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About Final Projects

• Updates
• 1:30pm-5pm, Dec 26th, Thursday

(sorry, no space available on 25th)
• 3~4 people per group

(team up in mid Nov.)
• Adapt from latest CVPR/ICCV/ECCV 

challenges or competitions
• Poster presentation;

code required for reproduction
• Intra/inter-group evaluation
• Snack/drink provided
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What’s to Be Covered Today…

• Generative Models
• Diffusion Model

• Conditional Diffusion Model
• Classifier Guidance
• Classifier-Free Guidance 
• Text/Image Guidance

• Personalization via Diffusion Model
• Generative Adversarial Network
• HW #2 is out! (due 10/29)
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A Quick Recap of Generative Models

4Slide credit: UMich EECS 498-007

sampling

�𝑥𝑥𝑖𝑖 ~ 𝑝𝑝𝜃𝜃𝑥𝑥𝑖𝑖 ~ 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑



Autoencoder (AE)

• Unsupervised learning for deriving latent representation
• Train AE with reconstruction objectives

• Train autoencoder (AE) for downstream tasks
• After AE training is complete, freeze/finetune the encoder and 

learn additional modules (e.g., MLP) for downstream tasks
• E.g., to train a DNN for classification, 

one can freeze the encoder and learn an additional MLP as the classifier.

5Slide credit: UMich EECS 498-007



From AE to Variational Autoencoder (VAE)

6Slide credit: W.-C. Chiu



Reparameterization Trick in VAE

7

• Remarks
• Given x, sample z from latent distribution (described by output parameters of encoder),

we apply (ε simply generated by Normal distribution).
• For training, this enables BP gradients in encoder through μ and σ;

for inference, this introduces generation stochasticity.

https://medium.com/geekculture/variational-autoencoder-vae-9b8ce5475f68

https://medium.com/geekculture/variational-autoencoder-vae-9b8ce5475f68


Denoising Diffusion Probabilistic Models (DDPM)
Learning to generate by denoising

• 2 processes required for training:
• Forward diffusion process

• gradually add noise to input
• Reverse diffusion process

• learns to generate/restore data by denoising
• typically implemented via a conditional U-net

8Slide credit: Kreis, Gao, & Vahdat

Ho et al., Denoising Diffusion Probabilistic Models, NeurIPS 2020
Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021



VAE vs. DDPM

9Slide credit: J.-B. Huang
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𝑞𝑞 𝐱𝐱𝑑𝑑−1 𝐱𝐱𝑑𝑑 , 𝐱𝐱0
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From Unconditional to 
Conditional Generative Models

11Slide credit: UMich EECS 498-007



𝐱𝐱0 𝐱𝐱𝑑𝑑

Encoding

⋯
Encoding

𝐱𝐱𝑑𝑑−1 𝐱𝐱𝑑𝑑𝐱𝐱𝑑𝑑−1

𝑞𝑞 𝐱𝐱𝑑𝑑−1 𝐱𝐱𝑑𝑑 , 𝐱𝐱0

− �
t=2

T

𝔼𝔼𝑞𝑞(𝐱𝐱𝑡𝑡|𝐱𝐱0) DKL 𝑞𝑞 𝐱𝐱𝑑𝑑−1 𝐱𝐱𝑑𝑑 , 𝐱𝐱0 ||𝑝𝑝𝜃𝜃(𝐱𝐱𝑑𝑑−1|𝐱𝐱𝑑𝑑)

𝑝𝑝𝜃𝜃(𝐱𝐱𝑑𝑑−1|𝐱𝐱𝑑𝑑)
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Encoding

𝐱𝐱2
Encoding Decoding 𝜃𝜃

𝐱𝐱𝑇𝑇−1 �𝐱𝐱0
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𝑞𝑞 𝐱𝐱𝑑𝑑−1 𝐱𝐱𝑑𝑑 , 𝐱𝐱0

− �
t=2

T

𝔼𝔼𝑞𝑞(𝐱𝐱𝑡𝑡|𝐱𝐱0) DKL 𝑞𝑞 𝐱𝐱𝑑𝑑−1 𝐱𝐱𝑑𝑑 , 𝐱𝐱0 ||𝑝𝑝𝜃𝜃(𝐱𝐱𝑑𝑑−1|𝐱𝐱𝑑𝑑)

