# **Deep Learning for Computer Vision**

#### 113-1/Fall 2024; Classroom BL112 -> 9:30am @ BL113

https://cool.ntu.edu.tw/courses/41702 (NTU COOL) http://vllab.ee.ntu.edu.tw/dlcv.html (Public website)

Yu-Chiang Frank Wang 王鈺強, Professor Dept. Electrical Engineering, National Taiwan University

2024/09/10

#### Slightly updated syllabys

|     | Week | Date      | Торіс                                                                                                  | Course Materials           | Remarks                    |
|-----|------|-----------|--------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|
|     | 1    | 09/03     | Course Logistics & Registration; Intro to Neural Nets                                                  | <u>W1-1</u><br><u>W1-2</u> |                            |
|     | 2    | 09/10     | Convolutional Neural Networks & Image Segmentation                                                     |                            | HW #1 out                  |
|     | 3    | 09/17     | No class                                                                                               |                            | Mid-Autumn Festival        |
|     | 4    | 09/24     | Generative Models (I) - Diffusion Model                                                                |                            | HW #1 due                  |
|     | 5    | 10/01     | Guest Lecture: Dr. Jun-Cheng Chen, Academia Sinica                                                     |                            | ECCV week                  |
|     | 6    | 10/8      | Generative Models (II) - AE, VAE & GAN                                                                 |                            | HW # 2 out                 |
|     | 7    | 10/15     | Recurrent Neural Networks & Transformer                                                                |                            |                            |
|     | 8    | 10/22     | Transformer; Vision & Language Models                                                                  |                            |                            |
|     | 9    | 10/29     | Vision & Language Models; Multi-Modal Learning                                                         |                            | HW #2 due; HW #3 out       |
|     | 10   | 11/05     | Parameter-Efficient Finetuning;<br>Unlearning, Debiasing, and Interoperability                         |                            |                            |
|     | 11   | 11/12     | Guest Lecture: Linda Huang, Senior Dir., GeValyn Associates                                            |                            |                            |
|     | 12   | 11/19     | 3D Vision                                                                                              |                            | HW #3 due; HW #4 out       |
|     | 13   | 11/26     | Object Detection                                                                                       |                            | Final Project Announcement |
|     | 14   | 12/03     | Guest Lecture: Prof. Ming-Ching Chang, SUNY, Albany;<br>Federated Learning and advanced topics in DLCV |                            | HW #4 due                  |
|     | 15   | 12/10     | Progress Check for Final Projects                                                                      |                            | NeurIPS week               |
| TBD | 17   | 12/25 Wed | Final Project Presentation                                                                             |                            |                            |

#### What to Cover Today...

- Convolution Neural Networks (CNN)
  - Design of CNN
  - Variants of CNNs
  - Training Techniques for CNN
  - Self-Supervised Learning for CNN
- Image Segmentation







#### **Recap: From Linear Classifiers to Neural Nets**

• Linear Classifier





Neural Network (Multilayer Perceptron)





#### **Convolutional Neural Networks**

• How many weights for MLPs for images?





#### **Convolutional Neural Networks**

- Property I of CNN: Local Connectivity
  - Each neuron takes info only from a neighborhood of pixels.



#### **Convolutional Neural Networks**

- Property II of CNN: Weight Sharing
  - Neurons connecting each pixel and its neighborhoods have identical weights.



### **CNN: Local Connectivity**



Hidden layer

Input layer

**Global** connectivity

- # of input dimensions/units (neurons): 7
- # of output/hidden units: 3
- Number of parameters
  - Global connectivity:
  - Local connectivity:



#### Local connectivity

#### **CNN: Weight Sharing**



Input layer

Hidden layer



Without weight sharing

- # input units (neurons): 7
- # hidden units: 3
- Number of parameters
  - Without weight sharing:
  - With weight sharing :

With weight sharing

#### **CNN with Multiple Input Channels**



Filter weights

#### **CNN with Multiple Output Maps**





Single output map



Multiple output maps



Filter 1

Filter 2

Filter weights

#### Putting the ideas together $\rightarrow$ CNN

- Local connectivity
- Weight sharing
- Handling multiple input channels
- Handling multiple output maps



#### What's to Be Covered Today...

- Convolution Neural Networks (CNN)
  - Design of CNN
  - Variants of CNNs
  - Training Techniques for CNN







### **Convolution Layer in CNN**



Weighted moving sum

Feature Activation Map #2



Input

slide credit: S. Lazebnik

Feature Activation Map #1 15



**Convolution is a local linear operator** 

• Toeplitz Matrix Form



• The neuron view of a CONV layer





It's just a neuron with local connectivity...

the result of taking a dot product between the filter and this part of the image (i.e. 5\*5\*3 = 75-dimensional dot product)

• The neuron view of CONV layer (cont'd)



- Feature map (at an intermediate layer):
  - An activation map is a 28x28 sheet of neuron outputs:
    - 1. Each is connected to a small region in the input
    - 2. All of them share parameters

"5x5 filter" -> "5x5 receptive field for each neuron"

- The neuron view of CONV layer
  - Typically, more than 1 filter is learned in CNN...



