Deep Learning for Computer Vision

113-1/Fall 2024

https://cool.ntu.edu.tw/courses/41702 (NTU COOL)

http://vllab.ee.ntu.edu.tw/dlcv.html (Public website)

Yu-Chiang Frank Wang 王鈺強, Professor

Dept. Electrical Engineering, National Taiwan University

Deep Learning for Computer Vision

- Time:
 - Tuesday 2, 3, 4
 - $09:10-12:20 \rightarrow 09:30-12:20$ with 1 short break
- Location:
 - BL-112
- Websites:
 - NTU COOL; primary website: https://cool.ntu.edu.tw/courses/41702
 - Public use: http://vllab.ee.ntu.edu.tw/dlcv.html

Deep Learning for Computer Vision (cont'd)

- Required Knowledge & Skills
 - Knowledge of linear algebra, vector calculus, and probability
 - Machine learning & deep learning (this is NOT an entry-level course)
 - Programming skills (in Python)
 - If any of the above skills not available, please come back when ready.
- This course is offered in Mandarin this semester.
 Q&As & discussions can be done in any languages communicable.
- To encourage class attendance, lectures will be recorded but NOT uploaded to COOL until a week after.

What to Expect from this Course?

- (Deep) Learning-Based Computer Vision
 - Fundamentals of machine learning (Sorry, it's required!)
 - Deep learning technologies for visual classification, synthesis, and beyond (e.g., LLM & foundation models)
 - Different from courses like Computer Vision, 3D Vision, Applied Deep Learning, etc.
- Practical Experiences
 - · Assignments and projects dealing with real-world visual data
 - Final projects associated with challenges from CVPR, ICCV, etc.

Vision

Lots of work with fast pace, but hopefully helpful with lots of fun!

Disclaimer

- You are responsible for your own computing resources.
 (e.g., GPUs, Colab Pro for \$11/month, etc.)
 You can't finish this course w/o using GPUs.
- While doing my best to stick to what we announce, syllabus, HW policy or details might change over time.
- Yes, up to 20% of students chose to drop the course in previous years.
- And, yes, we did fail students in the past years (~5% each semester).

Required Computing Resources

- If you're using your own machines...(update by HW#1)
 - Ubuntu 20.04.6 LTS
 - NVIDIA TITAN RTX TU102 (24GB)
 - GNU bash, ver. 5.0.17(1)-release

Course Information

- Teaching Team & Office Hours
- Course Policy
- How to enroll in this class if not already in?

About Myself

Fducation

Ph.D./M.S. in Electrical & Computer Engineering 2002 – 2009

Carnegie Mellon University, Pittsburgh, USA

• B.S. in Electrical Engineering 1997 – 2001

National Taiwan University, Taipei, Taiwan

Experiences

	_	-/\	Υ.	.	. •	
		_	_	^	·ZD	 4

NVIDIA・ AI研究總監, NVIDIA Research 2022/08 – present

Professor, Dept. EE, National Taiwan University 2019 – present

Inventec.