𝑝𝑝𝜃𝜃(𝐱𝐱𝑑𝑑−1|𝐱𝐱𝑑𝑑)
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− �
t=2

T

𝔼𝔼𝑞𝑞(𝐱𝐱𝑡𝑡|𝐱𝐱0) DKL 𝑞𝑞 𝐱𝐱𝑑𝑑−1 𝐱𝐱𝑑𝑑 , 𝐱𝐱0 ||𝑝𝑝𝜃𝜃(𝐱𝐱𝑑𝑑−1|𝐱𝐱𝑑𝑑)𝜇𝜇𝑞𝑞 𝐱𝐱𝑑𝑑 , 𝐱𝐱0𝜇𝜇𝜃𝜃 𝐱𝐱𝑑𝑑 , 𝑡𝑡
1

2𝝈𝝈𝑞𝑞𝟐𝟐 𝑡𝑡
[ || ||22 ]
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�𝐱𝐱𝜃𝜃 𝐱𝐱𝑑𝑑 , 𝑡𝑡 − 𝐱𝐱0𝑤𝑤 𝑡𝑡 𝜇𝜇𝑞𝑞 𝐱𝐱𝑑𝑑 , 𝐱𝐱0𝜇𝜇𝜃𝜃 𝐱𝐱𝑑𝑑 , 𝑡𝑡�𝝐𝝐𝜽𝜽 𝐱𝐱𝑑𝑑 , 𝑡𝑡

�𝝐𝝐𝜽𝜽 𝐱𝐱𝑑𝑑 , 𝑡𝑡 𝐿𝐿2

𝝐𝝐−

𝐱𝐱0
Encoding

𝐱𝐱1 ⋯ 𝐱𝐱𝑇𝑇
Encoding

𝐱𝐱2
Encoding Decoding 

𝜃𝜃 𝐱𝐱𝑇𝑇−1 �𝐱𝐱0
Decoding 

𝜃𝜃⋯

𝑞𝑞(𝐱𝐱𝑑𝑑|𝐱𝐱0)
𝐱𝐱𝑑𝑑 = 𝛼𝛼𝑑𝑑𝐱𝐱0 + 1 − 𝛼𝛼𝑑𝑑𝝐𝝐

Observation #2
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Training vs. Inference

• Summary

15
Slide credit: Kreis, Gao, & Vahdat

xt

allowing 
generation 

diversity

MNIST handwritten 
image data

Training U-Net for 
DDPM noise prediction



Cascade Diffusion ModelsLatent
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From DDPM to DDIM:
Denoising Diffusion Implict Models

● DDIM
● Sampling process for generation

● Additional comment on       : stochastic vs. deterministic generation process
● Since DDIM and DDPM share the same objective function, 

so one can use a pretrained DDPM for DDIM generation.

17

Step 0 Step 999Step 456Step 123



What’s to Be Covered Today…

• Generative Models
• Diffusion Model

• Conditional Diffusion Model
• Classifier Guidance 

• Personalization via Diffusion Model
• Generative Adversarial Network

18
Slide credit: Prof. J.-B. Huang @ U Maryland



Decoder
𝜃𝜃

Decoder
𝜃𝜃

𝑝𝑝 𝐱𝐱𝑇𝑇 𝑝𝑝𝜃𝜃 𝐱𝐱0

Unconditional generation
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Decoder
𝜃𝜃

Decoder
𝜃𝜃

𝑝𝑝 𝐱𝐱𝑇𝑇 𝑝𝑝𝜃𝜃 𝐱𝐱0

Conditional generation

Conditional signal

𝑦𝑦 = ‘CAT’
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Decoder
𝜃𝜃

Decoder
𝜃𝜃

𝑝𝑝 𝐱𝐱𝑇𝑇 𝑝𝑝𝜃𝜃 𝐱𝐱0

Conditional generation

Conditional signal

𝑦𝑦 = “A cat wearing sunglasses”

21



Unconditional generation

𝑝𝑝data 𝐱𝐱

𝐱𝐱𝑑𝑑
𝒔𝒔𝜽𝜽 𝐱𝐱𝑑𝑑, 𝒕𝒕 ≈ ∇ log 𝑝𝑝 𝐱𝐱𝑑𝑑

𝑝𝑝𝜃𝜃(𝐱𝐱𝑑𝑑−1|𝐱𝐱𝑑𝑑) Unconditional score

𝜇𝜇𝜃𝜃 x𝑑𝑑, 𝑡𝑡 = 1
𝛼𝛼𝑑𝑑

𝐱𝐱𝑑𝑑 +
1 − 𝛼𝛼𝑑𝑑
𝛼𝛼𝑑𝑑

𝒔𝒔𝜽𝜽 𝐱𝐱𝑑𝑑 , 𝑡𝑡

22



Conditional generation

𝑝𝑝data 𝐱𝐱

𝐱𝐱𝑑𝑑
𝒔𝒔𝜽𝜽 𝐱𝐱𝑑𝑑, 𝒕𝒕,𝑦𝑦 ≈ ∇ log 𝑝𝑝 𝐱𝐱𝑑𝑑|𝑦𝑦

Conditional score
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Conditional generation