E.g. with 5 filters, CONV layer consists of neurons arranged in a 3D grid (28x28x5)

There will be 5 different neurons all looking at the same region in the input volume

- Image input with 32 x 32 pixels convolved repeatedly with 5 x 5 x 3 filters would shrink feature mape volumes spatially
  - 32 -> 28 -> 24 -> ...



- Zero Padding
  - Output is the same size as that of the input
    - That is, conv will not shrink as the network gets deeper.



- Stride
  - Step size across signals
  - Why & when preferable?



- Stride
  - Step size across signals
  - See example below:



- Stride
  - Step size across signals
  - See a 2D example below:



Ν

Output size: (N - F) / stride + 1

• Zero Padding + Stride



e.g. input 7x7 **3x3** filter, applied with **stride 1 pad with 1 pixel** border => what is the output?

in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
F = 5 => zero pad with 2
F = 7 => zero pad with 3

### **Remarks: Receptive Field**

• For convolution with kernel size *n* x *n*, each entry in the output layer depends on a *n* x *n* receptive field in the input layer.



Each successive convolution adds n-1 to the receptive field size.
 With a total of L layers, the receptive field size would be 1 + (L-1) \* (n-1).



- For an image w/ high resolution, we need to deploy multiple CNN layers for the output to "see" the entire input image.
- Other alternatives: downsample the image/feature map (see pooling layer next)

#### **A Variant of Convolution**

- Dilated Convolution
  - Kernel in the same size but capable of handling a larger receptive field



### **Nonlinearity Layer in CNN**



# **Nonlinearity Layer**

- E.g., ReLU (Rectified Linear Unit)
  - Pixel by pixel computation of max(0, x)



### **Nonlinearity Layer**

- E.g., ReLU (Rectified Linear Unit)
  - Pixel by pixel computation of max(0, x)



# **Nonlinearity Layer**

- E.g., ReLU (Rectified Linear Unit)
  - Pixel by pixel computation of max(0, x)



### **Pooling Layer in CNN**



# **Pooling Layer**

- Makes the representations smaller and more manageable
- Operates over each activation map independently
- E.g., Max Pooling



# **Pooling Layer**

• Reduces the spatial size and provides spatial invariance



- Example
  - Nonlinearity by ReLU


- Example
  - Max pooling



### **Fully Connected (FC) Layer in CNN**



### **FC Layer**

• Mapping features/neurons that connect to the entire input volume to the desirable output (e.g., predicted scores for each class)



### FC Layer (cont'd)

• Required computation vs. Learnable parameters



### CNN



### LeNet

- Presented by Yann LeCun during the 1990s for reading digits
- Has the elements of modern architectures



### LeNet [LeCun et al. 1998]







Gradient-based learning applied to document recognition [LeCun, Bottou, Bengio, Haffner 1998]

#### Full (simplified) AlexNet architecture: **AlexNet** [Krizhevsky et al., 2012] [227x227x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 **Repopularized CNN** [13x13x256] MAX POOL2: 3x3 filters at stride 2 by winning the ImageNet Challenge 2012 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 7 hidden layers, 650,000 neurons, [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 60M parameters [6x6x256] MAX POOL3: 3x3 filters at stride 2 Error rate of 16% vs. 26% for 2<sup>nd</sup> place. [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)





|       | Input size |   |   | 5 | Layer |         |        |        |   | Output size |   |    |   |     |             |
|-------|------------|---|---|---|-------|---------|--------|--------|---|-------------|---|----|---|-----|-------------|
| Layer | С          |   | Н | / | W     | filters | kernel | stride |   | pad         | С |    | H | / W | memory (KB) |
| conv1 |            | 3 |   |   | 227   | 64      | 11     |        | 4 | 2           |   | 64 |   | 56  | 784         |

Number of output elements = C \* H' \* W' = 64\*56\*56 = 200,704

Bytes per element = 4 (for 32-bit floating point)

KB = (number of elements) \* (bytes per elem) / 1024 = 200704 \* 4 / 1024 = **784** 



|       |   | Inpu | t si | ze  |         | Laye   | er     |     | Out | put size |             |            |
|-------|---|------|------|-----|---------|--------|--------|-----|-----|----------|-------------|------------|
| Layer | С |      | H    | / W | filters | kernel | stride | pad | С   | н / w    | memory (KB) | params (k) |
| conv1 |   | 3    |      | 227 | 64      | 11     | 4      | 2   | 6   | 4 5      | 6 784       | 23         |