Principal AI Consultant, Inventec 2021 – 2022

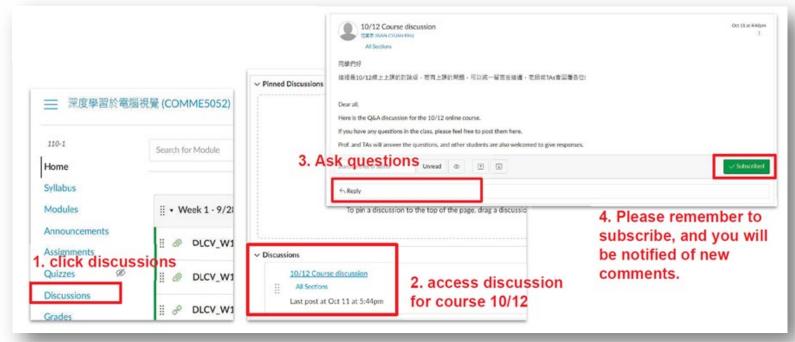
AICS

• Al Advisory Consultant, ASUS Intel. Cloud Services (AICS) 2019 – 2022

• **Associate Professor**, National Taiwan University 2017 – 2019

Deputy Director, CITI, Academia Sinica
 2015 – 2017

Associate/Assistant Research Fellow 2009 – 2017


Research Center for IT Innovation (CITI), Academia Sinica

Office Hour

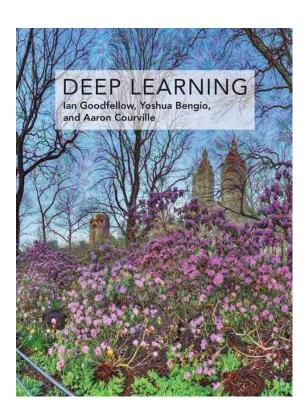
After class or by appointment via email (ycwang@ntu.edu.tw)

TAs & Office Hours

- We have 8 TAs this semester.
 - Will post and update the TA info on DLCV website
- If any questions, you are encouraged to
 - Ask at NTU COOL (anonymous is fine)
 - Contact your TA by email at ntudlcv@gmail.com
- Q&A @ NTU COOL
 - "Discussions" -> "Q&A for Date" -> Ask your questions @ Reply

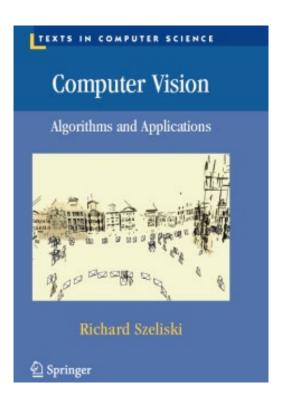
Q&A @ NTU COOL

• "Discussions" -> "Q&A for Date" -> Ask your questions @ Reply

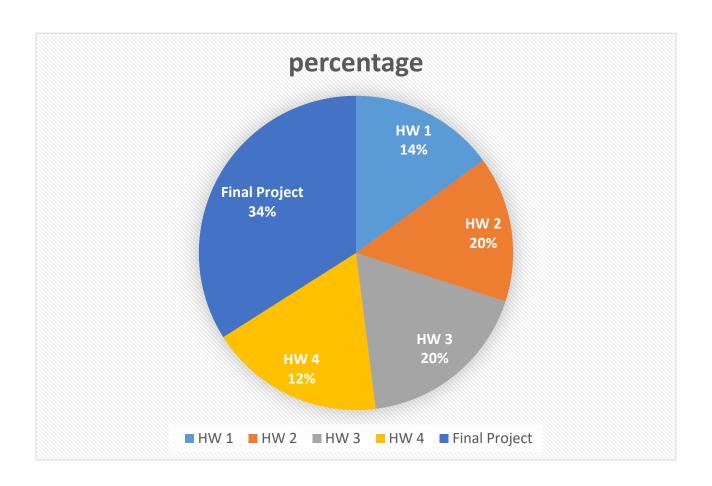


A Very Tight Schedule...

Week	Date	Торіс	Course Materials	Remarks
1	09/03	Course Logistics & Registration; Intro to Neural Nets	<u>W1-1</u>	
2	09/10	Convolutional Neural Networks & Image Segmentation		HW #1 out
3	09/17	No class		Mid-Autumn Festival
4	09/24	Generative Models (I) - AE, VAE & GAN		HW #1 due
5	10/01	Guest Lecture		ECCV week
6	10/8	Generative Models (II) - Diffusion Model		HW # 2 out
7	10/15	Recurrent Neural Networks & Transformer		
8	10/22	Transformer; Vision & Language Models		
9	10/29	Vision & Language Models		HW #2 due; HW #3 out
10	11/05	Multi-Modal Learning; Parameter-Efficient Finetuning		
11	11/12	Unlearning, Debiasing, and Interoperability		
12	11/19	3D Vision		HW #3 due; HW #4 out
13	11/26	Transfer & Adversarial Learning		Final Project Announcement
14	12/03	Federated Learning		HW #4 due
15	12/10	Progress Check for Final Projects		NeurIPS week
17	12/25 Wed	Final Project Presentation		


Textbook (Optional)

- Deep Learning, MIT Press
 - Ian Goodfellow, Yoshua Benjio, and Aaron Courville
 - Free online versions available at www.deeplearningbook.org



Textbook (Optional)

