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(Approximate) Differential Privacy

A (randomized) algorithm M: X™"xQ — T is (e, 6)-differential private if
for all datasets x,x’ € X™ that differ on one entry and every query q € Q,
for all subsets S of the outcome space T,

I;/Ir[M(x, q) €S| <e€ l;[r[M(x’, q) €ES|+6



Review: Sequential Composition

* If M,, M,, ..., M, are algorithms that access a private
database D such that each M, satisfies €, -differential

privacy,

then the combination of their outputs satisfies
e-differential privacy with e=g,+...+¢g,



Review: Parallel Composition

If M,, M,, ..., M, are algorithms that access
disjoint databases D,, D,, ..., D, such that each
M. satisfies g; -differential privacy,

then the combination of their outputs satisfies
e-differential privacy with e= max{e,,...,€,}



Review: Example Problem
| Sex | Height | Weight [NEOTE

M 6’2" 210

F 537 190 o # Males with BMI <25
o * # Males

; S —  # Females with BMI < 25

M 53" 180 e # Females

M 6’7" 250

. e-differentially private algorithm to answer all the questions?

What is the total error?



Naive Algorithm
Return:

* (# Males with BMI < 25) + Lap(4/¢)

* (# Males) + Lap(4/¢)

* (# Females with BMI) <25 + Lap(4/¢)
* (# Females) + Lap(4/¢)



Error Analysis

Error:

> E((@®) - q)’)

Total Error:



Review: Sensitivity

* Let f:D - R% be a function that outputs a
vector of d real numbers. The sensitivity of
fis given by:

S(f)= _ max |f(D)—f(D)ll

D,D':|DAD’'|=1

where ||x —yl||; = X;lx; — vl



Review: Algorithm 2

Compute:

* G = (# Males with BMI < 25) + Lap(1/¢)
* q, = (# Males with BMI > 25) + Lap(1/¢)
* Gz = (# Females with BMI < 25) + Lap(1/e)
* Gz = (# Females with BMI > 25) + Lap(1/¢)

Return

N N T P N
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Improving Utility of Algorithm 2

Compute:
* g1 = # Males with BMI <25 + Lap(1/¢)
* q; = # Males with BMI > 25 + Lap(1/¢)

Return

* g1, 0:+0,
1, 41792 We know q; < q1 + q3,

but P[q; > g{+q5] >0
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Constrained Inference
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Diff.
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Least Squares Optimization

k
m_inz: (G; — q1)°
q i=1

Constraint(qq, g5, ... qx) = True

such that
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Geometric Interpretation

5.t.C(q1, Gz, .., )

. S
R Space of
Outputs

satisfying the

min ) @ ~ %)
Q)

constraint

Theorem: ||g —qll, < |lg — q||, when the constraints
form a convex space
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Application: Prevent Memorization

Test Estimated Extraction
Optimizer € Loss Exposure  Possible?
RMSProp 0.65 1.69 1.1
RMSProp 1.21 1.59 2.3
g RMSProp  5.26 1.41 1.8
< RMSProp 89 1.34 2:1
= RMSProp 2x10% 1.32 3.2
RMSProp 1x10° 1.26 2.8
SGD oo 2.11 3.6
A
A SGD N/A 1.86 9.5
— RMSProp N/A 117 31.0 v
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Application: Pharmacogenetics

- 4-- Fixed 10mg —4— DP Histo. - @ - LR —e— DPLR

Goal: personalized dosing
for warfarin

® see if genetic markers
—— can be predicted from
() Time in Therapeutic Range () Mortaiy Events DP models

® small epsilon (< I) does

protect privacy but even
moderate epsilon (< 5)
leads to increased risk

0.25 1 5 20 100 0.25
¢ (privacy budget)

0.25 1 5 20 100 0.25 1 5 20 100

¢ (privacy blldgef) ¢ (privacy budget) .
(¢) Stroke Events (d) Bleeding Events Of fa—tallty
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Another Example: Range Queries

__Sex | Height | Weight _
M 6’2" 210
F 53" 190
F 59" 160
M 53" 180
M 6’7" 250

Queries:

» # people with height in [5'1”, 6'2”]
* # people with height in [2'0”, 4'0”]
* # people with height in [3'3”, 70”]

. e-differentially private algorithm to answer all the questions?

What is the total error?
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Another Example: Range Queries

Let {vy, ..., vi} be the domain of an attribute

Let {X4, ..., X} be the number of rows with
values vy, ..., v

Range Query: qj = X;+ Xjyq + ...+ X

Goal: Answer all range queries
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Strategy 1

- Answer all range queries using Laplace mechanism

. Sensitivity: 0(k?)