Weight shape = 
$$C_{out} \times C_{in} \times K \times K$$
  
= 64 x 3 x 11 x 11  
Bias shape =  $C_{out}$  = 64  
Number of weights = 64\*3\*11\*11 + 64  
= **23,296**



|       | I | npu | t siz | e   |         | Lay    | er     |     | ( | Dutp | ut size |    |             |            |          |
|-------|---|-----|-------|-----|---------|--------|--------|-----|---|------|---------|----|-------------|------------|----------|
| Layer | С |     | н /   | W   | filters | kernel | stride | pad | С |      | н / w   | 1  | memory (KB) | params (k) | flop (M) |
| conv1 |   | 3   |       | 227 | 64      | 11     | . 4    | 1 2 | 2 | 64   |         | 56 | 784         | 2:         | 73       |

Number of floating point operations (multiply+add)

= (number of output elements) \* (ops per output elem)

$$= (C_{out} \times H' \times W') * (C_{in} \times K \times K)$$

- = (64 \* 56 \* 56) \* (3 \* 11 \* 11)
- = 200,704 \* 363
- = 72,855,552



|         | Input size |      | <mark>ut size Layer</mark> |         |        |        |     | Outp | out size |             |            |          |
|---------|------------|------|----------------------------|---------|--------|--------|-----|------|----------|-------------|------------|----------|
| Layer   | С          |      | н / w                      | filters | kernel | stride | pad | С    | н/w      | memory (KB) | params (k) | flop (M) |
| conv1   |            | 3    | 227                        | 64      | 11     | 4      | 2   | 64   | 56       | 784         | 23         | 73       |
| pool1   |            | 64   | 56                         |         | 3      | 2      | 0   | 64   | 27       | 182         | 0          | 0        |
| conv2   |            | 64   | 27                         | 192     | 5      | 1      | 2   | 192  | . 27     | 547         | 307        | 224      |
| pool2   |            | 192  | 27                         |         | 3      | 2      | 0   | 192  | 13       | 127         | 0          | 0        |
| conv3   |            | 192  | 13                         | 384     | 3      | 1      | 1   | 384  | 13       | 254         | 664        | 112      |
| conv4   |            | 384  | 13                         | 256     | 3      | 1      | 1   | 256  | 13       | 169         | 885        | 145      |
| conv5   |            | 256  | 13                         | 256     | 3      | 1      | 1   | 256  | 13       | 169         | 590        | 100      |
| pool5   |            | 256  | 13                         |         | 3      | 2      | 0   | 256  | 6        | 36          | 0          | 0        |
| flatten |            | 256  | 6                          |         |        |        |     | 9216 |          | 36          | 0          | 0        |
| fc6     | 9          | 9216 |                            | 4096    |        |        |     | 4096 |          | 16          | 37,749     | 38       |
| fc7     | 4          | 4096 |                            | 4096    |        |        |     | 4096 |          | 16          | 16,777     | 17       |
| fc8     | 4          | 4096 |                            | 1000    |        |        |     | 1000 |          | 4           | 4,096      | 4        |

#### **Additional Remarks** on AlexNet



250

200

150



Most of the memory usage in early convolution layers

in the fully connected layers

100 50 COMP convis convit conva comis

**MFLOP** 

Most floating-point operations occur in the convolution layers



Params (K)

40000

35000

30000

### **Deep or Not?**

• Depth of the network is critical for performance.



AlexNet: 8 Layers with 18.2% top-5 error

Removing Layer 7 reduces 16 million parameters, but only 1.1% drop in performance!
Removing Layer 6 and 7 reduces 50 million parameters, but only 5.7% drop in performance
Removing middle conv layers reduces 1 million parameters, but only 3% drop in performance
Removing feature & conv layers produces a 33% drop in performance

#### What to Cover Today...

- Convolution Neural Networks (CNN)
  - Design of CNN
  - Variants of CNNs
  - Training Techniques for CNN
- Image Segmentation







### **CNN: A Revolution of Depth**



| 11x11 conv, 96, /4, pool/2 |
|----------------------------|
| *                          |
| 535 conv, 256, pool/2      |
| 3x3 conv, 384              |
| *                          |
| 3x3 conv, 384              |
| 3x3 conv, 256, pool/2      |
| t- 1000                    |
| 10, 4096                   |
| fc, 4096                   |
| t- 1000                    |
| TC, 1000                   |