𝑝𝑝data 𝐱𝐱

𝐱𝐱𝑑𝑑
𝒔𝒔𝜽𝜽 𝐱𝐱𝑑𝑑, 𝒕𝒕,𝑦𝑦 ≈ ∇ log 𝑝𝑝 𝐱𝐱𝑑𝑑|𝑦𝑦

Conditional score

24



∇ log 𝑓𝑓∇ log 𝑓𝑓∇ log 𝑓𝑓

Conditional generation

𝑝𝑝data 𝐱𝐱

𝐱𝐱𝑑𝑑
𝒔𝒔𝜽𝜽 𝐱𝐱𝑑𝑑, 𝒕𝒕,𝑦𝑦 ≈ ∇ log 𝑝𝑝 𝐱𝐱𝑑𝑑|𝑦𝑦

Conditional score

∇ log 𝑝𝑝 𝐱𝐱𝑑𝑑|𝑦𝑦 = ∇ log
111𝑓𝑓𝑓𝑓𝑓𝑓111
11𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓11. 1.
𝑝𝑝 𝐱𝐱𝑑𝑑 𝑝𝑝 y|𝐱𝐱𝑑𝑑

𝑝𝑝 𝑦𝑦
Conditional score
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∇ log 𝑓𝑓

∇ log 𝑓𝑓

∇ log 𝑓𝑓

Conditional generation

𝑝𝑝data 𝐱𝐱

𝐱𝐱𝑑𝑑
𝒔𝒔𝜽𝜽 𝐱𝐱𝑑𝑑, 𝒕𝒕,𝑦𝑦 ≈ ∇ log 𝑝𝑝 𝐱𝐱𝑑𝑑|𝑦𝑦

Conditional score

∇ log 𝑝𝑝 𝐱𝐱𝑑𝑑|𝑦𝑦 = 𝑝𝑝 𝐱𝐱𝑑𝑑 𝑝𝑝 y|𝐱𝐱𝑑𝑑
𝑝𝑝 𝑦𝑦

+

−
Conditional score
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∇ log 𝑓𝑓 ∇ log 𝑓𝑓

Conditional generation

𝑝𝑝data 𝐱𝐱

𝐱𝐱𝑑𝑑
𝒔𝒔𝜽𝜽 𝐱𝐱𝑑𝑑, 𝒕𝒕,𝑦𝑦 ≈ ∇ log 𝑝𝑝 𝐱𝐱𝑑𝑑|𝑦𝑦

Conditional score

∇ log 𝑝𝑝 𝐱𝐱𝑑𝑑|𝑦𝑦 = 𝑝𝑝 𝐱𝐱𝑑𝑑 𝑝𝑝 y|𝐱𝐱𝑑𝑑+
Unconditional score Adversarial gradientConditional score

Classifier 
Guidance
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∇ log 𝑓𝑓 ∇ log 𝑓𝑓

Conditional generation

𝑝𝑝data 𝐱𝐱

𝐱𝐱𝑑𝑑
𝒔𝒔𝜽𝜽 𝐱𝐱𝑑𝑑, 𝒕𝒕,𝑦𝑦 ≈ ∇ log 𝑝𝑝 𝐱𝐱𝑑𝑑|𝑦𝑦

Conditional score

= 𝑝𝑝 𝐱𝐱𝑑𝑑 𝑝𝑝 y|𝐱𝐱𝑑𝑑+
Unconditional score Adversarial gradientConditional score

𝛾𝛾∇ log 𝑝𝑝𝛾𝛾 𝐱𝐱𝑑𝑑|𝑦𝑦

Classifier 
Guidance
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∇ log 𝑓𝑓 ∇ log 𝑓𝑓

Conditional generation

𝑝𝑝data 𝐱𝐱

𝐱𝐱𝑑𝑑
𝒔𝒔𝜽𝜽 𝐱𝐱𝑑𝑑, 𝒕𝒕,𝑦𝑦 ≈ ∇ log 𝑝𝑝 𝐱𝐱𝑑𝑑|𝑦𝑦

Conditional score

∇ log 𝑝𝑝𝛾𝛾 𝐱𝐱𝑑𝑑|𝑦𝑦 = 𝑝𝑝 𝐱𝐱𝑑𝑑 𝑝𝑝 y|𝐱𝐱𝑑𝑑+
Unconditional scoreConditional score

𝛾𝛾
Adversarial gradient

Classifier 
Guidance
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∇ log 𝑓𝑓 ∇ log 𝑓𝑓

