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Review: Fariness Formulation

A (protected attribute)

X (features) /Y (label)
1 | 0 S N
1 L1 0 .. 0 N

Pa{E} — P{E | A= a}.



Review: Demographic parity

Definition. Classifier C satisfies demographic parity if C is
independent of A.

When C is binary 0/1-variables, this means
P,{C=1}=P,{C = 1} forallgroupsa, b.

Approximate versions:

P.{C =1} s IP,{C =1} -P,{C =1} <e¢
Pp{C =1} —




Review: Accuracy Parity

Definition. Classifier C satisfies accuracy parity if
P, {C =Y} =P,{C = Y} forall groupsa, b.

Pros:

o Random guessing doesn’t work
o Allows perfect classifier

Cons:

o Error types matter!

o Allows you to make up for rejecting qualified women by
accepting unqualified men



Rewiew: True Positive Parity (TPP)
(or equal opportunity)

Assume C and Y are binary 0/1-variables.

Definition. Classifier C satisfies true positive parity if
P,{C=1|Y=1}=P,{C=1|Y =1} forall groupsa, b.

* When positive outcome (1) is desirable

* Equivalently, primary harm is due to false
negatives

— Deny bail when person will not recidivate



Review: False Positive Parity (FPP)

Assume C and Y are binary 0/1-variables.

Definition. Classifier C satisfies false positive parity if
P,{C=1|Y=0}=P,{C=1|Y =0} forall groupsa, b.

* TPP + FPP: Equalized Odds, or
Positive Rate Parity

R satisfies equalized odds if
R is conditionally independent of A given Y.



Review: Predictive Value Parity

Assume C and Y are binary 0/1-variables.

Definition. Classifier C satisfies

e positive predictive value parity if for all groups a, b:
Par=1L1C=11=Fi¥=1]| C=1}

e negative predictive value parity if for all groups a, b:
PIY=1|C=0]l=Psi¥=11C=0}

e predictive value parity if it satisfies both of the above.

Equalized chance of success given acceptance



Review: Individual Fairness

Metric d:VxV - R
Lipschitz condition [|[M(x) — M(y)|l < d(x, y)

This talk: Statistical distance in [0,1]

M(y)

y -
i(x y) )

X

ﬁmk / M:V — A(O) \M(x)

V: Individuals O: outcomes




Today’s Focus: Algorithmic Bias

Al expert calls for end to UK use of

‘ - - ' : Al Bias Could Put Women’s
raCIally biased algorlthms Lives At Risk - A Challenge For

Gender bias in Al: building Regulators
Bias in Al: A problem recognized but

o o
fairer algorithms ot wwesoived
Amazon, Apple, Google, IBM, and Microsoft worse at
transcribing black people's voices than white people's with
Al voice recognition, study finds

Millions of black people affected by racial
bias in health-care algorithms Racial bias in a medical algorithm favors white
patients over sicker black patients

Study reveals rampant racism in decision-making software used by US hospitals

The Week in Tech: Algorithmic Bias Is

Systems And Startlingly Even I Bad. Uncovering It Is Good.

Al Self-Driving Cars

and highlights ways to correct it.

Artificial Intelligence has a gender bias
problem - just ask Siri
The Best Algorithms Struggle to Recognize Black Faces Equally

US government tests find even top-performing facial recognition systems misidentify blacks at rates five to 10 times higher than they do whites.



What is in This Image




What is in This Image

Watermelon
Watermelon slices
Watermelon with seeds
Juicy watermelon
Layers of watermelon

Watermelon slices next
to each other
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What is in This Image

Watermelon
Watermelon slices
Watermelon with seeds
Juicy watermelon
Layers of watermelon

Watermelon slices next
to each other

But what about
red watermelon?
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What is in This Image

watermelon
watermelon slices

watermelon with
seeds

Juicy watermelon




What is in This Image

4

But what about
red watermelon?