VGG, 19 layers (ILSVRC 2014)

| 3x3 conv, 64          |
|-----------------------|
| *                     |
| 3x3 conv, 64, pool/2  |
| ¥                     |
| 3x3 conv, 128         |
| 3v3.comv 128. pool/2  |
| 545 COTT, 220, 00012  |
| 3x3 conv, 256         |
| *                     |
| 3x3 conv, 256         |
| ¥                     |
| 3x3 conv, 256         |
| 3v3.com/ 356.poc//2   |
| 5x5-conv, 256, p000/2 |
| 3x3 conv, 512         |
| *                     |
| 3x3 conv, 512         |
| <b>•</b>              |
| 3x3 conv, 512         |
| 2-2 [12]/2            |
| 3x3 conv, 512, pooly2 |
| 3x3 conv. 512         |
| *                     |
| 3x3 conv, 512         |
| <b>*</b>              |
| 3x3 conv, 512         |
|                       |
| 3x3 conv, 512, pool/2 |
| fc. 4096              |
| 10, 4030              |
| fc, 4096              |
| *                     |
| fc, 1000              |

GoogleNet, 22 layers (ILSVRC 2014) -

all fail for

2 Bit Bit

22 -

### ResNet

• Can we just increase the #layer? What are the potential risks?



- How can we train very deep network?
  - Residual learning

|                           |              |          | method                     | top-5 err. (test) |
|---------------------------|--------------|----------|----------------------------|-------------------|
|                           | x            |          | VGG [41] (ILSVRC'14)       | 7.32              |
|                           | weight layer |          | GoogLeNet [44] (ILSVRC'14) | 6.66              |
| $\mathcal{F}(\mathbf{x})$ | relu         | x        | VGG [41] (v5)              | 6.8               |
|                           | weight layer | identity | PReLU-net [13]             | 4.94              |
| $\mathcal{T}(\mathbf{x})$ |              |          | BN-inception [16]          | 4.82              |
| $\mathcal{F}(\mathbf{X})$ | + x ↓ relu   |          | ResNet (ILSVRC'15)         | 3.57              |

### **DenseNet** [CVPR'17]

- Shorter connections (like ResNet) help
- Why not just connect them all?



27.5

26.5

ResNets - DenseNets-BC

4ResNet-34

ADenseNet-121

### **Squeeze-and-Excitation Net (SENet)**

- How to improve acc. without much overhead?
  - Feature recalibration (channel attention)





|                          | orig             | inal            | re-        | implementati | ion    | SENet            |                 |        |  |
|--------------------------|------------------|-----------------|------------|--------------|--------|------------------|-----------------|--------|--|
|                          | top-1 err.       | top-5 err.      | top-1 err. | top-5 err.   | GFLOPs | top-1 err.       | top-5 err.      | GFLOPs |  |
| ResNet-50 [13]           | 24.7             | 7.8             | 24.80      | 7.48         | 3.86   | $23.29_{(1.51)}$ | $6.62_{(0.86)}$ | 3.87   |  |
| ResNet-101 [13]          | 23.6             | 7.1             | 23.17      | 6.52         | 7.58   | $22.38_{(0.79)}$ | $6.07_{(0.45)}$ | 7.60   |  |
| ResNet-152 [13]          | 23.0             | 6.7             | 22.42      | 6.34         | 11.30  | $21.57_{(0.85)}$ | $5.73_{(0.61)}$ | 11.32  |  |
| ResNeXt-50 [19]          | 22.2             | -               | 22.11      | 5.90         | 4.24   | $21.10_{(1.01)}$ | $5.49_{(0.41)}$ | 4.25   |  |
| ResNeXt-101 [19]         | 21.2             | 5.6             | 21.18      | 5.57         | 7.99   | $20.70_{(0.48)}$ | $5.01_{(0.56)}$ | 8.00   |  |
| VGG-16 [11]              | -                | -               | 27.02      | 8.81         | 15.47  | $25.22_{(1.80)}$ | $7.70_{(1.11)}$ | 15.48  |  |
| BN-Inception [6]         | 25.2             | 7.82            | 25.38      | 7.89         | 2.03   | $24.23_{(1.15)}$ | $7.14_{(0.75)}$ | 2.04   |  |
| Inception-ResNet-v2 [21] | $19.9^{\dagger}$ | $4.9^{\dagger}$ | 20.37      | 5.21         | 11.75  | $19.80_{(0.57)}$ | $4.79_{(0.42)}$ | 11.76  |  |

### Btw, what is 1x1 Convolution?

- Doesn't 1x1 convolution sound redundant?
- Actually, it's for accelerating computation purposes