Conditional generation

𝑝𝑝data 𝐱𝐱

𝐱𝐱𝑑𝑑
𝒔𝒔𝜽𝜽 𝐱𝐱𝑑𝑑, 𝒕𝒕,𝑦𝑦 ≈ ∇ log 𝑝𝑝 𝐱𝐱𝑑𝑑|𝑦𝑦

Conditional score

= 𝑝𝑝 𝐱𝐱𝑑𝑑 𝑝𝑝 y|𝐱𝐱𝑑𝑑+
Unconditional scoreConditional score

𝛾𝛾

Classifier 
Guidance

Adversarial gradient

∇ log 𝑝𝑝𝛾𝛾 𝐱𝐱𝑑𝑑|𝑦𝑦
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∇ log 𝑝𝑝𝛾𝛾 𝐱𝐱𝑑𝑑|𝑦𝑦 ∇ log 𝑓𝑓 ∇ log 𝑓𝑓

Conditional generation

𝑝𝑝data 𝐱𝐱

𝐱𝐱𝑑𝑑
𝒔𝒔𝜽𝜽 𝐱𝐱𝑑𝑑, 𝒕𝒕,𝑦𝑦 ≈ ∇ log 𝑝𝑝 𝐱𝐱𝑑𝑑|𝑦𝑦

Conditional score

= 𝑝𝑝 𝐱𝐱𝑑𝑑 𝑝𝑝 y|𝐱𝐱𝑑𝑑+
Unconditional scoreConditional score

𝛾𝛾

Classifier 
Guidance

Adversarial gradient

[Dhariwal & Nichol 2021] 

Classifier guidance scale = 1 Classifier guidance scale = 10 

𝑦𝑦 = “Pembroke Welsh corgi”

31



∇ log 𝑓𝑓 ∇ log 𝑓𝑓

Conditional generation

𝑝𝑝data 𝐱𝐱

𝐱𝐱𝑑𝑑
𝒔𝒔𝜽𝜽 𝐱𝐱𝑑𝑑, 𝒕𝒕,𝑦𝑦 ≈ ∇ log 𝑝𝑝 𝐱𝐱𝑑𝑑|𝑦𝑦

Conditional score

= 𝑝𝑝 𝐱𝐱𝑑𝑑 𝑝𝑝 y|𝐱𝐱𝑑𝑑+
Unconditional scoreConditional score

𝛾𝛾

Classifier 
Guidance

Adversarial gradient

∇ log 𝑝𝑝𝛾𝛾 𝐱𝐱𝑑𝑑|𝑦𝑦
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∇ log 𝑓𝑓 ∇ log 𝑓𝑓

Conditional generation

𝑝𝑝data 𝐱𝐱

𝐱𝐱𝑑𝑑 = 𝑝𝑝 𝐱𝐱𝑑𝑑 𝑝𝑝 y|𝐱𝐱𝑑𝑑+
Unconditional scoreConditional score

𝛾𝛾

Classifier 
Guidance

𝐱𝐱𝑑𝑑
Classifier 𝑝𝑝 �𝑦𝑦|𝐱𝐱𝑑𝑑

Training optional*

Adversarial gradient

∇ log 𝑝𝑝𝛾𝛾 𝐱𝐱𝑑𝑑|𝑦𝑦
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∇ log 𝑓𝑓 ∇ log 𝑓𝑓

Conditional generation

𝑝𝑝data 𝐱𝐱

𝐱𝐱𝑑𝑑 = 𝑝𝑝 𝐱𝐱𝑑𝑑 𝑝𝑝 𝑦𝑦|�𝐱𝐱0+
Unconditional scoreConditional score

𝛾𝛾

Classifier 
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Universal Guidance [Bansal et al. 2023]

Adversarial gradient

∇ log 𝑝𝑝𝛾𝛾 𝐱𝐱𝑑𝑑|𝑦𝑦

34



Conditional Generation with Classifier-Guidance

• Any price to pay?
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What’s to Be Covered Today…

• Generative Models
• Diffusion Model

• Conditional Diffusion Model
• Classifier Guidance
• Classifier-Free Guidance 

• Personalization via Diffusion Model
• Generative Adversarial Network

36
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∇ log 𝑓𝑓 ∇ log 𝑓𝑓

Conditional generation

𝑝𝑝data 𝐱𝐱

𝐱𝐱𝑑𝑑 = 𝑝𝑝 𝐱𝐱𝑑𝑑 𝑝𝑝 y|𝐱𝐱𝑑𝑑+
Unconditional scoreConditional score

𝛾𝛾

Classifier 
Guidance

Adversarial gradient

∇ log 𝑝𝑝𝛾𝛾 𝐱𝐱𝑑𝑑|𝑦𝑦
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∇ log 𝑓𝑓 ∇ log 𝑓𝑓