2

- Total error: 0O ((k—)z) = 0(k*/€e?)

€
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Strategy 2

Estimate each individual x; using Laplace mechanism
- Answer q;; = X;+ xj11 + -+ X;

Error in each x;: 0(1/€?)

Errorin g{x: 0(k/€?)

. Total Error: 0(k?3/e?)
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Strategy 3: Hierarchy

Estimate all the counts in the tree using Laplace mechanism

m BN

x1234

x5678
;| B B B

DO EDEnED
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Strategy 3: Hierarchy

Sensitivity: O(log k)

Every range query can be answered by summing up at most
O(log k) nodes in the tree.

m
x1234 x5678
;m B B

DOOOEOnEn
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Strategy 3: Hierarchy

Error in each node: O((logk)?/€?)

Max error on a range query: O((logk)3/e?)

Total Error: 0(k*(logk)3/e%)

Error can be further reduced by constrained inference

o parent counts should not be smaller than child counts
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General Strategy

|

o WTransform W Noise . Reconstrugt
Original Coefficients Noisy Private Data
Data J J Coefficients

Can think of nodes in the tree as coefficients
Other algorithms use other transformations

o Wavelets, Fourier coefficients
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Exponential Mechanism

Laplace/Gaussian mechanisms are for real-valued queries

What if the queries output categorical values?

o Choose the “best” item from a finite set of items
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Exponential Mechanism

- Utility function u(x, t) = “utility of t for dataset x”

. Goal: find t € T maximizing u(x, t)

. Sensitivity of u: Au = mzlnlglu(x, t) —u(x’,t)|
x,x!

- Output t with probability o exp (ﬁu(x, t))

'y

il =

A

| P

utility

orobability
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Exponential Mechanism Preserves € —DP
exp (ZA u(x, t))

PrM, (x) = t]  trer &P (ZA u(x, t )>

Pr[M,(x") =t] exp (ZA u(x', t))

Xirer €XP (ZA u(x',t ))

_ (exp (ZA u(x, t))) | Zt'ET exp (ZA u(x’,t ))

exp (ZA u(x), t)) 2¢rer €XP (ZA u(xt ))
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Exponential Mechanism Preserves € —DP

~ exp (e(u(x, t) —u(x’, t)) | Dtler €XP (ZA u(x',t ))
2Au Direr €XP (ZA u(x, t ))

< exp (%) . exp (g) | Zt’ET exp (ZA u(x,t ))

.1 €XD (ZA u(x,t ))

= exp(€)
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Accuracy of Exponential Mechanism

OPT,(x) = max u(x,t)

Pr [u(]\/[u(x)) < OPT,(x) — ZATu(log( ] ) + t)] <et

Topr

Pf:
Pr[u(]\/[u (x)) < c]

Priu(,00) < ] < g oy R

IT| exp (%) T exp (e(c — OPTu(x)))

eOPT, (x)\ |IT 2Au
|TOPT|eXp( ZAI{L( )) | OPTl
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Accuracy of Exponential Mechanism

rearrange  Pr [OPTu(x) - u(]\/[u(x)) > @<log< 7 ) + t)] <et

€ [ Toprl
1 2Au IT|
— oo — . -
t Ogﬁ Pr [OPTu(x) u(M,(x)) = . (log (,3|T0PT|)) <p
|ITopt| = 1 Pr [OPTu(x) — u(Mu(x)) > £Eu<log (l%l)) <p
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Accuracy of Exponential Mechanism

T

Pr [OPTu (x) — u(]\/[u (x)) > ZA_u (log (—))

€ I =h

Compare with Laplace Mechanism

Pr [l]\/[(x) —qx)| = %(log (%))] <pB

We have a dependency on the size of the output space
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Exponential Mechanism

- Very general mechanism

Unfortunately, when the output space is big:
o Very costly to sample from it

o Accuracy get worse
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Private Data Release

Given a dataset x € X", a set of queries Q = {q4, ..., q;} and a
target accuracy «a, output a differentially private synthetic dataset
x' € X™ such that

max|q(x) — q(x)| < a
qEQ
We focus on linear queries

/ 1 /
q:X—>[O,1], q(x):; ?=1Q(xi)
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SmallDB Algorithm

|
1. Letm = Oglel
a

2. Define utility function u: X"xX™ — R as
u(x,y) = — r;leaglq(x) —q()

3. Run exponential mechanism with u
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Case Study: Linear Classifier

Empirical Risk Minimization (ERM):

1 | —
5)\”’(1)“2 + —ZL(yz”wTQZi)
"=
Regularizer Risk

(Model Complexity) (Training Error)

L = Logistic Loss * Logistic Regression
L = Hinge Loss * SVM
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Why ERM Is Not Private For SVM?