## What is 1x1 Convolution? (cont'd)

- Doesn't 1x1 convolution sound redundant?
- Simply speaking, it provides...
  - Dimension reduction
  - Additional nonlinearity



### What is 1x1 Convolution? (cont'd)

- Example 1
   {28 x 28 x 192} convolved with 32 {5 x 5x 192} kernels into {28 x 28 x 32}
- (5 x 5 x 192) muls x (28 x 28) pixels x 32 kernels ~ 120M muls

- Example 2
   {28 x 28 x 192} convolved with 16 {1 x 1x 192} kernels into {28 x 28 x 16}, followed by convolution with into 32 {5 x 5 x 16} kernels into {28 x 28 x 32}
- 192 mul x (28 x 28) pixels x 16 kernels ~ 2.4M
- (5 x 5 x 16) muls x (28 x 28) pixels x 32 kernels ~ 10M
- 12.4M (2.4M + 10M) << 120M; what's the price to pay?

#### **MobileNets: Tiny Networks for End Devices**

- MobileNet V1
  - Depthwise & pointwise convolution



#### MobileNets (cont'd)

- MobileNet V1
  - Depthwise & pointwise convolution
  - Reduced Computation

- Depthwise Convolution Pointwise Convolution ix1 conv i i i i i i
- Input feature map  $D_F x D_F$  pixels with M channels, kernel size  $D_K$ , & output with N channels
- The ratio of required computation of depth+pointwise conv. and standard conv. is :



- Thus, depth+pointwise convolution requires only  $1/N + 1/D_{K}^{2}$  of the computation cost compared with that of standard convolution.
- Variants of MobileNets are available!

### Remarks

- CNN:
  - Reduce the number of parameters
  - Reduce the memory requirements
  - Make computation independent of the size of the image
- Neuroscience provides strong inspiration on the NN design, but little guidance on how to train CNNs.
- Few structures discussed: convolution, nonlinearity, pooling

#### What's to Be Covered Today...

- Convolution Neural Networks (CNN)
  - Design of CNN
  - Variants of CNNs
  - Training Techniques for CNN
- Image Segmentation







#### Selected Tricks for Training Deep Learning Models

- Backpropagation + stochastic gradient descent with momentum
  - Neural Networks: Tricks of the Trade
- Dropout
- Data augmentation
- Batch normalization

### Dropout



(a) Standard Neural Net



(b) After applying dropout.

#### Intuition: successful conspiracies

Example: 50 people planning a conspiracy

- <u>Strategy A</u>: plan a big conspiracy involving 50 people
  - Likely to fail. 50 people need to play their parts correctly.
- <u>Strategy B</u>: plan 10 conspiracies each involving 5 people
  - Likely to succeed!

### Dropout



Table 6: Results on the ILSVRC-2012 validation/test set. Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

40.7

38.1

18.2

16.4

\_

16.4

Conv Net + dropout (Krizhevsky et al., 2012)

Avg of 5 Conv Nets + dropout (Krizhevsky et al., 2012)

### **Data Augmentation (Jittering)**

- DL typically requires larger # of data for training
- Collecting data is time and cost consuming...
- Create virtual training samples
  - Horizontal flip
  - Random crop
  - Color casting
  - Geometric distortion and so on...
  - See any concerns?



#### **Batch Normalization**



#### **Batch Normalization**



#### Batch Normalization (cont'd)

Remarks

• Differentiable function; back propagation OK

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\mathrm{Var}[x^{(k)}]}}$$

• Procedure



### Batch Normalization (cont'd)

- Remarks
  - Differentiable function; back propagation OK

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

N X

D

- Procedure (cont'd)
  - With learnable scale and shift parameters  $\gamma$  and  $\beta$  to alleviate the hard constraint of zero-mean and unit variance

$$\hat{x}_{i,j} = rac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + arepsilon}}$$
 Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + eta_j$$
 Output,  
Shape is N x D

- Mean and variance estimated from each mini-batch during training
  - What about inference/testing?

$$\mu_{j} = \begin{array}{l} \text{(Running) average of} \\ \text{values seen during} \\ \text{training} \end{array} \qquad \begin{array}{l} \text{Per-channel mear} \\ \text{across N samples} \end{array}$$

$$\sigma_{j}^{2} = \begin{array}{l} \text{(Running) average of} \\ \text{values seen during} \\ \text{training} \end{array} \qquad \begin{array}{l} \text{Per-channel std} \\ \text{across N samples} \end{array}$$

#### **Instance Normalization in CNN**

# **Batch Normalization** for convolutional networks

| <b>x</b> :                | N×C×H×W                |
|---------------------------|------------------------|
| Normalize                 |                        |
| μ,σ:                      | 1×C×1×1                |
| γ,β:                      | 1×C×1×1                |
| $\mathbf{y} = \mathbf{y}$ | $(x-\mu)/\sigma+\beta$ |

Instance Normalization for convolutional networks Same behavior at train / test!



