.
 - Imbalance training between generator/discriminator (exploding/vanishing gradients)

Energy-Based GAN

- Energy Function
 - Converting input data into scalar outputs, viewed as energy values
 - Desired configuration is expected to output low energy values & vice versa.
- Energy Function as Discriminator
 - Use of autoencoder; can be pre-trained!
 - Reconstruction loss outputs a range of values instead of binary logistic loss.
 - Empirically better convergence

MSGAN

- To address the **mode collapse** issue by conditional GANs
- Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis
- With the goal of producing **diverse** image outputs.

Motivation (for unconditional GAN)

Proposed Regularization (for conditional GAN)

- Qualitative results
 - Conditioned on paired images

• Qualitative results

Dog-to-cat

Cat-to-dog

Conditioned on unpaired images

DRIT

MSGAN

- Qualitative results
 - Conditioned on text (will talk about Vision & Language later this semester)

Input	StackGAN++	MSGAN
This colorful bird has an orange abdomen, vent,	22222222	
and belly with a black crest, neck, and nape.		
A small blue bird with a small head	2222222	KKKKKK
and pointed gray beak.		L L L L L L
This is a bird with a yellow	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
belly and black wings.	X X X X X	L L & L & L

SinGAN (if time permits):

Learning a Generative Model from a Single Natural Image

- ICCV 2019 Best Paper Award
- Remarks:
 - Learning from a single image
 - Handle multiple image manipulation tasks
 - Super-resolution, style conversion, harmonization, image editing, et.

- Goal •
 - Output images with arbitrary sizes and aspect ratios (via fully conv models) by changing dimensions of noise and the input size

Random samples from a single image

Framework

 $\min_{G_n} \max_{D_n} \mathcal{L}_{adv}(G_n, D_n) + \alpha \mathcal{L}_{rec}(G_n)$

fix kernel (receptive field) size at each scale: capture structures of decreasing size as we go up

Inference Stage for SinGAN

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019

• Random image generation

• Super-Resolution

• Editing

Image	Injection scale	Total number of scales
Rock1	n = 5	N = 7
Rock2	n = 5	N = 7
Rock3 (also Fig. 12, main text)	n = 5	N = 7
Tree	n = 7	N = 9
Mountain	n = 4	N = 8
Red cliff	n = 5	N = 9
Hay	n = 6	N = 9

Representation Disentanglement: Conditional GAN

- Goal
 - Interpretable deep feature representation
 - Disentangle attribute of interest *c* from the derived latent representation *z*
 - Unsupervised: InfoGAN
 - Supervised: AC-GAN

Chen et al., InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets., NIPS 2016. Odena et al., Conditional image synthesis with auxiliary classifier GANs. ICML'17

AC-GAN

Supervised Disentanglement

- Learning
 - Overall objective function
 - $\mathbf{G}^* = \arg\min_{\mathbf{G}} \max_{\mathbf{D}} \mathcal{L}_{GAN}(\mathbf{G}, \mathbf{D}) + \mathcal{L}_{cls}(\mathbf{G}, \mathbf{D})$
 - Adversarial Loss

 $\mathcal{L}_{GAN}(\mathbf{G}, \mathbf{D}) = \mathbb{E}[\log(1 - \mathcal{D}(\mathbf{G}(z, c)))] + \mathbb{E}[\log \mathbf{D}(y)]$

• Disentanglement loss

$$\mathcal{L}_{cls}(\mathbf{G}, \mathbf{D}) = \mathbb{E}[-\log D_{cls}(c'|y)] + \mathbb{E}[-\log D_{cls}(c|\mathbf{G}(x,c))]$$
Real data
w.r.t. its domain label
Generated data
w.r.t. assigned label

AC-GAN

Supervised Disentanglement

InfoGAN

Unsupervised Disentanglement

- Learning
 - Overall objective function

$$\mathbf{G}^* = \arg\min_{\mathbf{G}} \max_{\mathbf{D}} \mathcal{L}_{GAN}(\mathbf{G}, \mathbf{D}) + \mathcal{L}_{cls}(\mathbf{G}, \mathbf{D})$$

Adversarial Loss

 $\mathcal{L}_{GAN}(\mathsf{G}, \mathsf{D}) = \mathbb{E}[\log(1 - \mathsf{D}(\mathsf{G}(z, c)))] + \mathbb{E}[\log \mathsf{D}(y)]$

• Disentanglement loss

InfoGAN

- Unsupervised Disentanglement
 - No guarantee in disentangling particular semantics
 - It can be viewed as...

real

fake

 X_{real} (data)

D

C

 X_{fake}

G

What We've Covered Today...

- Generative Models
 - Diffusion Model
 - Conditional Diffusion Model
 - Classifier Guidance
 - Classifier-Free Guidance
 - Text/Image Guidance
 - Personalization via Diffusion Model
 - Generative Adversarial Network
 - HW #2 is out! (due 10/29)

