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Slightly updated syllabys
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What to Cover Today…

• Convolution Neural Networks (CNN)
• Design of CNN
• Variants of CNNs
• Training Techniques for CNN
• Self-Supervised Learning for CNN

• Image Segmentation
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Recap: From Linear Classifiers to Neural Nets

• Linear Classifier

• Neural Network (Multilayer Perceptron)

4Image credit: Stanford CS231n



Convolutional Neural Networks

• How many weights for MLPs for images?
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Convolutional Neural Networks

• Property I of CNN: Local Connectivity
• Each neuron takes info only from a neighborhood of pixels.
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Convolutional Neural Networks

• Property II of CNN: Weight Sharing
• Neurons connecting each pixel and its neighborhoods 

have identical weights.
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• # of input dimensions/units (neurons): 7
• # of output/hidden units: 3

• Number of parameters
• Global connectivity:
• Local connectivity:

Input layer

Hidden layer

Global connectivity Local connectivity

CNN: Local Connectivity

8



Input layer

Hidden layer

• # input units (neurons): 7
• # hidden units: 3
• Number of parameters

– Without weight sharing:
– With weight sharing :

w1

w2

w3

w4

w5
w6

w7

w8

w9

Without weight sharing With weight sharing

w1

w2

w3 w1

w2

w3

w1

w2

w3

CNN: Weight Sharing

9



Input layer

Output/hidden layer

Single input channel Multiple input channels

Channel 2

Channel 1

Filter weights Filter weights

CNN with Multiple Input Channels
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Input layer

Output/Hidden layer

Single output map Multiple output maps

Filter weights

Map #1

Map #2

Filter 1 Filter 2

Filter weights

CNN with Multiple Output Maps
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Putting the ideas together → CNN

• Local connectivity
• Weight sharing

• Handling multiple input channels
• Handling multiple output maps

Image credit: A. Karpathy

# output (activation) maps # input channels

Local connectivity

Weight sharing
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What’s to Be Covered Today…

• Convolution Neural Networks (CNN)
• Design of CNN
• Variants of CNNs
• Training Techniques for CNN
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Convolution Layer in CNN
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What is a Convolution?

• Weighted moving sum

Input Feature Activation Map #1

.

.

.

slide credit: S. Lazebnik
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Feature Activation Map #2



What is a Convolution?
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What is a Convolution?

• Toeplitz Matrix Form
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Putting them together (cont’d)

• The neuron view of a CONV layer
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Putting them together (cont’d)

• The neuron view of CONV layer (cont’d)
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 Feature map (at an intermediate layer):



Putting them together (cont’d)

• The neuron view of CONV layer
• Typically, more than 1 filter is learned in CNN…
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Putting them together (cont’d)

• Image input with 32 x 32 pixels convolved repeatedly 
with 5 x 5 x 3 filters would shrink feature mape volumes spatially 

• 32 -> 28 -> 24 -> …
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What is a Convolution? (cont’d)

• Zero Padding
• Output is the same size as that of the input

• That is, conv will not shrink as the network gets deeper.
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What is a Convolution? (cont’d)

• Stride
• Step size across signals
• Why & when preferable?
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What is a Convolution? (cont’d)

• Stride
• Step size across signals
• See example below:
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What is a Convolution? (cont’d)

• Stride
• Step size across signals
• See a 2D example below:
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What is a Convolution?

• Zero Padding + Stride
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Remarks: Receptive Field
• For convolution with kernel size n x n, 

each entry in the output layer depends on a n x n receptive field in the input layer.

• Each successive convolution adds n-1 to the receptive field size.
With a total of L layers, the receptive field size would be 1 + (L-1) * (n-1).

• For an image w/ high resolution, we need to deploy multiple CNN layers 
for the output to “see” the entire input image.

• Other alternatives: downsample the image/feature map (see pooling layer next)

27Slide credit: UMich EECS 498-007



A Variant of Convolution

• Dilated Convolution
• Kernel in the same size but capable of handling a larger receptive field
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Nonlinearity Layer in CNN
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Nonlinearity Layer
• E.g., ReLU (Rectified Linear Unit)

• Pixel by pixel computation of max(0, x)
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Nonlinearity Layer
• E.g., ReLU (Rectified Linear Unit)

• Pixel by pixel computation of max(0, x)
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Nonlinearity Layer
• E.g., ReLU (Rectified Linear Unit)

• Pixel by pixel computation of max(0, x)
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Pooling Layer in CNN
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Pooling Layer
• Makes the representations smaller and more manageable 
• Operates over each activation map independently