#### **Variants of Normalization in Training CNN**


## What's to Be Covered Today...

- Convolution Neural Networks (CNN)
  - Design of CNN
  - Variants of CNNs
  - Training Techniques for CNN
  - Self-Supervised Learning for CNN
- Image Segmentation







# Supervised Learning

Most DL models are learned in a supervised fashion... ٠



#### Image classification



#### **Object detection**



#### Semantic segmentation



A woman is throwing a frisbee in a park.



A little girl sitting on a bed with a teddy bear.



A dog is standing on a hardwood floor.



A group of people sitting on a boat in the water.

#### Visual question answering

- In real world scenarios, data-annotation is quite time-consuming
- Could one exploit supervised signals from **unlabeled** data?



## Self-Supervised Learning (SSL)

- Learning (somewhat) discriminative feature representations from unlabeled data
- Create self-supervised tasks via data augmentation



### Colorization



Rotation



Jigsaw Puzzle

# **A Typical SSL Procedure**

- Stage 1: Self-Supervised Pretraining (w/ a large # of unlabeled data)
- Stage 2: Supervised Fine-tuning (w/ a small # of labeled data)
- Often performs favorably against fullysupervised trained models



## **Selected SSL Techniques**

- Pretext Tasks
  - Jigsaw (ECCV'16)
  - RotNet (ICLR'18)
- Contrastive Learning
  - CPC (ICML'20)
  - SimCLR (ICML'20)
- Learning w/o negative samples
  - BYOL (NeurIPS'20)
  - Barlow Twins (ICML'21)

Images

X



## RotNet

• Learning to predict the **rotation** angle



# Jigsaw Puzzle

- Assign the **permutation index** and perform augmentation
- Solve jigsaw puzzle by predicting the permutation index



## **Selected SSL Techniques**

- Pretext Tasks
  - Jigsaw (ECCV'16)
  - RotNet (ICLR'18)
- Contrastive Learning
  - CPC (ICML'20)
  - SimCLR (ICML'20)
- Learning w/o negative samples
  - BYOL (NeurIPS'20)
  - Barlow Twins (ICML'21)

Images

X



## SimCLR

- Attract augmented images and repel negative samples
- Improve the representation quality with **projection heads** (g)...why?



## SimCLR

#### • Experiments on semi-supervised settings

| Method                                      | Architecture                           | Label fraction 1% 10% |      |  |  |  |  |
|---------------------------------------------|----------------------------------------|-----------------------|------|--|--|--|--|
|                                             |                                        | Top 5                 |      |  |  |  |  |
| Supervised baseline                         | ResNet-50                              | 48.4                  | 80.4 |  |  |  |  |
| Methods using other labe                    | Methods using other label-propagation: |                       |      |  |  |  |  |
| Pseudo-label                                | ResNet-50                              | 51.6                  | 82.4 |  |  |  |  |
| VAT+Entropy Min.                            | ResNet-50                              | 47.0                  | 83.4 |  |  |  |  |
| UDA (w. RandAug)                            | ResNet-50                              | -                     | 88.5 |  |  |  |  |
| FixMatch (w. RandAug)                       | ResNet-50                              | -                     | 89.1 |  |  |  |  |
| S4L (Rot+VAT+En. M.)                        | ResNet-50 (4 $\times$ )                | -                     | 91.2 |  |  |  |  |
| Methods using representation learning only: |                                        |                       |      |  |  |  |  |
| InstDisc                                    | ResNet-50                              | 39.2                  | 77.4 |  |  |  |  |
| BigBiGAN                                    | RevNet-50 $(4 \times)$                 | 55.2                  | 78.8 |  |  |  |  |
| PIRL                                        | ResNet-50                              | 57.2                  | 83.8 |  |  |  |  |
| CPC v2                                      | ResNet-161(*)                          | 77.9                  | 91.2 |  |  |  |  |
| SimCLR (ours)                               | ResNet-50                              | 75.5                  | 87.8 |  |  |  |  |
| SimCLR (ours)                               | ResNet-50 (2 $\times$ )                | 83.0                  | 91.2 |  |  |  |  |
| SimCLR (ours)                               | ResNet-50 ( $4 \times$ )               | 85.8                  | 92.6 |  |  |  |  |

## **Selected SSL Techniques**

- Pretext Tasks
  - Jigsaw (ECCV'16)
  - RotNet (ICLR'18)
- Contrastive Learning
  - CPC (ICML'20)
  - SimCLR (ICML'20)
- Learning w/o negative samples
  - BYOL (NeurIPS'20)
  - Barlow Twins (ICML'21)