Conditional generation

𝑝𝑝data 𝐱𝐱
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∇ log 𝑓𝑓 ∇ log 𝑓𝑓

Conditional generation

𝑝𝑝data 𝐱𝐱

𝐱𝐱𝑑𝑑 = 𝑝𝑝 𝐱𝐱𝑑𝑑 𝑝𝑝 y|𝐱𝐱𝑑𝑑+
Unconditional score Adversarial gradientConditional score
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= 𝑝𝑝 𝐱𝐱𝑑𝑑|𝑦𝑦

𝑝𝑝 𝑦𝑦
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+

∇ log 𝑝𝑝𝛾𝛾 𝐱𝐱𝑑𝑑|𝑦𝑦
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∇ log 𝑓𝑓 ∇ log 𝑓𝑓

Conditional generation

𝑝𝑝data 𝐱𝐱

𝐱𝐱𝑑𝑑 = 𝑝𝑝 𝐱𝐱𝑑𝑑 𝑝𝑝 y|𝐱𝐱𝑑𝑑+
Unconditional score Adversarial gradientConditional score
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∇ log 𝑓𝑓𝑝𝑝 y|𝐱𝐱𝑑𝑑 ∇ log 𝑓𝑓 ∇ log 𝑓𝑓= 𝑝𝑝 𝐱𝐱𝑑𝑑|𝑦𝑦 𝑝𝑝 𝐱𝐱𝑑𝑑−

∇ log 𝑝𝑝𝛾𝛾 𝐱𝐱𝑑𝑑|𝑦𝑦
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∇ log 𝑓𝑓

Conditional generation

𝑝𝑝data 𝐱𝐱

𝐱𝐱𝑑𝑑 = 𝑝𝑝 𝐱𝐱𝑑𝑑 +
Unconditional score Adversarial gradientConditional score

𝛾𝛾 ∇ log 𝑓𝑓 ∇ log 𝑓𝑓𝑝𝑝 𝐱𝐱𝑑𝑑|𝑦𝑦 𝑝𝑝 𝐱𝐱𝑑𝑑−∇ log 𝑝𝑝𝛾𝛾 𝐱𝐱𝑑𝑑|𝑦𝑦
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∇ log 𝑓𝑓

Conditional generation
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∇ log 𝑓𝑓

Conditional generation
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Unguided samples Guided samples
[Ho and Salimans 2021]
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Conditional Generation with Classifier-Free Guidance

• Any price to pay?

44
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What’s to Be Covered Today…

• Generative Models
• Diffusion Model

• Conditional Diffusion Model
• Classifier Guidance
• Classifier-Free Guidance 
• Text/Image Guidance

• Personalization via Diffusion Model
• Generative Adversarial Network
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Conditional Generation with Image Guidance

• Palette: Image-to-Image Diffusion Models, Google Research, arXiv 2022
• Applications: colorization, inpainting, outpainting, etc.
• Input image as condition (via concatenation)

46



Conditional Generation with Text Guidance

• GLIDE: Towards Photorealistic Image Generation and Editing with Text-
Guided Diffusion Models, OpenAI, arXiv 2022

• CLIP (Contrastive Language-Image Pretraining) is previously proposed 
to measure alignment between text and image inputs

• Classifier guidance -> CLIP guidance (not training-free)
• What is CLIP? (see next slide)
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CLIP: Contrastive 
Language-Image 
Pretraining

• Learning Transferable Visual Models 
From Natural Language Supervision, 
OpenAI, NeurIPS WS 2021 
(w/ 22000+ citations)

• Why not just CNN?
• Require annotated data for 

training image classification
• Domain gap between closed 

and open-world domain data
• Lack of ability for

zero-shot classification

48



CLIP (cont’d)

• Objectives
• Cross-domain contrastive learning from large-scale image-language data
• Next-token prediction (what’s this & why?); 

will talk more about this for the lecture of Transformer

49

A photo of
a dog

A photo of
a dog

A photo of
a cat

A photo of
a person

2. Next-token prediction
e.g., a ___;  

a photo ____;
a photo of _____, etc.



CLIP (cont’d)

• (Zero-shot) Inference:

• Potential concerns/disadvantages of CLIP?

50



Questions for Image Generation

• How to evaluate your
unconditional image generation results?

• How to evaluate your
conditional image generation results?