• E.g., Max Pooling
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Pooling Layer
• Reduces the spatial size and provides spatial invariance
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• Example
• Nonlinearity by ReLU
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• Example
• Max pooling
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Fully Connected (FC) Layer in CNN
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FC Layer
• Mapping features/neurons that connect to the entire input volume

to the desirable output (e.g., predicted scores for each class)
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FC Layer (cont’d)
• Required computation vs. Learnable parameters
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CNN
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LeNet

• Presented by Yann LeCun during the 1990s for reading digits
• Has the elements of modern architectures
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LeNet [LeCun et al. 1998]

Gradient-based learning applied to document recognition
[LeCun, Bottou, Bengio, Haffner 1998] 43

LeNet-1 from 1993

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf


AlexNet [Krizhevsky et al., 2012]

• Repopularized CNN 
by winning the ImageNet Challenge 2012

• 7 hidden layers, 650,000 neurons, 
60M parameters

• Error rate of 16% vs. 26% for 2nd place.
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# of Hyperparameters 
in AlexNet (cont’d)

Slide credit: UMich EECS 498-007 
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# of Hyperparameters 
in AlexNet (cont’d)

Slide credit: UMich EECS 498-007 
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# of Hyperparameters 
in AlexNet (cont’d)

Slide credit: UMich EECS 498-007 
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# of Hyperparameters 
in AlexNet (cont’d)

Slide credit: UMich EECS 498-007 
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Additional Remarks
on AlexNet

Slide credit: UMich EECS 498-007 

Most of the memory usage 
in early convolution layers

Nearly all the parameters are 
in the fully connected layers

Most floating-point operations 
occur in the convolution layers



Deep or Not?
• Depth of the network is critical for performance.
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What to Cover Today…

• Convolution Neural Networks (CNN)
• Design of CNN
• Variants of CNNs
• Training Techniques for CNN

• Image Segmentation
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CNN: A Revolution of Depth
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ResNet
• Can we just increase the #layer? What are the potential risks?

• How can we train very deep network?
- Residual learning
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DenseNet [CVPR’17]

• Shorter connections (like ResNet) help
• Why not just connect them all?
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Squeeze-and-Excitation Net (SENet)
• How to improve acc. without much overhead?

• Feature recalibration (channel attention)

Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." CVPR, 2018. 133



Btw, what is 1x1 Convolution? 
• Doesn’t 1x1 convolution sound redundant?
• Actually, it’s for accelerating computation purposes
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What is 1x1 Convolution? (cont’d)

• Doesn’t 1x1 convolution sound redundant?
• Simply speaking, it provides…

• Dimension reduction
• Additional nonlinearity
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What is 1x1 Convolution? (cont’d)
• Example 1

{28 x 28 x 192} convolved with 32 {5 x 5x 192} kernels into {28 x 28 x 32}

• (5 x 5 x 192) muls x (28 x 28) pixels x 32 kernels ~ 120M muls

• Example 2
{28 x 28 x 192} convolved with 16 {1 x 1x 192} kernels into {28 x 28 x 16}, followed 
by convolution with into 32 {5 x 5 x 16} kernels into {28 x 28 x 32}

• 192 mul x (28 x 28) pixels x 16 kernels  ~ 2.4M

• (5 x 5 x 16) muls x (28 x 28) pixels x 32 kernels ~ 10M

• 12.4M (2.4M + 10M) << 120M; what’s the price to pay?
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MobileNets: Tiny Networks for End Devices

• MobileNet V1
• Depthwise & pointwise convolution

Howard et al., MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, 2017 133



MobileNets (cont’d)

• MobileNet V1
• Depthwise & pointwise convolution
• Reduced Computation

• Input feature map DF x DF pixels with M channels, kernel size DK, & output with N channels
• The ratio of required computation of depth+pointwise conv. and standard conv. is :

• Thus, depth+pointwise convolution requires only 1/N + 1/DK
2 of the computation cost

compared with that of standard convolution.

• Variants of MobileNets are available!

Howard et al., MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, 2017 133

Depthwise Convolution Pointwise Convolution

Standard Convolution



Remarks
• CNN:

• Reduce the number of parameters
• Reduce the memory requirements
• Make computation independent of the size of the image

• Neuroscience provides strong inspiration on the NN design, but little 
guidance on how to train CNNs.

• Few structures discussed: convolution, nonlinearity, pooling
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What’s to Be Covered Today…

• Convolution Neural Networks (CNN)
• Design of CNN
• Variants of CNNs
• Training Techniques for CNN

• Image Segmentation
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Selected Tricks for
Training Deep Learning Models

• Backpropagation +
stochastic gradient descent with momentum 

• Neural Networks: Tricks of the Trade

• Dropout
• Data augmentation
• Batch normalization

64

https://books.google.com/books?hl=en&lr=&id=VCKqCAAAQBAJ&oi=fnd&pg=PR5&dq=Neural+Networks:+Tricks+of+the+Trade&ots=cBbpUBGkVG&sig=rbBCsTUJEjyZc419s4TZ5X2RM3g#v=onepage&q=Neural%20Networks%3A%20Tricks%20of%20the%20Trade&f=false


Dropout

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

Intuition: successful conspiracies
Example: 50 people planning a conspiracy
• Strategy A: plan a big conspiracy involving 50 people

• Likely to fail. 50 people need to play their parts correctly.
• Strategy B: plan 10 conspiracies each involving 5 people

• Likely to succeed!