We tend not to think of
the contents of this image
as red watermelon.

Red is the prototypical color
for watermelon flesh.
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Labeling, Prototyping, and Stereotyping

Ve label and categorize the world to reduce complex sensory inputs
into simplified groups that are easier to work with.

Prototypes are “typical” representations of a concept or object.
Ve tend to notice and talk about things that are atypical.

Biases and stereotypes arise when particular labels and features
confound decisions — whether human or artificial.
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Bias in Facial Detection

Independent Study | Independent Study ||
B UK academic algorithm
Gender Darker Darker Lighter Lighter Largest M Chinese commercial algorithm
Classifier Male Female Male Female Gap

American Indian

=. MinOSOf’t 94.0% 79.2% 100% 98.3% 20.8% female
— — : American Indian

F 3 FACE™ 99.3% 65.5% 99.2% 94.0% 33.8% male
= L 1 e e SRS .
Asian female
IDis 88.0% 65.3% 99.7% 92.9% 34.4%
| [ === Black female

I

Asian male

Black male

White female

White male

O 10 20 30 40 50 60 70
False match rate (per 10,000)
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Bias in Image Classification

(-[ Predicted Classes ]—\

Bride
Dress
Ceremony

VWoman
Wedding

CNN

CNN for image
classification.

Ground Truth: Bride
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Bias in Image Classification

(—[ Predicted Classes ]—\

Clothing
Event
Costume

Red
Performance art

CNN

CNN for image

_—— classification.
Ground Truth: Bride
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Bias in Image Classification

(—[ Predicted Objects ]—\

Seasoning
Spice
Spice rack
Ingredient

CNN

L CNN for object

Ground Truth: Spices recognition.
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Bias in Image Classification

(—[ Predicted Objects

Product
Yellow
CNN Drink
Bottle
- y
2= CNN for object

Ground Truth: Spices recognition.
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Bias Correlation with Income and Geography

Top-5 Accuracy by Income

= Average Top-5 Accuracy

! ! | ! ! 1

5 A A0 X D D D 6 O A
9' A7 » R

. SO A I R 'Q&
Income (in USD per month)

max

min

max

min
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Bias at All Stages of Al Life Cycle

. Data
- Model

- Training and Deployment

Evaluation

Interpretation
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Taxonomy of Common Biases

[ Selection Bias ] [ Reporting Bias ] [Correlation FaIIacy] Overgeneralization]

Interpretation-Driven

Data selection does not What is shared does not Correlation = Causation ~ “General” conclusions drawn
reflect randomization reflect real likelihood from limited test data
Ex: class imbalance Ex: news coverage
[ Sampling Bias ] [ Automation Bias ]
Particular data instances are Al-generated decisions are
more frequently sampled favored over human-
Ex: hair, skin tone generation decisions

By no means an exhaustive list!
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Revenue from arcades

2000

Bias from the Correlation Fallacy

Total revenue generated by arcades
correlates with

Computer science doctorates awarded in the US

2001 2002 2003 2004 2005 2006 2007 2008

1T

2000

2001 2002 2003 2004 2005 2006 2007 2008

== Revenue from arcades === Computer science doctorates

2009

2009

$9]1BJ01D0OP 3DUBIDS Jandwon)
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Bias from Assuming Generalization

Expectation: Reality:
Cups in my dataset Cups from many angles

Distribution shift can result in neural network bias.
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Datasets with Distribution Shift

[¢}]

o

©

E

30

% 1 'r:At'-rIio;(t;!-:n

® 82 |4 0000 I ndaebr haged,

oo ARE e ticiiradriact

=S| 2002/ 2009 / 2012/ 2016 / 2017 /
-2~ | Americas Africa Europe Americas Africa
> 8
£/~ | shopping multi-unit road recreational educational
5 g = mall residential bridge facility institution
m

Task: Building / land classification
Distribution shift: Time / geographic region
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A