Images

X



## BYOL (Bootstrap Your Own Latent)

- No need of negative pairs
- Introduce the **predictor** for architecture asymmetry to avoid model collapse
- Model update via Exponential Moving Average (EMA)



## **Barlow Twins**

- Enforce diversity among feature dimensions
- Maximize diagonal terms and minimize off-diagonal ones
- No need of negative pairs, predictor network, gradient stopping or moving average techniques



## **Barlow Twins**

• Experiments on classification

| Method              | Top-1 |      | Top-5 |             |
|---------------------|-------|------|-------|-------------|
|                     | 1%    | 10%  | 1%    | 10%         |
| Supervised          | 25.4  | 56.4 | 48.4  | 80.4        |
| PIRL                | -     | -    | 57.2  | 83.8        |
| SIMCLR              | 48.3  | 65.6 | 75.5  | 87.8        |
| BYOL                | 53.2  | 68.8 | 78.4  | 89.0        |
| SWAV                | 53.9  | 70.2 | 78.5  | <b>89.9</b> |
| BARLOW TWINS (ours) | 55.0  | 69.7 | 79.2  | 89.3        |

## **Barlow Twins**

• Experiments on detection and segmentation

| Method    | VOC07+12 det          |           |                  | COCO det  |                |                | COCO instance seg |                         |                |
|-----------|-----------------------|-----------|------------------|-----------|----------------|----------------|-------------------|-------------------------|----------------|
|           | $\overline{AP_{all}}$ | $AP_{50}$ | AP <sub>75</sub> | $AP^{bb}$ | $AP_{50}^{bb}$ | $AP_{75}^{bb}$ | $AP^{mk}$         | $AP_{50}^{\mathrm{mk}}$ | $AP_{75}^{mk}$ |
| Sup.      | 53.5                  | 81.3      | 58.8             | 38.2      | 58.2           | 41.2           | 33.3              | 54.7                    | 35.2           |
| MoCo-v2   | 57.4                  | 82.5      | 64.0             | 39.3      | 58.9           | 42.5           | 34.4              | 55.8                    | 36.5           |
| SwAV      | 56.1                  | 82.6      | 62.7             | 38.4      | 58.6           | 41.3           | 33.8              | 55.2                    | 35.9           |
| SimSiam   | 57                    | 82.4      | 63.7             | 39.2      | <b>59.3</b>    | 42.1           | 34.4              | 56.0                    | 36.7           |
| BT (ours) | 56.8                  | 82.6      | 63.4             | 39.2      | 59.0           | 42.5           | 34.3              | 56.0                    | 36.5           |

### SSL Beyond Image Data

• What about videos?





• What about noisy data? J. Li et al., Learning to Learn from Noisy Labeled Data, CVPR 2019



• You can come up with your own SSL strategy!

## What to Cover Today...

- Convolution Neural Networks (CNN)
  - Design of CNN
  - Variants of CNNs
  - Training Techniques for CNN
  - SSL for CNN
- Image Segmentation







## **Image Segmentation**

- Goal: Group pixels into meaningful or perceptually similar regions
- Any recent smart phone applications?



### **Segmentation for Object Proposal**



"Selective Search" [Sande, Uijlings et al. ICCV 2011, IJCV 2013]



### Segmentation via Clustering – Unsupervised Learning based Approaches

- K-means clustering -> [R, G, B, x, y] as pixel features
- Mean-shift
  - Find modes of the following non-parametric density



## **Superpixels**

- A relatively simpler task of image segmentation
- Divide an image into a large number of image regions, such that each region lies within object boundaries.
- Examples
  - Watershed
  - Felzenszwalb and Huttenlocher graph-based
  - Turbopixels
  - SLIC



### Semantic Segmentation – Supervised Learning based Approaches

- Semantic Segmentation
  - Assign a class label to each pixel in the input image (i.e., pixel-level classification)
  - Not like instance segmentation, do not differentiate instances; only care about pixel labels



## **More Tasks in Segmentation**

- Cosegmentation
  - Segmenting common objects from multiple images
  - Unsup. or supervised? Why preferable?



- Instance Segmentation
  - Assign a particular class label for each object instance
  - Unsuper. or supervised?



## **Semantic Segmentation**

- Sliding Window
  - Patch or pixel-level classification
  - Any concern?



Problem: Very inefficient! Not reusing shared features between overlapping patches

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013 Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

## **Semantic Segmentation**

- Fully Convolutional Nets
  - The prediction output is a H x W map, which can be view as a C x H x W class-label matrix.
  - Performing pixel-level classification by mapping the output feature map (C x H x W) to a class-label matrix (C x H x W).