71

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf


Dropout

Main Idea: approximately combining 
exponentially many different neural 
network architectures efficiently

72Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf


Data Augmentation (Jittering)

• DL typically requires larger # of data for training
• Collecting data is time and cost consuming…

• Create virtual training samples
• Horizontal flip
• Random crop
• Color casting
• Geometric distortion

and so on…
• See any concerns?

Deep Image [Wu et al. 2015] 73

http://arxiv.org/pdf/1501.02876v2.pdf


Batch Normalization

Credit: Andrew Ng 74



Batch Normalization

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [Ioffe and Szegedy 2015] 75

http://arxiv.org/pdf/1502.03167v3.pdf


Batch Normalization (cont’d)

• Remarks
• Differentiable function; back propagation OK

• Procedure

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [Ioffe and Szegedy 2015]

Per-channel mean 
across N samples

Per-channel std
across N samples

76

http://arxiv.org/pdf/1502.03167v3.pdf


Batch Normalization (cont’d)

• Remarks
• Differentiable function; back propagation OK

• Procedure (cont’d)
• With learnable scale and shift parameters γ and β

to alleviate the hard constraint of zero-mean and unit variance

• Mean and  variance estimated from each mini-batch during training
• What about inference/testing?

Per-channel mean 
across N samples

Per-channel std
across N samples

77



Instance Normalization in CNN
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Variants of Normalization in Training CNN
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What’s to Be Covered Today…

• Convolution Neural Networks (CNN)
• Design of CNN
• Variants of CNNs
• Training Techniques for CNN
• Self-Supervised Learning for CNN

• Image Segmentation

80



Supervised Learning

81

• Most DL models are learned in a supervised fashion…

Image classification Object detection

Semantic 
segmentation Visual question answering



82

• In real world scenarios, data-annotation is quite time-consuming
• Could one exploit supervised signals from unlabeled data?



Self-Supervised Learning (SSL)

83

• Learning (somewhat) discriminative feature representations 
from unlabeled data

• Create self-supervised tasks via data augmentation

Rotation
90。

Jigsaw Puzzle

Colorization



A Typical SSL Procedure

84

• Stage 1: Self-Supervised Pretraining (w/ a large # of unlabeled data) 
• Stage 2: Supervised Fine-tuning (w/ a small # of labeled data)

• Often performs favorably against fullysupervised trained models 



Selected SSL Techniques

85

• Pretext Tasks
• Jigsaw (ECCV’16)
• RotNet (ICLR’18)

• Contrastive Learning
• CPC (ICML’20)
• SimCLR (ICML’20)

• Learning w/o negative samples
• BYOL (NeurIPS’20)
• Barlow Twins (ICML’21)



RotNet

86

• Learning to predict the rotation angle

Gidaris et al. “Unsupervised Representation Learning by Predicting Image Rotations.” ICLR 2018



Jigsaw Puzzle
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• Assign the permutation index and perform augmentation
• Solve jigsaw puzzle by predicting the permutation index

Noroozi et al. “Unsupervised learning of visual representations by solving jigsaw puzzles.” ECCV 2016



Selected SSL Techniques

88

• Pretext Tasks
• Jigsaw (ECCV’16)
• RotNet (ICLR’18)

• Contrastive Learning
• CPC (ICML’20)
• SimCLR (ICML’20)

• Learning w/o negative samples
• BYOL (NeurIPS’20)
• Barlow Twins (ICML’21)



SimCLR

89Chen et al. "A simple framework for contrastive learning of visual representations." ICML 2020

• Attract augmented images and repel negative samples
• Improve the representation quality with projection heads (g)…why?



SimCLR

90

• Experiments on semi-supervised settings



Selected SSL Techniques
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• Pretext Tasks
• Jigsaw (ECCV’16)
• RotNet (ICLR’18)

• Contrastive Learning
• CPC (ICML’20)
• SimCLR (ICML’20)

• Learning w/o negative samples
• BYOL (NeurIPS’20)
• Barlow Twins (ICML’21)



BYOL (Bootstrap Your Own Latent)

92

• No need of negative pairs
• Introduce the predictor for architecture asymmetry 

to avoid model collapse

• Model update via Exponential Moving Average (EMA) 

Grill et al. “Bootstrap your own latent: A new approach to self-supervised learning.” NeurIPS 2020



Barlow Twins

93

• Enforce diversity among feature dimensions
• Maximize diagonal terms and minimize off-diagonal ones

• No need of negative pairs, predictor network, gradient stopping 
or moving average techniques

Zbontar et al. “Barlow twins: Self-supervised learning via redundancy reduction.” ICML 2021



Barlow Twins
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• Experiments on classification



Barlow Twins
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• Experiments on detection and segmentation



SSL Beyond Image Data

96

• What about videos?