• Any objective/subjective and 
quantitative/qualitative evaluation?
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What’s to Be Covered Today…

• Generative Models
• Diffusion Model

• Conditional Diffusion Model 
• Personalization via Diffusion Model

• Generative Adversarial Network

52



Diffusion Model for Personalization (1):
Textual Inversion

● Proposed by NV Research, ICLR 2023
● Goal: Learn a special token (e.g., S*) to represent the concept of interest

An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion
53

https://textual-inversion.github.io/


An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion

Diffusion Model for Personalization (1):
Textual Inversion (cont’d)

● Learning of special token S*
○ Pre-train and fix text encoder & diffusion model (i.e., generator)
○ Randomly initialize a token as the text encoder input
○ Optimize this token via image reconstruction objectives

54

https://textual-inversion.github.io/


An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion

A photo of

L2 Loss

A        in front of Eiffel Tower

Diffusion Model for Personalization (1):
Textual Inversion (cont’d)

● Learning of special token S*
○ Pre-train and fix text encoder & diffusion model (i.e., generator)
○ Randomly initialize a token as the text encoder input
○ Optimize this token via image reconstruction objectives

● Training:

● Inference:

● Any potential concern?
55

https://textual-inversion.github.io/


Diffusion Model for Personalization (2):
DreamBooth
● Proposed by Google Research, CVPR 2023
● Finetune the diffusion model w/ a fixed token to represent the image concept

● Determine and fix a rare token (e.g., [V])
● Finetune the diffusion model for image restoration objectives
● Enforce a class-specific prior (why?)

● Any concern?
DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation

56

https://dreambooth.github.io/


Diffusion Model for Personalization (3):
ControlNet

● Proposed by Stanford, ICCV 2023
● Goal: personalization via user-determined condition

text
encoder

Control
Net

Masterpiece 
of …

UNet’s
Encoder

UNet’s
Decoder

Adding Conditional Control to Text-to-Image Diffusion Models
57

https://arxiv.org/abs/2302.05543


Diffusion Model for Personalization (3):
ControlNet

● Initialized from UNet’s encoder
● Notations:

● x: input noise of each layer
● y: output noise of each layer
● c: conditions (e.g., edge, pose, sketch, etc.)

Adding Conditional Control to Text-to-Image Diffusion Models
58

https://arxiv.org/abs/2302.05543


Diffusion Model for Personalization (3):
ControlNet

● Initialized from UNet’s encoder
● Notations:

● x: input noise of each layer
● y: output noise of each layer
● c: conditions (e.g., edge,, etc.)

Adding Conditional Control to Text-to-Image Diffusion Models
59

https://arxiv.org/abs/2302.05543


What’s to Be Covered Today…

• Generative Models
• Diffusion Model

• Conditional Diffusion Model
• Classifier Guidance
• Classifier-Free Guidance 
• Text/Image Guidance

• Personalization via Diffusion Model
• Generative Adversarial Network
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From VAE to Generative Adversarial Networks (GAN)

61



From VAE to GAN

• Remarks
• We only need the decoder/generator in practice.
• We prefer fast generation.
• How do we know if the output images are sufficiently good?

62
Slide credit: W. Chiu



GAN is NOT an outdated DL technology

• Remarks
• We only need the decoder/generator in practice.
• We prefer fast generation.
• How do we know if the output images are sufficiently good?

• Example
• TPA3D: Triplane Attention for Fast Text-to-3D Generation, ECCV 2024
• Bin-Shih Wu, Hong-En Chen, Shen-Yu Huang, and Y.-C. Frank Wang
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GAN is NOT an outdated DL technology

• Remarks
• We only need the decoder/generator in practice.
• We prefer fast generation.
• How do we know if the output images are sufficiently good?

• Example
• TPA3D: Triplane Attention for Fast Text-to-3D Generation, ECCV 2024
• Bin-Shih Wu, Hong-En Chen, Shen-Yu Huang, and Y.-C. Frank Wang
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Milan, Italy



Generative Adversarial Network

• Idea
• Generator to convert a vector z (sampled from Pz) 

into fake data x (from PG), while we need PG = Pdata

• Discriminator classifies data as real or fake (1/0)
• How? Impose an adversarial loss on the observed data distribution!

65Image credit: W. Chiu



Generative Adversarial Network (cont’d)

• Key idea:
• Impose adversarial loss on data distribution
• Let’s see a practical example…

66Slide credit: W. Chiu



GAN (cont’d)

• Remarks
• A function maps normal distribution𝑵𝑵 𝟎𝟎, 𝑰𝑰  to 𝑷𝑷𝒅𝒅𝒅𝒅𝒕𝒕𝒅𝒅
• How good we are in mapping 𝑃𝑃𝑔𝑔 to 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑?