Bias due to Class Imbalance

Frequency in Reality

Class

Frequency in Dataset

Class

Accuracy

Model Accuracy

Class
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Bias in Features

Consider training a facial detection system on images of faces and images of non-faces:

~ Non-Faces

Potential biases hidden within each class can be even more dangerous.
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Case Study: Bias in Facial Detection
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Red Hair

Blonde Hair

Brown Hair

Black Hair
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Black Brown Blonde Red

ASBJUNDIDY

Case Study: Bias in Facial Detection
CNN
Train CNN for
facial detection

2 of o of of o§ of
S of of of of of
A ool el of{
= ofof of ol o
.w of of of of o
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Case Study: Bias in Facial Detection

Independent Study | Independent Study ||
B UK academic algorithm
Gender Darker Darker Lighter Lighter Largest M Chinese commercial algorithm
Classifier Male Female Male Female Gap

American Indian

=- Microsoft 94.0% 79.2% 100% 98.3% 20.8% female
— — American Indian

F 3 FacE* 99.3% 65.5% 99.2% 94.0% 33.8% male
L 1 e e SRS .
Asian female
IDis 88.0% 65.3% 99.7% 92.9% 34.4%
| [ === Black female

HI

Asian male

Black male

White female

White male

O 10 20 30 40 50 60 70
False match rate (per 10,000)
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Learning Techniques to Improve Fairness

Bias Mitigation Inclusion

Biased model, Biased model,
dataset, ... dataset, ...

Mitigated bias Re-weighted signal
Improved fairness Improved fairness

¥
Remove Add signal for
problematic signal desired features

¥




Bias & Fairness in Supervised Learning

A classifier's output decision should be the same across sensitive
characteristics, given what the correct decision should be.

A classifier, fg(x) is biased if its decision changes after being exposed to

additional sensitive feature inputs. It is fair with respect to variables z if:

f@(ﬂf) — fg(QZ,Z)

For example, for a single binary variable z, fairness means:

Plj=1z=0,y=1]=Plg=1]z =1,y = 1

33



Evaluating Bias and Fairness

Disaggregated evaluation: evaluate performance with respect to different subgroups

- @@P® @O®
- Q@@ AAA HENE

Intersectional evaluation: evaluate performance with respect to subgroup intersections

Color & Shape
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Adversarial Multi-Task Learning to Mitigate Bias

Setup: specify attribute z for which

we seek to mitigate bias. Jointly
predict output y and z.

Two discriminator output heads:
1. Target / class label y
2. Sensitive attribute z

Train adversarially:
1. Predict sensitive attribute z
2. Negate gradient for z head

3. “Remove”’ effect of z on task
decision

X

Input Embedding

| 1

\ Hidden Layers /

1 t 1 T Negate gradient!
Task Attribute
y Z

Jointly predict output label y and
sensitive attribute z to remove from decision

[Zhang et al. AAAI/AIES 2018] 35



Task: language model to complete analogies

Application to Language Modeling

He is to she, as doctor is to ?

biased debiased
neighbor | similarity | neighbor similarity
nurse 1.0121 nurse 0.7056
nanny 0.9035 obstetrician 0.6861
fiancée 0.8700 | pediatrician | 0.6447
maid 0.8674 dentist 0.6367
fiancé 0.8617 | surgeon 0.6303
mother 0.8612 | physician 0.6254
fiance 0.8611 cardiologist 0.6088
dentist 0.8569 | pharmacist 0.6081
woman 0.8564 | hospital 0.5969

Sensitive attribute: Gender

X

Input Embedding
| 1

Hidden Layers

I H
Task Attribute
y . Z

Jointly predict output label y and
sensitive attribute z to remove from decision

[Zhang et al. AAAI/AIES 2018]
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Adaptive Resampling for Automatic Debiasing

Generative models can uncover the underlying latent variables in a dataset.

Homogeneous skin color, pose Diverse skin color, pose, illumination

Can we use latent distributions to identify unwanted biases?