. SVM solution is a combination of

support vectors. If one support
vector moves, solution changes

+ o
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First Attempt: Output Perturbation

f(D) = f(D) + noise =

1
argmin,, 5/1 | w 1% + z [(w, (xl,yl)) + noise

Theorem: [CMS11] If |l x; IS 1 and [ is 1-Lipschitz,
then for any D, D" with dist(D,D") = 1,

[1f (D) — fF(D)]]2 < % (L,-sensitivity)
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First Attempt: Output Perturbation

f(D) = f(D) + noise =

1

argmin,, EA Il w 1% + z [(w, (x;, yl)) + noise

2
noise: z o< e anell“llz
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Property of Real Data

Perturbation

Optimization surface is very steep in some direction
—> High loss if perturbed in those directions
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Better Solution: Objective Perturbation

[Chaudhuri et al. JMLR “11]

* Insight: Perturb optimization surface and then
optimize

f(D)j

1 1
argmin,, EA I w | +Ez [(w, (x;,y;)) + noise
- i=1 _

* Main idea: add noise as part of the computation:

— Regularization already changes the objective to protects
against overfitting,

— Change the objective a little bit more to protect privacy.
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Better Solution: Objective Perturbation

w i=1

1 < T 1
In ¢ — E i i)+ s Allwl|? ]
argmin { L(y,w' x;) + > |wl]* + nmse}

Main idea: add noise as part of the computation
o Regularization already changes the objective

o Change the objective a little bit more to protect privacy
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Better Solution: Objective Perturbation

1 < 1
inq =Y L(yiw' ;) + = A|w|* + noi
argmm{n (y;w :z:)—|—2 |wl| —|—n01se}

w i—1

* noise drawn from

— Magnitude: drawn from - \

— Direction: uniform at random

e Theorem: If [ is convex and double-differentiable
with |I'(z)] < 1, |I"(z)| < ¢ then Algorithm

satisfy € + 2 log (1 =+ i)—DP. [CMS11]
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Stochastic Gradient Descent (SGD)

* Initial wg
* Incremental gradient update fort =0..T — 1
— Take a random example (x¢, ;) € D

- Update C()t+1 — (Ut — r]t(Vl ((Ut; (xt) )’t)))

* N¢ 1s the step size
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SGD with Differential Privacy

[Abadi et al. CCS*16]

e Initial Wy

* Incremental gradient update fort =0..T — 1

— Take a random example (x¢, y;) € D
— Update w1 = Wy — nt(Vl(wt: (x¢, )’t))

* N¢ 1s the step size

noise)
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Naive Analysis

AW N

. Choose ¢ =

v/21og1/68

&)

Each step is (g, 0)-DP

Number of steps T

Composition: (T¢, 70)-DP

=4
(1.2, 105)-DP
10,000

(12,000, .1)-DP
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Advanced Composition Theorem

Lemma 2.3 (basic composition). If My,..., My are each (e,0)-differentially private, then M is
(ke, kd)-differentially private.

However, if we are willing to tolerate an increase in the 0 term, the privacy parameter € only
needs to degrade proportionally to VEk:

Lemma 2.4 (advanced composition [42]). If My,..., My are each (g,6)-differentially private and
k < 1/£%, then for all &' >0, M is (O(\/klog(1/d")) - £, ké + ') -differentially private.
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Analysis With Advanced Composition

1. Choose o = \/QIZg 1/o =4
2. Each step is(e, 6)-DP (1.2, 10~)-DP
3. Number of steps T 10,000

4. Strong comp: (e4/Tlog1/6, T0)-DP § (360, .1)-DP
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1T A W N

Amplification by Sampling

. Choose ¢ = v2log1/0 =4
Each batch is g frgaction of data 1%
Each step is(2qe, g5)-DP (.024, 10°7)-DP
Number of steps T 10,000

. Strong comp: (2¢e+/T log 1/, qT5)-DP | (10, .001)-DP
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T A W N

. Choose ¢ =

Moments Accountant

v/21og1/6 —4

E
Each batch is ¢ fraction of data 1%

Keeping track of privacy loss’s moments
Number of steps T 10,000

. Moments: (2¢qeV'T, 5)-DP (1.25, 10°5)-DP
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Tensorflow Integration

https://github.com/tensorflow/privacy

optimizer = tf.train.GradientDescentOptimizer()

!