• Train & ask the discriminator!
• Conduct a two-player min-max game (see next slide for more details)
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Training Objective of GAN

• Jointly train generator G and discriminator D with a min-max game

• Train G & D with alternating gradient updates

68Slide credit: I. Goodfellow



Training Objective of GAN (optional trick)

• Potential Problem

• At start of training, G is not OK yet (obviously);
D easily tells apart real/fake data (i.e., D(G(z)) close to 0).

• Possible Solution:
• Instead of training G to minimize log(1-D(G(z))) in the beginning, 

we train G to minimize -log(D(G(z)). 
• With strong gradients from G, we start the training of the above min-max game.

69Slide credit: I. Goodfellow



Optimality of GAN

• Why the min-max game as objective a good idea?

70Slide credit: UMich EECS 498-007



Optimality of GAN

• Why the min-max game as objective a good idea? (cont’d)

71Slide credit: UMich EECS 498-007



Optimality of GAN

• Why the min-max game as objective a good idea? (cont’d)

72Slide credit: UMich EECS 498-007



Optimality of GAN

• Why the min-max game as objective a good idea? (cont’d)

73Slide credit: UMich EECS 498-007



Remarks on Optimality of GAN

• Summary
• The global min of the minmax game happens when

•

• Caution!
• G and D are learned models (i.e., DNNs) with fixed architectures. 

We don’t know whether we can actually represent the optimal D & G.
• Optimality of GAN does not tell anything about convergence to the optimal D/G.

74Slide credit: UMich EECS 498-007



Deep Convolutional GAN (DC-GAN)

• Remarks
• ICLR 2016
• A CNN+GAN architecture
• Empirically make training of GAN more stable

75

Generator
Batchnorm &
ReLU activation Fractional convolution

Remove fully 
connected layer



Deep Convolutional GAN (DC-GAN)

• Example Results

76

Collected face dataset LSUN dataset



Conditional GANs

• Remarks
• ICLR 2016
• Conditional generative model p(x|y) instead of p(x)
• Both G and D take the label y as an additional input…

i.e., a conditional discriminator is deployed….Why?
• Why not just use D as designed in the standard GAN?

77



Conditional GANs

• Example Results

78Miyato et al, “Spectral Normalization for Generative Adversarial Networks”, ICLR 2018



Problems in Training GANs: 
Vanishing Gradients

• What Might Go Wrong?
• GAN training is often unstable.
• In other words, training might not converge properly.
• The discriminator which we prefer is…

79
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Problems in Training GANs: 
Vanishing Gradients (cont’d)
• What Might Go Wrong?

• GAN training is often unstable.
• In other words, training might not converge properly.
• The discriminator we trained might be as follows.

In other words, no gradient to guide the generator to output proper images.

• This is known as the problem of vanishing gradients.

80
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Problems in Training GANs: 
Mode Collapse

• Remarks
• The generator only outputs a limited number of image variants 

regardless of the inputs.

81

Generator𝑁𝑁 0, 𝐼𝐼

Mode collapse!



Problems in Training GANs: 
Mode Collapse (cont’d)
• Remarks

• The generator only outputs a limited number of image variants 
regardless of the inputs.

82

Photo credit: 
https://openreview.net/pdf?id=rkmu5b0a-

https://openreview.net/pdf?id=rkmu5b0a-


Problems in Training GANs: 
Mode Collapse (cont’d)
• Why Mode Collapse Happens?

• The objective of GANs assesses the image authenticity, not diversity.
• Imbalance training between generator/discriminator

(exploding/vanishing gradients)

83

Generator𝑁𝑁 0, 𝐼𝐼



Energy-Based GAN

• Energy Function
• Converting input data into scalar outputs, 

viewed as energy values
• Desired configuration is expected to 

output low energy values & vice versa.

• Energy Function as Discriminator 
• Use of autoencoder; can be pre-trained!
• Reconstruction loss outputs a range of values 

instead of binary logistic loss.
• Empirically better convergence

84Photo credit: https://github.com/znxlwm/pytorch-generative-model-collections

https://github.com/znxlwm/pytorch-generative-model-collections


MSGAN

• To address the mode collapse issue by conditional GANs 

• Mode Seeking Generative Adversarial Networks 
for Diverse Image Synthesis

• With the goal of producing diverse image outputs.

Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019 85



MSGAN (cont’d)

• Motivation (for unconditional GAN)

Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019
86



• Proposed Regularization (for conditional GAN)

Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019
87

MSGAN (cont’d)



• Qualitative results
• Conditioned on paired images

Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019
88

MSGAN (cont’d)



Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019
89

MSGAN (cont’d)

• Qualitative results
• Conditioned on unpaired images



Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019
90

• Qualitative results
• Conditioned on text (will talk about Vision & Language later this semester)

MSGAN (cont’d)



SinGAN (if time permits):
Learning a Generative Model from a Single Natural Image

• ICCV 2019 Best Paper Award

• Remarks:
• Learning from a single image
• Handle multiple image manipulation tasks

• Super-resolution, style conversion, harmonization, image editing, et.

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019 91



SinGAN:
Learning a Generative Model from a Single Natural Image

• Goal
• Output images with arbitrary sizes and aspect ratios (via fully conv models)

by changing dimensions of noise and the input size

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019 92



SinGAN:
Learning a Generative Model from a Single Natural Image

• Framework

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019 93

add noise before Conv:
ensure that GAN does not 
disregard the noise

fix kernel (receptive field) size at each scale:
capture structures of decreasing size as we go up



Inference Stage for SinGAN

• Framework (cont’d)

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019 94

down-sampled input



SinGAN:
Learning a Generative Model from a Single Natural Image

• Random image generation

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019 95



SinGAN:
Learning a Generative Model from a Single Natural Image

• Super-Resolution

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019 96



SinGAN:
Learning a Generative Model from a Single Natural Image

• Editing

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019 97



Representation Disentanglement:
Conditional GAN
• Goal

• Interpretable deep feature representation
• Disentangle attribute of interest c from the derived latent representation z

• Unsupervised: InfoGAN
• Supervised: AC-GAN

InfoGAN
Chen et al.

NIPS ’16

ACGAN
Odena et al.

ICML ’17

Chen et al., InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets., NIPS 2016.
Odena et al., Conditional image synthesis with auxiliary classifier GANs. ICML’17 98



AC-GAN

Odena et al., Conditional image synthesis with auxiliary classifier GANs. ICML’17

Real data
w.r.t. its domain label

• Supervised Disentanglement 

G∗ = arg min
G

max
D

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D + ℒ𝑐𝑐𝑐𝑐𝑐𝑐 G, D

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D = 𝔼𝔼 log 1 − D(G(𝑧𝑧, 𝑐𝑐)) + 𝔼𝔼 log D 𝑦𝑦

ℒ𝑐𝑐𝑐𝑐𝑐𝑐 G, D = 𝔼𝔼 − log Dcls(𝑐𝑐′|𝑦𝑦) + 𝔼𝔼 − log Dcls(𝑐𝑐|G(𝑥𝑥, 𝑐𝑐))

• Learning
• Overall objective function

• Adversarial Loss

• Disentanglement loss
G

D

𝑧𝑧𝑐𝑐

G(𝑧𝑧, 𝑐𝑐)𝑦𝑦 (real)

Supervised

Generated data
w.r.t. assigned label
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AC-GAN

Odena et al., Conditional image synthesis with auxiliary classifier GANs. ICML’17

• Supervised Disentanglement 

G

D

𝑧𝑧𝑐𝑐

G(𝑧𝑧, 𝑐𝑐)𝑦𝑦 (real)

Supervised

Different 𝑐𝑐 values
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InfoGAN

• Unsupervised Disentanglement 

Generated data
w.r.t. assigned label

G∗ = arg min
G

max
D

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D + ℒ𝑐𝑐𝑐𝑐𝑐𝑐 G, D

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 G, D = 𝔼𝔼 log 1 − D(G(𝑧𝑧, 𝑐𝑐)) + 𝔼𝔼 log D 𝑦𝑦

ℒ𝑐𝑐𝑐𝑐𝑐𝑐 G, D = 𝔼𝔼 − log Dcls(𝑐𝑐|G(𝑥𝑥, 𝑐𝑐))

• Learning
• Overall objective function

• Adversarial Loss

• Disentanglement loss

Chen et al., InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets., NIPS 2016.
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InfoGAN
• Unsupervised Disentanglement 

Chen et al., InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets., NIPS 2016.

• No guarantee in disentangling particular semantics
• It can be viewed as…

Different 𝑐𝑐

Rotation Angle Width

Training process

Different 𝑐𝑐

Time

Loss

102



What We’ve Covered Today…

• Generative Models
• Diffusion Model

• Conditional Diffusion Model
• Classifier Guidance
• Classifier-Free Guidance 
• Text/Image Guidance

• Personalization via Diffusion Model
• Generative Adversarial Network
• HW #2 is out! (due 10/29)
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