[Amini et al. AAAI/AIES 2019] 37



Mitigating Bias through Learned Latent Structure

I
- .

Learn latent
structure

[Amini et al. AAAI/AIES 2019] 38



Mitigating Bias through Learned Latent Structure

X
(
Estimate
distribution PR
N I e M1

Diverse skin color, pose, illumination

[Zhang et al. AAAI/AIES 2018] 39



Using Latent Variables for Automatic Debiasing

Approximate the distribution of the latent space with a joint histogram
over the latent variables:

Q(z|X) HQZ zi| X)

Estimated joint Histogram for each
distribution Independence to latent variable z;
approximate

Define adjusted probability for sampling a particular datapoint x during training:

1
W (2 (@)|X) mHszz @ <o

selecting datapoint Histogram for each Debiasing
latent variable z; parameter

[Zhang et al. AAAI/AIES 2018]
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| |
10° - ‘ .

Number of Faces

Adaptive Adjustment of Resampling Probability

10°

104

| |
| |
| |
| |
| |
| .

e Random Batch Sampling During  Batch Sampling During Training
. .'H % r “ m Standard Face Detection T(aining wuth Learned Deb|a|smg

0.0000 0.0001 0.0002

0.0003

Probability of Resampling

Top 10 faces with Lowest
Resampling Probability

Homogenous skin color, pose Diverse skin color, pose, illumination

Top 10 fac.es with Hig.r.\ESt Mean Sample Prob: 7.57 x 10®  Mean Sample Prob: 1.03 x 10
Resampling Probability

sm no need to specify attributes to debias against!

Adaptive resampling based on automatically
learned features 2>

[Zhang et al. AAAI/AIES 2018] 41



Evaluation: Decreased Categorical Bias

Disaggregated and intersectional evaluation: evaluate performance across
subgroups and combinations of subgroups

95

Accuracy (%)
O
o

Dark Male Dark Female Light Male Light Female Overall
1 No debiasing

[Zhang et al. AAAI/AIES 2018]
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Evaluation: Decreased Categorical Bias

Disaggregated and intersectional evaluation: evaluate performance across
subgroups and combinations of subgroups

. e e e s B s e e e s
A
- 95
=
%)
© 90
=
Q
O
< 85
80

Dark Male Dark Female Light Male Light Female Overall
1 Nodebiasing [ a=01 [EI a=005 HEHE o=001 [HEE oa=0.001

[Zhang et al. AAAI/AIES 2018] 43



Understanding and Mitigating Algorithmic Bias

Types and Sources of Bias ]—\

[Zhang et al. AAAI/AIES 2018]



Al Fairness: Summary and Future Consideration

Al Best Practices l\ /| Algorithmic Solutions l\ Data and Evaluations

N\ Dataset Methods advances to
Documentation detect and mitigate biases

Gebru+ arXiv 2018. during learning

Sourcing and

Representation
DeVries+ CVPR 2018.

Distribution Shifts
Koh/Sagawa+ arXiv 2020.

and Curation W W Zhang+ AAAVAIES 2019.

Mitchell+ FAT* 2019.
Learned Latent

@ Reproducibility I."I Amisnti/r;;gjrﬁnw

and Transparency) . AAAI/AIES 2019. )
Necessity of collaboration and education of Al researchers, engineers,
ethicists, corporations, politicians, end-users, and the general public.

Falmess Evaluations
Hardt+ NeurlPS 2016.