- Computer Vision: Algorithms and Applications, Springer
 - Richard Szeliski
 - Free online versions available at http://szeliski.org/Book/

About Grading

Bonus points possibly available for both HWs & lecture interaction

About Grading (cont'd)

- HW assignments (66%)
 - HW 0 (non-DL HW, 0% but required)
 - HWs #1~4 (12~20% each with possible bonus points)
 - HW #5 (optional yet with bonus points)
- Final project + poster presentation + code, etc. (34%)
- Bonus points
 - Course participation (e.g., interaction, Q&A, etc.)
 - Extra challenges in HWs
 - Excellent performance for final project (e.g., competitions, publication submissions, etc.)

Final Grade

Letter Grading System	Definition	Grade Points	Conversion Scale_
A+	All goals achieved beyond expectation	4.3	90-100
A	All goals achieved	4.0	85-89
A-	All goals achieved, but need some polish	3.7	80-84
B+	Some goals well achieved	3.3	77-79
В	Some goals adequately achieved	3.0	73-76
B- (passing grade for graduate students)	Some goals achieved with minor flaws	2.7	70-72
C+	Minimum goals achieved	2.3	67-69
С	Minimum goals achieved with minor flaws	2.0	63-66
C- (passing grade for undergraduate students)	Minimum goals achieved with major flaws	1.7	60-62
F	Minimum goals not achieved	0	59 and below
X	Not graded due to unexcused absences or other reasons	0	0
W	Withdrawal		
NG	No grade reported		
IP	In progress		
TR	Transfer credit		
EX	Exempted		

About Course HWs/Projects

- About HW late policy
 - We offer free late days (up to THREE days)
 in case you have dates, midterms, HW dues for other course, etc.
 (如期中考、專題、社團、約會、找入到人抄)
 - 1 min ~ 23 hr 59 min all count as ONE late day.
 - After HW due day, a penalty of 30% per day.
 - We'll maximize your final score based on HW scores and the late days used.
 - No late submission for the final project, obviously.

About Course HWs/Projects

- About Final Project
 - Details to be announced around mid semester.
 - 3~4 people per group (no more than 4)
 - TAs will check your code after presentation (to finalized your scores)
 - Selected topics possibly come with cash prizes.
 - Evaluated by instructor, TAs, and possibly guest judges
 - (Intra/inter-group) peer evaluation will be conducted.
 - Snack/drinks will be provided during final presentation.

Academic Integrity

- Can discuss HW with peers, but DO NOT copy and/or share code
 - Plagiarism is against university policy.
 - Violation in ANY form for HWs & final project would result in F.
 - We gave at least five Fs in previous semesters for the above cases.
- Do not directly use code/results from Internet unless you have permissions.
 - If not sure, ask!
 - If so, do specify in your HW/project.
- No double dipping!
 - You CANNOT use your research work as your final project.
 - However, you are encouraged to extend your previous work.
 - Actually, some students turned their final projects into international publications in the past semesters!

DOs and DONTs for the TAs (& Instructor)

- Do NOT send private messages to the TAs via Facebook, etc.
 - TAs are here to help, but they are not your tutors 24/7.
- TAs will NOT debug for you, including coding, environmental, library dependency problems.
- If you cannot make the TA hours, please email & schedule an appointment instead of stopping by the lab directly.
- (Obviously,) TAs do NOT answer questions not related to the course.
- You are encouraged to discuss w/ me if any questions on (but not limited to)
 DLCV, research, industry, career planning, etc.

How to Sign Up If Not Already In?

Capacity

- Classroom capacity: 120; currently registered: 100
- About 20 students can be additionally added.
- If you do not plan to take the course anymore, please drop it ASAP.

Priority

- EECS students > students with strong research needs
 those are interested in AI/GenAI...
 - Research topic alignment & necessity are key factors
- If you are still interested in this course and plan to enroll, please fill in the following form Sept 3rd Tue between 9am-1pm: https://forms.gle/M6Grdrm3F2YsBFeFA
- We will announce the enrollment results via email no later than Sept 6th Fri 6pm. All decisions are final.

加簽表單

Any Questions?

Course registration at https://forms.gle/M6Grdrm3F2YsBFeFA by **Tue Sept. 3rd 1pm**!