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!



## **Semantic Segmentation**

• Fully Convolutional Nets (cont'd)



Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

• Unpooling

| Nea | arest | Neig | ghbor | 1 | 1 | 2 | 2 |
|-----|-------|------|-------|---|---|---|---|
|     | 1     | 2    |       | 1 | 1 | 2 | 2 |
|     | 3     | 4    |       | 3 | 3 | 4 | 4 |
|     |       |      |       | 3 | 3 | 4 | 4 |

Input: 2 x 2

Output: 4 x 4



Input: 2 x 2

Output: 4 x 4

0

0

0

0

- Max Unpooling
  - What's the price to pay?









#### Max Unpooling

Use positions from pooling layer



Input: 2 x 2





Corresponding pairs of downsampling and upsampling layers



• Learnable Upsampling: Transpose Convolution



Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 x 4



• Transpose Convolution



- Transpose Convolution
  - See a 1D example below:



Output contains copies of the filter weighted by the input, summing at where at overlaps in the output

Need to crop one pixel from output to make output exactly 2x input

- Transpose Convolution
  - Example as matrix multiplication

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X\vec{a}$$

$$\begin{bmatrix} x & y & x & 0 & 0 & 0 \\ 0 & x & y & x & 0 & 0 \\ 0 & 0 & x & y & x & 0 \\ 0 & 0 & 0 & x & y & x \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ ax + by + cz \\ bx + cy + dz \\ cx + dy \end{bmatrix}$$

Example: 1D conv, kernel size=3, stride=1, padding=1

Convolution transpose multiplies by the transpose of the same matrix:

$$\vec{x} *^T \vec{a} = X^T \vec{a}$$

 $\begin{bmatrix} x & 0 & 0 & 0 \\ y & x & 0 & 0 \\ z & y & x & 0 \\ 0 & z & y & x \\ 0 & 0 & z & y \\ 0 & 0 & 0 & z \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} ax \\ ay + bx \\ az + by + cx \\ bz + cy + dx \\ cz + dy \\ dz \end{bmatrix}$ 

When stride=1, convolution transpose is just a regular convolution (with different padding rules)

- Transpose Convolution
  - Example as matrix multiplication

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X\vec{a}$$

$$egin{bmatrix} x & y & z & 0 & 0 & 0 \ 0 & 0 & x & y & z & 0 \end{bmatrix} egin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = egin{bmatrix} ay + bz \\ bx + cy + dz \end{bmatrix}$$

Example: 1D conv, kernel size=3, <u>stride=2</u>, padding=1

Convolution transpose multiplies by the transpose of the same matrix:

$$\vec{x} *^{T} \vec{a} = X^{T} \vec{a}$$

$$\begin{bmatrix} x & 0 \\ y & 0 \\ z & x \\ 0 & y \\ 0 & z \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ax \\ ay \\ ay \\ az + bx \\ by \\ bz \\ 0 \end{bmatrix}$$

When stride>1, convolution transpose is no longer a normal convolution!

# Fully Convolutional Networks (FCN)

Remarks

Downsampling:

Pooling, strided

- All layers are convolutional
- End-to-end training

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

**Upsampling**: Unpooling or strided transpose convolution



Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

## Fully Convolutional Networks (FCN)

- More details
  - Adapt existing classification network to fully convolutional forms
  - Remove flatten layer and replace fully connected layers with conv layers
  - Use transpose convolution to upsample pixel-wise classification results


# Fully Convolutional Networks (FCN)

- Example
  - VGG16-FCN32s
  - Loss: pixel-wise cross-entropy

i.e., compute cross-entropy between each pixel and its label, and average over all of them



## SegNet

- Efficient architecture (memory + computation time)
- Upsampling reusing max-unpooling indices
- Reasonable results without performance boosting addition
- Comparable to FCN



"SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation" [link]

#### **U-Net**



U-Net: Convolutional Networks for Biomedical Image Segmentation [link]

#### Additional Remarks: Enhanced Spatial Information

- For semantic segmentation, spatial information is of great importance
- It is desirable for the model to observe both the target pixel/region and its **neighboring areas** 
  - Atrous (or dilated) convolution
- Features across different scales should be considered
  - Spatial pyramid pooling
- Will comment on this part in future lectures (e.g., object detection)

### What We've Covered Today...

- Convolution Neural Networks (CNN)
  - Design of CNN
  - Variants of CNNs
  - Training Techniques for CNN
  - Self-Supervised Learning for CNN
- Image Segmentation
- HW #1 is out and due 9/27 Fri 23:59