Model Reporting W Adversaral Learning ~— Data with
s

[Zhang et al. AAAI/AIES 2018] 45



Interesting Papers at ICLR 2024



ICLR 2024 Test of Time Award

- Winner: Auto-Encoding Variational Bayes

- Runner Up: Intriguing properties of neural networks
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Published as a conference paper at ICLR 2024

ON THE FAIRNESS ROAD: ROBUST OPTIMIZATION
FOR ADVERSARIAL DEBIASING

Vincent Grari*!-?%, Thibault Laugel*-*:?-4, Tatsunori Hashimoto?, Sylvain Lamprier>, Marcin Detyniecki'!-*°
AXA Group Operations

Stanford University

LERIA, Université d’ Angers, France

TRAIL, Sorbonne Université, Paris, France

5 Polish Academy of Science, IBS PAN, Warsaw, Poland

{grari, laugel}@stanford.edu

code: https://github.com/axa-rev-research/ROAD-fairness/

N

48



Group Fairness

@_.

Employee information

ML model

$o $o — I 1 L
2?0 2?0 =B3e =)o =e

Deserves a raise or not

49



Group Fairness

Traditional group fairness

Globally fair model (DP): P(Y = 1|[S=1) = P(Y = 1|S = 0)

@ —> | ML model | =——»

?o ?o — T 1 L
=?o 7-?0 =)o e =B)e
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The Local (Un)fairness Problem

Traditional group fairness Local Fairness (ours)

Globally fair model (DP)

1
!

Globally fair model (DP)

4
#

@ — | ML model | =——

Subpopulation people over 70

@ — | ML model | =

Locally fair!

Locally unfair!

.....



The Local (Un)fairness Problem

Traditional group fairness Local Fairness (ours)

Globally fair model (DP)

@ — | ML model | =——

Subpopulation people over 70
Locally unfair!

@ —> | ML model

Problem: subpopulations are
unknown!

T4




Distributionally Robust Optimization
(DRO) for Fairness

Ly(f(x),y) — Ar(x,s)L.(8,s) + KL constraint COMPAS (Global DI <0.05)
0.675
X Predictor f f(X) ne%0 S
l 0.625 |-~ ) M ~§\[~A
oy
@ 0.600 =T
’5 \
» o
>O £ 0.575  cmmm ROAD (Ours) 1
w= = BROAD (Ours Non-Param)
0.550 === Globally fair model (Zhang et al.'18)
A4 = Robust-FairCORELS (Ferry et al.'23)
n A 0.525 == CUMA (Wang et al.'23)
S » LS(S, S) < S N Adversary g = FAD (Adel et al.'19)
0.500

. . . 0.40 035 030 0.25 0.20 0.15 0.10 0.05 0.00
Classical adversarial approach for fairness Local Unfairness (worst 1 DI)

Results: more fair locally for the same
levels of group fairness and accuracy
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Distributionally Robust Optimization
(DRO) for Fairness

Traditional group fairness Local Fairness (ours)

min By Ly (fu, (), )

s.t. réleag DIy 5)~q (fwf(x), S) <e€

min By [Ly (f, (), )
S.t. DI (5 6)~p (fwf(x), s) <e€E

Q: set of "plausible" distributions
~set of subpopulations

In practice: KL divergence-ball around p
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Published as a conference paper at ICLR 2024

THE DEVIL IS IN THE NEURONS: INTERPRETING AND
MITIGATING SOCIAL BIASES IN PRE-TRAINED LLAN-

GUAGE MODELS

Yan Liu® Yu Liu® Xiaokang ChenY Pin-Yu Chen* Daoguang Zan*
Min-Yen Kan® Tsung-Yi Ho*
* Chinese University of Hong Kong YPeking University

>National University of Singapore *Microsoft Research *IBM Research
{runningmelles, yure2055, ho.tsungyi}@gmail.com,

pkucxk@pku.edu.cn, daoguang@iscas.ac.cn,
pin-yu.chen@ibm. com, kanmy@comp.nus.edu.sg
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Background

Large pre-trained language models carry social biases towards
different demographics, which can further amplify existing
stereotypes in our society and cause even more harm.

i

«

4

56



Black-Box Methods for Social Bias Study in LLMs

PATTERN
PersonX ACTION because he [MASK]. Most approaches for detecting social biases in
PersonX ACTION because of his [MASK]. PLMs rer on prompt or probing-based
ManX ACTION because he [MASK]. .
ManX ACTION because of his [MASK]. techniques that treat PLMs as black boxes.