dp_optimizer_class = dp_optimizer.make_optimizer_class(
tf.train.GradientDescentOptimizer)

optimizer = dp_optimizer_class()
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https://github.com/tensorflow/privacy

PATE: Private Aggregation of Teacher Ensemble

[Papernot et al. ICLR17]

Not accessible by adversary [ Accessible by adversary

4 Datal —®| Teacherl
o ‘ /' Data2 —# Teacher 2 § pr—— I |
Data é ‘»> Data3 |—p| Teacher3 |}V,  Teacher StudentsSd - - Queries
% < I o
4 paan el Teachern R
P Training = s eeseees P Prediction = « = - Data feeding

Figure 1: Overview of the approach: (1) an ensemble of teachers is trained on disjoint subsets of the
sensitive data, (2) a student model is trained on public data labeled using the ensemble.
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PATE: Private Aggregation of Teacher Ensemble

Sensitive
Data

[Papernot et al. ICLR17]

Intuitive privacy analysis:
* |f most teachers agree on the label, it does not depend on specific partitions, so
the privacy cost is small.
* |f two classes have close vote counts, the disagreement may reveal private
information

4 Datal >  Teacher 1 \
- 9l Data2 ——  Teacher 2 )\L
é Aggregate
‘B Data3 }-—» Teacher 3 Teacher
\‘ | 1. Count votes |
Data n )—» Teacher n 2. Take maximum

.
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Noisy Aggregation

Count votes
ni(Z) = [{i:i€ |n|, filT) = j}|

Add Laplacian noise

()

Take maximum

f(a) = argmax { @) + Lap (

)
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Why Not Just Use the Teacher Model?

P Datal =  Teacher1l
. /'r Data2 >  Teacher 2 §
Sensitive é ’ Aggregate
Data ‘> Data3 | Teacher3 +7V. Teacher

1. Count votes
2. Take maximum

4 Datan =  Teacher n

The aggregated teacher violates the threat model:
* Each prediction increases total privacy loss.
privacy budgets create a tension between the accuracy and number of predictions

* Inspection of internals may reveal private data.
Privacy guarantees should hold in the face of white-box adversaries

54



Benefits of Using the Student Model

Not accessible by adversary I Accessible by adversary

Teacher 1

y 4 Datal P \
. Data2 =P  Teacher 2 I
Sensitive e o Aggregate Student - - Queries
Data ‘[ Data3 | Teacher3 v, Teacher I Q
Predicted _ Incomplete
Data n »  Teachern completion [ % = public Data
P Training = == s e P Prediction m— « = =« Data feeding
Privacy Analysis:

* Privacy loss is fixed after the student model is done training.

* Even if white-box adversary can inspect the model parameters, the
information can be revealed from student model is unlabeled public data
and labels from aggregate teacher which is protected with privacy
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Accuracy of aggregated test set labels (%)

100

Experiment Results

)

[ S ST B O I

MNIST (n=10)

> -» SVHN (n=10)
»>-» SVHN (n=100)

%  MNIST (n=100)
s  MNIST (n=250) |’

> > SVHN (n=250) |]

0 0.1

0.2 0.3 0.4
Y per label query

0.5

100

80

60

40

20

Gap normalized by number of teachers (%)

0

Gap increases as number of teachers
Increases -> Less Privacy Loss, but

1

B MNIST
1 SVHN

2 3 4 5 10 25 50 100 250
Number of teachers

there will be acc. tradeoffs

56



PATE-GAN [Jordan et al. ICLR*19]

Classifiers y _l?r_nt'ir_c_ I_)_a_ta} b
Label 0 08 O | Label1 S
N N p O” ) e E
Training o ()
Generated Real
Procedure for o

Teacher
Discriminators

Training TToIIet Tl :
Procedure for |48 0 i i
Generator and e W 5

Student O, 1083 O e rebonl 5 P SL"‘:,

Redo N (_ Teacher2 ) L : 2ol

Alternative of
public data



Visual Results

of/1zISIqIRInmia]
(AR EIEIL]
R RN

Figure 2. Visualization of generated instances by G-PATE. Row 1 (real image), row 2 (¢ = 10,0 = 10" °)androw3 (e = 1,6 = 10™°)
each presents one image from each class (the left 5 columns are MNIST images, and the right 5 columns are Fashion-MNIST images).

When € = 1, G-PATE does not generate high-quality images. However, it preserves partial features in the training images, so the synthetic
images are useful to preserve data utility which can be seen from our quantitative results.
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Summary

Differential privacy: a systematic way to guarantee privacy
Many useful tools for building strong algorithms

Many opportunities in adapting traditional data-oriented tasks
and algorithms to the privacy-preserving setting
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