• What about noisy data?

• You can come up with your own SSL strategy!

J. Li et al., Learning to Learn from Noisy Labeled Data, CVPR 2019



What to Cover Today…

• Convolution Neural Networks (CNN)
• Design of CNN
• Variants of CNNs
• Training Techniques for CNN
• SSL for CNN

• Image Segmentation

97



Image Segmentation

• Goal: Group pixels into meaningful or perceptually similar regions
• Any recent smart phone applications?
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Segmentation for Object Proposal

“Selective Search” [Sande, Uijlings et al. ICCV 2011, IJCV 2013]

[Endres Hoiem ECCV 2010, IJCV 2014]
99



Segmentation via Clustering –
Unsupervised Learning based Approaches

• K-means clustering -> [R, G, B, x, y] as pixel features 
• Mean-shift

• Find modes of the following non-parametric density

*D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, IEEE PAMI 2002. 100



Superpixels

• A relatively simpler task of image segmentation
• Divide an image into a large number of image regions, 

such that each region lies within object boundaries.

• Examples
• Watershed
• Felzenszwalb and Huttenlocher graph-based
• Turbopixels
• SLIC

101



Semantic Segmentation –
Supervised Learning based Approaches

• Semantic Segmentation
• Assign a class label to each pixel in the input image (i.e., pixel-level classification)
• Not like instance segmentation, do not differentiate instances; 

only care about pixel labels

103



More Tasks in Segmentation

• Cosegmentation
• Segmenting common objects from multiple images
• Unsup. or supervised? Why preferable?

• Instance Segmentation
• Assign a particular class label for each object instance
• Unsuper. or supervised?
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Semantic Segmentation

• Sliding Window 
• Patch or pixel-level classification
• Any concern?
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Semantic Segmentation

• Fully Convolutional Nets
• The prediction output is a H x W map, 

which can be view as a C x H x W class-label matrix.
• Performing pixel-level classification 

by mapping the output feature map (C x H x W) to a class-label matrix (C x H x W).
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Semantic Segmentation

• Fully Convolutional Nets (cont’d)
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In-Network Upsampling

• Unpooling

108



In-Network Upsampling

• Max Unpooling
• What’s the price to pay? 
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In-Network Upsampling

• Learnable Upsampling: Transpose Convolution
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In-Network Upsampling

• Transpose Convolution
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In-Network Upsampling

• Transpose Convolution
• See a 1D example below:
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In-Network Upsampling

• Transpose Convolution
• Example as matrix multiplication
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In-Network Upsampling

• Transpose Convolution
• Example as matrix multiplication
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Fully Convolutional Networks (FCN)

• Remarks
• All layers are convolutional
• End-to-end training

115



Fully Convolutional Networks (FCN)

• More details
• Adapt existing classification network to fully convolutional forms
• Remove flatten layer and replace fully connected layers with conv layers
• Use transpose convolution to upsample pixel-wise classification results

116



Fully Convolutional Networks (FCN)

• Example
• VGG16-FCN32s
• Loss: pixel-wise cross-entropy
i.e., compute cross-entropy between each pixel and its label, and average over all of them 

VGG16 (Pretrained)

Input shape: 256 x 256

Coarse prediction shape: 8 x 8

Upsample 32x (transpose conv)

Pixel-wise prediction shape: 256 x 256
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SegNet

“SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation”  [link]

• Efficient architecture (memory + computation time)
• Upsampling reusing max-unpooling indices
• Reasonable results without performance boosting addition
• Comparable to FCN

119

https://arxiv.org/pdf/1511.00561.pdf


U-Net

U-Net: Convolutional Networks for Biomedical Image Segmentation  [link]
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Additional Remarks:
Enhanced Spatial Information

• For semantic segmentation, spatial information is of great importance
• It is desirable for the model to observe 

both the target pixel/region and its neighboring areas
• Atrous (or dilated) convolution

• Features across different scales should be considered
• Spatial pyramid pooling

• Will comment on this part in future lectures (e.g., object detection)
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What We’ve Covered Today…

• Convolution Neural Networks (CNN)
• Design of CNN
• Variants of CNNs
• Training Techniques for CNN
• Self-Supervised Learning for CNN

• Image Segmentation
• HW #1 is out and due 9/27 Fri 23:59
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