WomanX ACTION because she [MASK].
WomanX ACTION because of her [MASK].

-

Muslim
The dangerous terrorist is [MASK]. —>

Arrested

\
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Problems on Probing-based Methods

- Effectiveness relies heavily on the template quality

- Debiasing methods are costly
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Feed-Forward Network

Social Bias_ _ _ O N i . Demographic-1
Neuro x\ ~~~~~~~~~~ ~ (Logits = 0.1)
oSO

Vo,

.A%\i'
’ ‘ VAP
’ N0
05 Y
2% XK
AVAY.

Social Bias Neuron Logits Gap=0.8

* Here we introduce our key Identification with [G ©

concept:

-
-
- g -,
_____________

Demographic-2
(Logits = 0.9)

»
>

Self-Attention Layer

Social Bias Neurons

4 - How to precisely identify the social bias

' neurons in PLMs?

2 Questions _ o .
< 'How to effectively mitigate social

L biases in PLMs?
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Our Interpretability Technique
Designed for Social Bias Study

INTEGRATED GAP GRADIENTS (16?)

INTEGRATED GRADIENTS (1G)

The classic interpretability method

60



The classic interpretability method

INTEGRATED GRADIENTS (1G)

Social Bias Study
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Singular Knowledge
INTEGRATED GRADIENTS (1G) Attribution

Challenge!

Uneven Knowledge

Social Bias Study —— Distribution for more than
one demographic
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Feed-Forward Network

Logits Gap=0.8

| Demographic-2

o~ Social Bias . R
Sl NN T IS L}

g Neurons 777 NN Tt |

“ ~~~~~~

q ~~~~~~

: - e T
:8 Social Bias Neuron

z —> g Identification with IG2 2
£ OERSOSsy. .- g

CEEEEY N, S

=

o :K

)]

INTEGRATED GAP GRADIENTS (/G2) ) =a) [
INTEGRATED GRADIENTS (IG) 1C() = (i —af) x [ QP g,

(Logits = 0.9)

1 8 [Pu(di]a)) — Py (da|0w")

a=0 B'wgl)

da,
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Experimental Verification of 1G?2

60
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Suppress the neurons pinpointed by IG2 - logits gap decreases 23%

Amplify the activation = logits gap increases 29%

Randomly selected neurons have minimal impact on the logits gap



Results of Bias Neuron Suppression

Model SS — 50.00(A) LMS?T ICAT?t
BERT-Base-cased 56.93 87.29 75.19
+ DPCE 62.41 78.48 58.97
+ AutoDebias 53.03 50.74 47.62
+ Union_IG 51.01 31.47 30.83
+ BNS (Ours) 52.78 86.64 81.82
RoBERTa-Base 62.46 91.70 68.85
+ DPCE 64.09 92.95 66.67
+ AutoDebias 59.63 68.52 55.38
+ Union_IG 53.82 30.61 28.27
+ BNS (Ours) 57.43 91.39 77.81
FairBERTa 58.62 91.90 76.06
+ Union_IG 52.27 37.36 35.66

+ BNS (Ours) 53.44 91.05 84.79




Interesting Insight of Bias Neuron Migration

60

50

40

ntage(%)

30

Perce

20

10

0

Comparing the results of RoBERTa and FairBERTa, the change in the
number of social bias neurons is minimal, but there have been
noteworthy alterations in the distribution of these social bias neurons.

BERT
RoBERTa
FairBERTa

/

i |

2

3 4 B 6 7 8 9

10 11 12

Layer
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Summary

Interpretable Technique: 1G?

- Distribution Shift of Social Bias Neurons after Debiasing

- Training-Free Debiasing Approach: Bias Neuron Suppression
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